Combinatorial Chemistry & High Throughput Screening

Author(s): Wan Shu, Ziwei Wang, Wei Zhang, Jun Zhang, Rong Zhao, Zhicheng Yu, Kejun Dong and Hongbo Wang*

DOI: 10.2174/1386207325666221005122554

Identification of EMT-associated LncRNA Signature for Predicting the Prognosis of Patients with Endometrial Cancer

Page: [1488 - 1502] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Endometrial cancer (EC) is one of the most normal malignancies globally. Growing evidence suggests epithelial-mesenchymal transition (EMT) related markers are closely correlated with poor prognosis of EC. However, the relationship between multiple EMT-associated long non-coding RNAs (lncRNAs) and the prognosis of EC has not yet been studied.

Methods: The transcriptome data and clinical information of EC cases were obtained from The Cancer Genome Atlas (TCGA). Then, we identified differentially expressed EMT-associated lncRNAs between tumor and normal tissue. Univariate cox regression analysis and multivariate stepwise Cox regression analysis were applied to identify EMT-associated lncRNAs related to overall survival (OS). Kaplan-Meier curve, receiver operating characteristic (ROC), nomograms and multi-index ROC curves were further established to evaluate the performance of the prognostic signature. In addition, we also investigated the distribution of immune cell characteristics, sensitivity to immune checkpoint inhibitor (ICI) and chemotherapeutics, and tumor mutation burden (TMB) between high- and low-risk scores predicated on a prognostic model.

Results: We established nine EMT-associated lncRNA signatures to predict the OS of EC, the area under the ROC curve (AUC) of the risk score has better values than other clinical characteristics, indicating the accuracy of the prognostic signature. As revealed by multivariate Cox regression, the prognosis model independently predicted EC prognosis. Moreover, the signature and the EMTassociated lncRNAs showed significant correlations with other clinical characteristics,including. Multi-index ROC curves for estimating 1-, 3- and 5-year overall survival (OS) of EC patients showed good predictive accuracy with AUCs of 0.731, 0.791, and 0.782, respectively. The highrisk group had specific tumor immune infiltration, insensitive to ICI, higher chemotherapeutics sensitivity and higher expression of TP53 mutation. Finally, the five lncRNAs of signature were further verified by qRT-PCR.

Conclusion: We constructed an EMT-associated lncRNA signature that can predict the prognosis of EC effectively, and the prognostic signature also played an essential role in the TME; thus, the establishment of an EMT-associated lncRNA signature may provide new perspectives for the treatment of EC.

Keywords: Endometrial cancer, EMT, LncRNA, signature, immune infiltration, immunotherapy, TMB

Graphical Abstract

[1]
Arend, R.C.; Jones, B.A.; Martinez, A.; Goodfellow, P. Endometrial cancer: Molecular markers and management of advanced stage disease. Gynecol. Oncol., 2018, 150(3), 569-580.
[http://dx.doi.org/10.1016/j.ygyno.2018.05.015] [PMID: 29843906]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Lortet-Tieulent, J.; Ferlay, J.; Bray, F.; Jemal, A. International patterns and trends in endometrial cancer incidence, 1978–2013. J. Natl. Cancer Inst., 2018, 110(4), 354-361.
[http://dx.doi.org/10.1093/jnci/djx214] [PMID: 29045681]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[5]
Yen, T.T.; Wang, T.L.; Fader, A.N.; Shih, I.M.; Gaillard, S. Molecular classification and emerging targeted therapy in endometrial cancer. Int. J. Gynecol. Pathol., 2020, 39(1), 26-35.
[http://dx.doi.org/10.1097/PGP.0000000000000585] [PMID: 30741844]
[6]
Vermij, L.; Smit, V.; Nout, R.; Bosse, T. Incorporation of molecular characteristics into endometrial cancer management. Histopathology, 2020, 76(1), 52-63.
[http://dx.doi.org/10.1111/his.14015] [PMID: 31846532]
[7]
Lu, K.H.; Broaddus, R.R. Endometrial cancer. N. Engl. J. Med., 2020, 383(21), 2053-2064.
[http://dx.doi.org/10.1056/NEJMra1514010] [PMID: 33207095]
[8]
Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet, 2022, 399(10333), 1412-1428.
[http://dx.doi.org/10.1016/S0140-6736(22)00323-3] [PMID: 35397864]
[9]
Clarke, M.A.; Devesa, S.S.; Harvey, S.V.; Wentzensen, N. Hysterectomy-corrected uterine corpus cancer incidence trends and differences in relative survival reveal racial disparities and rising rates of nonendometrioid cancers. J. Clin. Oncol., 2019, 37(22), 1895-1908.
[http://dx.doi.org/10.1200/JCO.19.00151] [PMID: 31116674]
[10]
Emons, G.; Vordermark, D. Adjuvant treatment for endometrial cancer. Curr. Opin. Oncol., 2019, 31(5), 404-410.
[http://dx.doi.org/10.1097/CCO.0000000000000558] [PMID: 31233482]
[11]
Connor, E.V.; Rose, P.G. Management strategies for recurrent endometrial cancer. Expert Rev. Anticancer Ther., 2018, 18(9), 873-885.
[http://dx.doi.org/10.1080/14737140.2018.1491311] [PMID: 29972650]
[12]
Nieto, M.A. Epithelial-mesenchymal transitions in development and disease: Old views and new perspectives. Int. J. Dev. Biol., 2009, 53(8-9-10), 1541-1547.
[http://dx.doi.org/10.1387/ijdb.072410mn]] [PMID: 19247945]
[13]
Cho, E.S.; Kang, H.E.; Kim, N.H.; Yook, J.I. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch. Pharm. Res., 2019, 42(1), 14-24.
[http://dx.doi.org/10.1007/s12272-018-01108-7] [PMID: 30649699]
[14]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[15]
Wong, S.H.M.; Fang, C.M.; Chuah, L.H.; Leong, C.O.; Ngai, S.C. E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit. Rev. Oncol. Hematol., 2018, 121, 11-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.010] [PMID: 29279096]
[16]
Dudás, J.; Ladányi, A.; Ingruber, J.; Steinbichler, T.B.; Riechelmann, H. Epithelial to mesenchymal transition: A mechanism that fuels cancer radio/chemoresistance. Cells, 2020, 9(2), 428.
[http://dx.doi.org/10.3390/cells9020428] [PMID: 32059478]
[17]
Chiu, H.C.; Li, C.J.; Yiang, G.T.; Tsai, A.; Wu, M.Y. Epithelial to mesenchymal transition and cell biology of molecular regulation in endometrial carcinogenesis. J. Clin. Med., 2019, 8(4), 439.
[http://dx.doi.org/10.3390/jcm8040439] [PMID: 30935077]
[18]
Cuevas, I.C.; Sahoo, S.S.; Kumar, A.; Zhang, H.; Westcott, J.; Aguilar, M.; Cortez, J.D.; Sullivan, S.A.; Xing, C.; Hayes, D.N.; Brekken, R.A.; Bae-Jump, V.L.; Castrillon, D.H. Fbxw7 is a driver of uterine carcinosarcoma by promoting epithelial-mesenchymal transition. Proc. Natl. Acad. Sci. USA, 2019, 116(51), 25880-25890.
[http://dx.doi.org/10.1073/pnas.1911310116] [PMID: 31772025]
[19]
Liu, Y.; Zhao, R.; Chi, S.; Zhang, W.; Xiao, C.; Zhou, X.; Zhao, Y.; Wang, H. UBE2C is upregulated by estrogen and promotes epithelial–mesenchymal transition via p53 in endometrial cancer. Mol. Cancer Res., 2020, 18(2), 204-215.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0561] [PMID: 31662448]
[20]
Fatica, A.; Bozzoni, I. Long non-coding RNAs: New players in cell differentiation and development. Nat. Rev. Genet., 2014, 15(1), 7-21.
[http://dx.doi.org/10.1038/nrg3606] [PMID: 24296535]
[21]
Dong, P.; Xiong, Y.; Yue, J.; Xu, D.; Ihira, K.; Konno, Y.; Kobayashi, N.; Todo, Y.; Watari, H. Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J. Exp. Clin. Cancer Res., 2019, 38(1), 295.
[http://dx.doi.org/10.1186/s13046-019-1306-9] [PMID: 31287002]
[22]
Zhao, H.; Xu, Q. Long non‐coding RNA DLX6‐AS1 mediates proliferation, invasion and apoptosis of endometrial cancer cells by recruiting p300/E2F1 in DLX6 promoter region. J. Cell. Mol. Med., 2020, 24(21), 12572-12584.
[http://dx.doi.org/10.1111/jcmm.15810] [PMID: 32951317]
[23]
Sun, J.; Lian, M.; Ma, H.; Wang, R.; Ma, Z.; Wang, H.; Zhai, J.; Meng, L.; Feng, L.; Bai, Y.; Cui, X.; Fang, J. Competing endogenous RNA network analysis of CD274, IL 10 and FOXP3 co expression in laryngeal squamous cell carcinoma. Mol. Med. Rep., 2018, 17(3), 3859-3869.
[PMID: 29257349]
[24]
Fattahi, S.; Kosari-Monfared, M.; Golpour, M.; Emami, Z.; Ghasemiyan, M.; Nouri, M.; Akhavan-Niaki, H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J. Cell. Physiol., 2020, 235(4), 3189-3206.
[http://dx.doi.org/10.1002/jcp.29260] [PMID: 31595495]
[25]
Wu, Y.; Zhang, L.; He, S.; Guan, B.; He, A.; Yang, K.; Gong, Y.; Li, X.; Zhou, L. Identification of immune-related LncRNA for predicting prognosis and immunotherapeutic response in bladder cancer. Aging (Albany NY), 2020, 12(22), 23306-23325.
[http://dx.doi.org/10.18632/aging.104115] [PMID: 33221763]
[26]
Zhou, H.; Chen, L.; Lei, Y.; Li, T.; Li, H.; Cheng, X. Integrated analysis of tumor mutation burden and immune infiltrates in endometrial cancer. Curr. Probl. Cancer, 2021, 45(2), 100660.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100660] [PMID: 33012523]
[27]
Jiang, Y.; Zhan, H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett., 2020, 468, 72-81.
[http://dx.doi.org/10.1016/j.canlet.2019.10.013] [PMID: 31605776]
[28]
Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med., 2018, 50(12), 1-11.
[http://dx.doi.org/10.1038/s12276-018-0191-1] [PMID: 30546008]
[29]
Drakes, M.L.; Czerlanis, C.M.; Stiff, P.J. Immune checkpoint blockade in gynecologic cancers: State of affairs. Cancers (Basel), 2020, 12(11), 3301.
[http://dx.doi.org/10.3390/cancers12113301] [PMID: 33182298]
[30]
Matei, D.; Filiaci, V.; Randall, M.E.; Mutch, D.; Steinhoff, M.M.; DiSilvestro, P.A.; Moxley, K.M.; Kim, Y.M.; Powell, M.A.; O’Malley, D.M.; Spirtos, N.M.; Small, W., Jr; Tewari, K.S.; Richards, W.E.; Nakayama, J.; Matulonis, U.A.; Huang, H.Q.; Miller, D.S. Adjuvant chemotherapy plus radiation for locally advanced endometrial cancer. N. Engl. J. Med., 2019, 380(24), 2317-2326.
[http://dx.doi.org/10.1056/NEJMoa1813181] [PMID: 31189035]
[31]
Gómez-Raposo, C.; Merino Salvador, M.; Aguayo Zamora, C.; Casado Saenz, E. Adjuvant chemotherapy in endometrial cancer. Cancer Chemother. Pharmacol., 2020, 85(3), 477-486.
[http://dx.doi.org/10.1007/s00280-019-04027-6] [PMID: 31950214]
[32]
Guo, J.; Cui, X.; Zhang, X.; Qian, H.; Duan, H.; Zhang, Y. The clinical characteristics of endometrial cancer with extraperitoneal metastasis and the value of surgery in treatment. Technol. Cancer Res. Treat., 2020, 19.
[http://dx.doi.org/10.1177/1533033820945784] [PMID: 32721274]
[33]
Neri, M.; Peiretti, M.; Melis, G.B.; Piras, B.; Vallerino, V.; Paoletti, A.M.; Madeddu, C.; Scartozzi, M.; Mais, V. Systemic therapy for the treatment of endometrial cancer. Expert Opin. Pharmacother., 2019, 20(16), 2019-2032.
[http://dx.doi.org/10.1080/14656566.2019.1654996] [PMID: 31451034]
[34]
Mittal, V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 2018, 13(1), 395-412.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043854] [PMID: 29414248]
[35]
Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226.
[http://dx.doi.org/10.1016/j.tcb.2018.12.001] [PMID: 30594349]
[36]
Craene, B.D.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer, 2013, 13(2), 97-110.
[http://dx.doi.org/10.1038/nrc3447] [PMID: 23344542]
[37]
Guo, J.; Ye, F.; Jiang, X.; Guo, H.; Xie, W.; Zhang, Y.; Sheng, X. Drp1 mediates high glucose-induced mitochondrial dysfunction and epithelial-mesenchymal transition in endometrial cancer cells. Exp. Cell Res., 2020, 389(1), 111880.
[http://dx.doi.org/10.1016/j.yexcr.2020.111880] [PMID: 32017930]
[38]
Guo, J.; Qian, H.; Ma, F.; Zhang, Y.; Cui, X.; Duan, H. The characteristics of isolated para-aortic lymph node metastases in endometrial cancer and their prognostic significance. Ther. Adv. Med. Oncol., 2020, 12.
[http://dx.doi.org/10.1177/1758835920933036] [PMID: 32587635]
[39]
Yang, Y.; Feng, M.; Bai, L.; Liao, W.; Zhou, K.; Zhang, M.; Wu, Q.; Wen, F.; Lei, W.; Zhang, P.; Zhang, N.; Huang, J.; Li, Q. Comprehensive analysis of EMT-related genes and lncRNAs in the prognosis, immunity, and drug treatment of colorectal cancer. J. Transl. Med., 2021, 19(1), 391.
[http://dx.doi.org/10.1186/s12967-021-03065-0] [PMID: 34526059]
[40]
Goossens, S.; Vandamme, N.; Van Vlierberghe, P.; Berx, G. EMT transcription factors in cancer development re-evaluated: Beyond EMT and MET. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(2), 584-591.
[http://dx.doi.org/10.1016/j.bbcan.2017.06.006] [PMID: 28669750]
[41]
Zmarzły, N.; Hermyt, E.; Kruszniewska-Rajs, C.; Gola, J.; Witek, A.; Mazurek, U.; Ostenda, A.; Boroń, D. Expression profile of EMT-related genes and miRNAs involved in signal transduction via the WNT pathway and cadherins in endometrial cancer. Curr. Pharm. Biotechnol., 2021, 22(12), 1663-1671.
[http://dx.doi.org/10.2174/1389201021666201218125900] [PMID: 33342410]
[42]
Cai, L.; Hu, C.; Yu, S.; Liu, L.; Zhao, J.; Zhao, Y.; Lin, F.; Du, X.; Yu, Q.; Xiao, Q. Identification of EMT-related gene signatures to predict the prognosis of patients with endometrial cancer. Front. Genet., 2020, 11, 582274.
[http://dx.doi.org/10.3389/fgene.2020.582274] [PMID: 33343628]
[43]
Zhang, C.; Shao, S.; Zhang, Y.; Wang, L.; Liu, J.; Fang, F.; Li, P.; Wang, B. LncRNA PCAT1 promotes metastasis of endometrial carcinoma through epigenetical downregulation of E-cadherin associated with methyltransferase EZH2. Life Sci., 2020, 243, 117295.
[http://dx.doi.org/10.1016/j.lfs.2020.117295] [PMID: 31927050]
[44]
Liu, W.; Zhang, B.; Xu, N.; Wang, M.J.; Liu, Q. miR-326 regulates EMT and metastasis of endometrial cancer through targeting TWIST1. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(17), 3787-3793.
[PMID: 28975990]
[45]
Kopp, F.; Mendell, J.T. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018, 172(3), 393-407.
[http://dx.doi.org/10.1016/j.cell.2018.01.011] [PMID: 29373828]
[46]
Zhang, Y.; Zhang, L.; Xu, Y.; Wu, X.; Zhou, Y.; Mo, J. Immune‐related long noncoding RNA signature for predicting survival and immune checkpoint blockade in hepatocellular carcinoma. J. Cell. Physiol., 2020, 235(12), 9304-9316.
[http://dx.doi.org/10.1002/jcp.29730] [PMID: 32330311]
[47]
Zhang, L.H.; Li, L.H.; Zhang, P.F.; Cai, Y.F.; Hua, D. LINC00957 acted as prognostic marker was associated with fluorouracil resistance in human colorectal cancer. Front. Oncol., 2019, 9, 776.
[http://dx.doi.org/10.3389/fonc.2019.00776] [PMID: 31497531]
[48]
Zhang, M.; Liu, Y.; Kong, D. Identifying biomolecules and constructing a prognostic risk prediction model for recurrence in osteosarcoma. J. Bone Oncol., 2021, 26, 100331.
[http://dx.doi.org/10.1016/j.jbo.2020.100331] [PMID: 33376666]
[49]
Fan, L.; Li, H.; Zhang, Y. LINC00908 negatively regulates microRNA-483-5p to increase TSPYL5 expression and inhibit the development of prostate cancer. Cancer Cell Int., 2020, 20(1), 10.
[http://dx.doi.org/10.1186/s12935-019-1073-x] [PMID: 31938018]
[50]
Gong, D.; Feng, P.C.; Ke, X.F.; Kuang, H.L.; Pan, L.L.; Ye, Q.; Wu, J.B. Silencing Long Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Progression via MicroRNA-330-5p-Induced Inhibition of CHEK1. Mol. Ther. Nucleic Acids, 2020, 19, 482-497.
[http://dx.doi.org/10.1016/j.omtn.2019.10.007] [PMID: 31902747]
[51]
Zuo, X.; Li, W.; Yan, X.; Ma, T.; Ren, Y.; Hua, M.; Yang, H.; Wu, H.; Zhu, H. Long non coding RNA LINC01224 promotes cell proliferation and inhibits apoptosis by regulating AKT3 expression via targeting miR 485 5p in endometrial carcinoma. Oncol. Rep., 2021, 46(3), 186.
[http://dx.doi.org/10.3892/or.2021.8137] [PMID: 34278482]
[52]
Huang, J.Z.; Chen, M.; Chen, D.; Gao, X.C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell, 2017, 68(1), 171-184.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.09.015] [PMID: 28985503]
[53]
Jiang, Y.; Chen, J.; Ling, J.; Zhu, X.; Jiang, P.; Tang, X.; Zhou, H.; Li, R. Construction of a Glycolysis-related long noncoding RNA signature for predicting survival in endometrial cancer. J. Cancer, 2021, 12(5), 1431-1444.
[http://dx.doi.org/10.7150/jca.50413] [PMID: 33531988]
[54]
Wang, Z.; Zhang, J.; Liu, Y.; Zhao, R.; Zhou, X.; Wang, H. An integrated autophagy-related long noncoding rna signature as a prognostic biomarker for human endometrial cancer: A bioinformatics-based approach. BioMed Res. Int., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/5717498] [PMID: 33381557]
[55]
Di Tucci, C.; Capone, C.; Galati, G.; Iacobelli, V.; Schiavi, M.C.; Di Donato, V.; Muzii, L.; Panici, P.B. Immunotherapy in endometrial cancer: New scenarios on the horizon. J. Gynecol. Oncol., 2019, 30(3), e46.
[http://dx.doi.org/10.3802/jgo.2019.30.e46] [PMID: 30887763]
[56]
Cao, W.; Ma, X.; Fischer, J.V.; Sun, C.; Kong, B.; Zhang, Q. Immunotherapy in endometrial cancer: Rationale, practice and perspectives. Biomark. Res., 2021, 9(1), 49.
[http://dx.doi.org/10.1186/s40364-021-00301-z] [PMID: 34134781]
[57]
Brooks, R.A.; Fleming, G.F.; Lastra, R.R.; Lee, N.K.; Moroney, J.W.; Son, C.H.; Tatebe, K.; Veneris, J.L. Current recommendations and recent progress in endometrial cancer. CA Cancer J. Clin., 2019, 69(4), caac.21561..
[http://dx.doi.org/10.3322/caac.21561]] [PMID: 31074865]
[58]
Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[59]
Singh, S.; Chakrabarti, R. Consequences of EMT-driven changes in the immune microenvironment of breast cancer and therapeutic response of cancer cells. J. Clin. Med., 2019, 8(5), 642.
[http://dx.doi.org/10.3390/jcm8050642] [PMID: 31075939]
[60]
Zhou, C.; Wang, S.; Shen, Z.; Shen, Y.; Li, Q.; Shen, Y.; Huang, J.; Deng, H.; Ye, D.; Zhan, G.; Li, J. Construction of an m6A‐related lncRNA pair prognostic signature and prediction of the immune landscape in head and neck squamous cell carcinoma. J. Clin. Lab. Anal., 2022, 36(1), e24113.
[http://dx.doi.org/10.1002/jcla.24113] [PMID: 34783061]
[61]
Zhang, L.; Li, B.; Peng, Y.; Wu, F.; Li, Q.; Lin, Z.; Xie, S.; Xiao, L.; Lin, X.; Ou, Z.; Cai, T.; Rong, H.; Fan, S.; Li, J. The prognostic value of TMB and the relationship between TMB and immune infiltration in head and neck squamous cell carcinoma: A gene expression-based study. Oral Oncol., 2020, 110, 104943.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104943] [PMID: 32919362]
[62]
Hartshorn, C.M.; Bradbury, M.S.; Lanza, G.M.; Nel, A.E.; Rao, J.; Wang, A.Z.; Wiesner, U.B.; Yang, L.; Grodzinski, P. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano, 2018, 12(1), 24-43.
[http://dx.doi.org/10.1021/acsnano.7b05108] [PMID: 29257865]
[63]
Vajedi, F.S.; Dehghani, H.; Zarrabi, A. Design and characterization of a novel pH-sensitive biocompatible and multifunctional nanocarrier for in vitro paclitaxel release. Mater. Sci. Eng. C, 2021, 119, 111627.
[http://dx.doi.org/10.1016/j.msec.2020.111627] [PMID: 33321668]