Current Computer-Aided Drug Design

Author(s): Suraj N. Mali* and Anima Pandey

DOI: 10.2174/1573409918666220929145824

Synthesis, Computational Analysis, Antimicrobial, Antioxidant, Trypan Blue Exclusion Assay, β-hematin Assay and Anti-inflammatory Studies of some Hydrazones (Part-I)

Page: [108 - 122] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Hydrazone and its azomethine (-NHN=CH-) derivatives are widely reported for their immense pharmacological potential. They have also been reported to possess potent anti-tuberculosis, anti-malarial, anti-inflammatory, and anti-oxidant activities. Considering their pharmacological significance, we herein synthesized a set of 10 hydrazones (1S-10S) using green, biodegradable chitosan and HCl as catalyst.

Methods: All synthesized compounds were characterized using modern spectroscopic techniques, including Nuclear magnetic resonance, 1H-/13C-NMR; Fourier transform infrared spectroscopy (FT-IR); Ultraviolet-visible spectroscopy; Mass spectrometry (m/z), etc. Synthesized compounds were in silico screened using molecular docking, dynamics, pharmacokinetics, theoretical properties, and common pharmacophore analysis. Moreover, we also subjected all compounds to DPPH radical scavenging assay, protein denaturation assay, Trypan Blue assay for cell viability assessments, β-hematin assay for hemozoin inhibition analysis and standard antimicrobial analysis.

Results: Our results suggested that the synthesized compound 2S had high potency against studied microbial strains (minimum MIC = 3.12 μg/mL). Our antioxidant analysis for 1S-10S revealed that our compounds had radical scavenging effects ranging from 25.1-80.3 %. Compounds 2S exhibited % cell viability of 68.92% (at 100 μg concentration of sample), while the same compound retained anti-inflammatory % inhibition at 62.16 %. Compound 2S was obtained as the best docked molecule, with a docking score of -5.32 Kcal/mol with target pdb id: 1d7u protein. Molecular dynamics simulation and normal mode analysis for 100 ns for 1d7u:2S retained good stability. Finally, in silico pharmacokinetics, theoretical properties and pharmacophoric features were assessed.

Conclusion: In summary, synthesized hydrazone exhibited a good biological profile according to in silico and in vitro studies. However, further in vivo studies are required that may shed more insights on its potencies.

Keywords: Hydrazones, antimicrobial activity, anticancer, antioxidant, Molecular Docking, 1D7U, molecular dynamics

Graphical Abstract

[1]
Alam, M.M.; Verma, G.; Shaquiquzzaman, M.; Marella, A.; Akhtar, M.; Ali, M.R. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci., 2014, 6(2), 69-80.
[http://dx.doi.org/10.4103/0975-7406.129170] [PMID: 24741273]
[2]
Rollas, S.; Küçükgüzel, S. Biological activities of hydrazone derivatives. Molecules, 2007, 12(8), 1910-1939.
[http://dx.doi.org/10.3390/12081910] [PMID: 17960096]
[3]
Hussain, I.; Ali, A. Exploring the pharmacological activities of hydrazone derivatives: A review. J. Phytochem. Biochem, 2017, 1(1), 1-11.
[4]
Chopade, A.R.; Mali, S.N. Modulation of prostaglandin E2 with natural products for better management of pain and inflammation. Curr. Enzym. Inhib., 2022, 18(2), 78-81.
[http://dx.doi.org/10.2174/1573408018666220513111051]
[5]
de Miranda, A.; Júnior, W.; da Silva, Y.; Alexandre-Moreira, M.; Castro, R.; Sabino, J.; Lião, L.; Lima, L.; Barreiro, E. Design, synthesis, antinociceptive and anti-inflammatory activities of novel piroxicam analogues. Molecules, 2012, 17(12), 14126-14145.
[http://dx.doi.org/10.3390/molecules171214126] [PMID: 23192189]
[6]
Gökçe, M.; Utku, S.; Küpeli, E. Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives. Eur. J. Med. Chem., 2009, 44(9), 3760-3764.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.048] [PMID: 19535179]
[7]
Bayrak, H.; Demirbas, A.; Demirbas, N.; Karaoglu, S.A. Synthesis of some new 1,2,4-triazoles starting from isonicotinic acid hydrazide and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(11), 4362-4366.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.022] [PMID: 19647352]
[8]
Khalil, A.M.; Berghot, M.A.; Gouda, M.A. Synthesis and antibacterial activity of some new heterocycles incorporating phthalazine. Eur. J. Med. Chem., 2009, 44(11), 4448-4454.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.003] [PMID: 19570595]
[9]
Abdel-Wahab, B.F.; Awad, G.E.A.; Badria, F.A. Synthesis, antimicrobial, antioxidant, anti-hemolytic and cytotoxic evaluation of new imidazole-based heterocycles. Eur. J. Med. Chem., 2011, 46(5), 1505-1511.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.062] [PMID: 21353349]
[10]
Raja, A.S.; Agarwal, A.K.; Mahajan, N.; Pandeya, S.N.; Ananthan, S. Antibacterial and antitubercular activities of some diphenyl hydrazones and semicarbazones. Indian J. Chem., 2010, 49B, 1384-1388.
[11]
Kumar, S.; Drabu, S.; Kumar, R.; Bawa, S. Synthesis and antimicrobial activity of 2-chloro-6-methylquinoline hydrazone derivatives. J. Pharm. Bioallied Sci., 2009, 1(1), 27.
[http://dx.doi.org/10.4103/0975-7406.62683]
[12]
Kale, V.T.; Burghate, A.S.; Wadhal, S.A. Synthesis and antibacterial activity of n-heterocyclic substituted hydrazone Schiff’s bases. Indo Am J Pharm Res., 2016, 6, 6404-6410.
[13]
Krátký, M.; Bősze, S.; Baranyai, Z.; Stolaříková, J.; Vinšová, J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett., 2017, 27(23), 5185-5189.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.050] [PMID: 29097168]
[14]
Casanova, B.; Muniz, M.; de Oliveira, T.; de Oliveira, L.; Machado, M.; Fuentefria, A.; Gosmann, G.; Gnoatto, S. Synthesis and biological evaluation of hydrazone derivatives as antifungal agents. Molecules, 2015, 20(5), 9229-9241.
[http://dx.doi.org/10.3390/molecules20059229] [PMID: 26007181]
[15]
Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur. J. Med. Chem., 2014, 76, 539-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.026] [PMID: 24607878]
[16]
Fattorusso, C.; Campiani, G.; Kukreja, G.; Persico, M.; Butini, S.; Romano, M.P.; Altarelli, M.; Ros, S.; Brindisi, M.; Savini, L.; Novellino, E.; Nacci, V.; Fattorusso, E.; Parapini, S.; Basilico, N.; Taramelli, D.; Yardley, V.; Croft, S.; Borriello, M.; Gemma, S. Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents. J. Med. Chem., 2008, 51(5), 1333-1343.
[http://dx.doi.org/10.1021/jm7012375] [PMID: 18278859]
[17]
Acharya, B.N.; Saraswat, D.; Kaushik, M.P. Pharmacophore based discovery of potential antimalarial agent targeting haem detoxification pathway. Eur. J. Med. Chem., 2008, 43(12), 2840-2852.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.005] [PMID: 18395298]
[18]
Eyüp Başaran. Haşimi, N.; Çakmak, R.; Çınar, E. Synthesis, structural characterization, and biological evaluation of some hydrazone compounds as potential antioxidant agents. Russ. J. Bioorganic Chem., 2022, 48(1), 143-152.
[http://dx.doi.org/10.1134/S1068162022010058]
[19]
Rani, M.; Jayanthi, S.; Kabilan, S.; Ramachandran, R. Synthesis, spectral, crystal structure, hirshfeld surface, computational analysis, and antimicrobial studies of ethyl-(E)-4-(2-(2-arylidenehydrazinyl)-2-oxoethyl)piperazine-1-carboxylates. J. Mol. Struct., 2022, 1252, 132082.
[http://dx.doi.org/10.1016/j.molstruc.2021.132082]
[20]
Mathew, B.; Suresh, J.J.; Ahsan, M.E.; Mathew, G.; Usman, D.N.S.; Subramanyan, P.F.; Safna, K.; Maddela, S. Hydrazones as a privileged structural linker in antitubercular agents: A review. Infect. Disord. Drug Targets, 2015, 15(2), 76-88.
[21]
Thorat, B.R.; Rani, D.; Yamgar, R.S.; Mali, S.N. Synthesis, spectroscopic, in vitro and computational analysis of hydrazones as potential antituberculosis agents:(part-I). Comb. Chem. High Throughput Screen., 2020, 23(5), 392-401.
[http://dx.doi.org/10.2174/1386207323999200325125858] [PMID: 32209038]
[22]
Cruz, J.N.; Mali, S.N. Antimalarial hemozoin inhibitors (β-hematin formation inhibition): Latest updates. Comb. Chem. High Throughput Screen., 2022, 25(12), 1987-1990.
[http://dx.doi.org/10.2174/1386207325666220117145351] [PMID: 35040394]
[23]
Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) formation inhibitors; A promising target for the development of new antimalarials: Current update and A future prospect. Comb. Chem. High Throughput Screen., 2022, 37(1), 179-189.
[http://dx.doi.org/10.2174/1386207325666210924104036] [PMID: 34565319]
[24]
Ahmed, W.; Rani, M.; Khan, I.A.; Iqbal, A.; Khan, K.M.; Haleem, M.A.; Azim, M.K. Characterisation of hydrazides and hydrazine derivatives as novel aspartic protease inhibitors. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 673-678.
[http://dx.doi.org/10.3109/14756360903508430] [PMID: 20063996]
[25]
Ramírez, H.; Fernandez, E.; Rodrigues, J.; Mayora, S.; Martínez, G.; Celis, C.; De Sanctis, J.B.; Mijares, M.; Charris, J. Synthesis and anti-malarial and anticancer evaluation of 7‐chlorquinoline‐4‐thiazoleacetic derivatives containing aryl hydrazide moieties. Arch. Pharm. (Weinheim), 2021, 354(7), 2100002.
[http://dx.doi.org/10.1002/ardp.202100002] [PMID: 33660349]
[26]
Berner, N.H.; Varma, R.S.; Boykin, D.W. Jr Substituted N-phenylanthranilic acid hydrazides as potential antimalarial and antimicrobial agents. J. Med. Chem., 1970, 13(3), 552-554.
[http://dx.doi.org/10.1021/jm00297a052] [PMID: 4989877]
[27]
Quiliano, M.; Pabón, A.; Ramirez-Calderon, G.; Barea, C.; Deharo, E.; Galiano, S.; Aldana, I. New hydrazine and hydrazide quinoxaline 1,4-di- N -oxide derivatives: In silico ADMET, antiplasmodial and antileishmanial activity. Bioorg. Med. Chem. Lett., 2017, 27(8), 1820-1825.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.049] [PMID: 28291694]
[28]
Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-review of the importance of hydrazides and their derivatives-Synthesis and biological activity. Engineering Proceedings, 2021, 11(1), 21.
[http://dx.doi.org/10.3390/ASEC2021-11157]
[29]
Desale, V.J.; Mali, S.N.; Chaudhari, H.K.; Mali, M.C.; Thorat, B.R.; Yamgar, R.S. Synthesis and anti-mycobacterium study on halo-substituted 2-aryl oxyacetohydrazones. Curr. Computer Aided Drug Des., 2020, 16(5), 618-628.
[http://dx.doi.org/10.2174/1573409915666191018120611] [PMID: 31648645]
[30]
Thorat, B.R.; Mali, S.N.; Rani, D.; Yamgar, R.S. Synthesis, in silico and in vitro analysis of hydrazones as potential antituberculosis agents. Curr. Computer Aided Drug Des., 2021, 17(2), 294-306.
[http://dx.doi.org/10.2174/15734099MTA0sOTQ3x] [PMID: 32141422]
[31]
Desale, V.J.; Mali, S.N.; Thorat, B.R.; Yamgar, R.S. Synthesis, admetSAR predictions, DPPH radical scavenging activity, and potent anti-mycobacterial studies of hydrazones of substituted 4-(anilino methyl) benzohydrazides (Part 2). Curr. Computer Aided Drug Des., 2021, 17(4), 493-503.
[http://dx.doi.org/10.2174/1573409916666200615141047] [PMID: 32538732]
[32]
Mali, S.N.; Thorat, B.R.; Yamgar, R.S. Synthesis, molecular docking, antioxidant, anti-TB, and potent MCF-7 anti-cancer studies of Novel Aryl-carbohydrazide analogues. Curr. Comput.-Aided Drug Des, 2022.
[http://dx.doi.org/10.2174/1573409918666220610162158]
[33]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[34]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[35]
López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res., 2014, 42(W1), W271-W276.
[http://dx.doi.org/10.1093/nar/gku339] [PMID: 24771341]
[36]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[37]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[38]
Braga, E.J.; Corpe, B.T.; Marinho, M.M.; Marinho, E.S. Molecular electrostatic potential surface, HOMO–LUMO, and computational analysis of synthetic drug Rilpivirine. Int. J. Sci. Eng. Res., 2016, 7(7), 315-319.
[39]
a) Avelar-Freitas, B.A.; Almeida, V.G.; Pinto, M.C.X.; Mourão, F.A.G.; Massensini, A.R.; Martins-Filho, O.A.; Rocha-Vieira, E.; Brito-Melo, G.E.A. Trypan blue exclusion assay by flow cytometry. Braz. J. Med. Biol. Res., 2014, 47(4), 307-315.
[http://dx.doi.org/10.1590/1414-431X20143437] [PMID: 24652322];
b) Counting Mammalian Cells Using a Hemacytometer. Available from: https://www.nexcelom.com/applications/cellometer/cell-counting/counting-mammalian-cells-using-a-hemacytometer/ [Accessed on: 30-01-2022].
[40]
Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B.; Menziwa, P.; Nkeh-Chungag, B.N.; Iputo, J.E. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res., 2010, 4(9), 789-795.
[41]
Ncokazi, K.K.; Egan, T.J. A colorimetric high-throughput β-hematin inhibition screening assay for use in the search for antimalarial compounds. Anal. Biochem., 2005, 338(2), 306-319.
[http://dx.doi.org/10.1016/j.ab.2004.11.022] [PMID: 15745752]
[42]
Kshatriya, R.; Shelke, P.; Mali, S.; Yashwantrao, G.; Pratap, A.; Saha, S. Synthesis and evaluation of anticancer activity of pyrazolone appended triarylmethanes (TRAMs). ChemistrySelect, 2021, 6(24), 6230-6239.
[http://dx.doi.org/10.1002/slct.202101083]
[43]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Multiple 3D- and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct. Chem., 2022, 33(3), 679-694.
[http://dx.doi.org/10.1007/s11224-022-01879-2]
[44]
Mali, S.N.; Tambe, S.; Pratap, A.P.; Cruz, J.N. Molecular modeling approaches to investigate essential oils (Volatile compounds) interacting with molecular targets. In: Essential Oils; Santana de Oliveira, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; 1, pp. 417-442.
[http://dx.doi.org/10.1007/978-3-030-99476-1_18]
[45]
Mali, S.N.; Pandey, A. Synthesis of new hydrazones using a biodegradable catalyst, their biological evaluations and molecular modeling studies (Part-II). J. Comput. Biophys. Chem., 2022, 21(7), 857-882.
[46]
Mali, S.N.; Pandey, A.; Thorat, B.R.; Lai, C.H. Greener synthesis, in-silico and theoretical analysis of hydrazides as potential antituberculosis agents (Part 1). Chem. Proc., 2021, 8, 86.
[http://dx.doi.org/10.3390/ecsoc-25-11655]
[47]
Pal, Y.; Mali, S.N.; Pratap, A.P. Optimization of the primary purification process of extracting sphorolipid from the fermentation broth to achieve a higher yield and purity. Tenside Surfactants Deterg., 2022, 59(5), 441-449.
[http://dx.doi.org/10.1515/tsd-2022-2450]