Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer

Page: [3114 - 3126] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Breast cancer is the second leading cause of cancer-related deaths. It is important to target the complex pathways using a suitable targeted delivery system. Targeted delivery systems can effectively act on cancer cells and lead to the annihilation of tumor proliferation. They mainly employ targeting agents like aptamers linked to the formulation. Based on the expression of the receptors on the surface of the cancer cells, suitable aptamers can be developed. AS1411 is one such aptamer that has the ability to bind to the over-expressed nucleolin present in breast cancer cells. Nucleolin is a phosphoprotein that is involved in various aspects, like cell growth, differentiation and survival. Mostly they are found in the nucleolus, nucleus, cytoplasm and cell surface. The shuttling effect of the nucleolin between the nucleus and cytoplasm serves as a bonus for the AS1411 aptamer. Because of the shutting effect, the internalization of the drug compound or chemotherapeutic drug inside the cell can be achieved. In this article, we have discussed nucleolin, anti-nucleolin aptamer, namely, AS1411, and its application in exhibiting various anticancer activities, including apoptosis, anti-angiogenesis, anti-metastasis, stimulation of tumor suppressor (i.e., P53), and inhibition of tumor inducer. Further, the ways of internalization, namely macropinocytosis, are also discussed. Additionally, we have also discussed the superiority of the aptamer compared to the antibodies as well as the limitations of the aptamers. By considering all the above parameters, we hope this aptamer will be effective in the management and eradication of breast cancer cells.

Keywords: Cancer, targeting, aptamers, nucleolin, AS1411, internalization.

[1]
Feng, Y.; Spezia, M.; Huang, S. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[2]
WHO, World Health Organization. Preventing cancer., 2019. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
[3]
Moreno-Aspitia, A.; Perez, E.A. Treatment options for breast cancer resistant to anthracycline and taxane. Mayo Clin. Proc., 2009, 84(6), 533-545.
[http://dx.doi.org/10.4065/84.6.533] [PMID: 19483170]
[4]
Ireson, C.R.; Kelland, L.R. Discovery and development of anticancer aptamers. Mol. Cancer Ther., 2006, 5(12), 2957-2962.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0172] [PMID: 17172400]
[5]
Liu, M.; Yu, X.; Chen, Z. Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnology, 2017, 15(1), 81.
[http://dx.doi.org/10.1186/s12951-017-0311-4] [PMID: 29132385]
[6]
Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov., 2010, 9(7), 537-550.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[7]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[8]
Dhar, P.; Samarasinghe, R.M.; Shigdar, S. Antibodies, nanobodies, or aptamers—which is best for deciphering the proteomes of non-model species? Int. J. Mol. Sci., 2020, 21(7), 2485.
[http://dx.doi.org/10.3390/ijms21072485] [PMID: 32260091]
[9]
Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the next generation of diagnostic reagents. Proteomics Clin. Appl., 2012, 6(11-12), 563-573.
[http://dx.doi.org/10.1002/prca.201200042] [PMID: 23090891]
[10]
Key advantages of aptamers over antibodies. Novaptech, 2018. Available from: https://novaptech.com/aptamers-vs-antibodies-advantages/
[11]
Ali, M.H.; Elsherbiny, M.E.; Emara, M. Updates on aptamer research. Int. J. Mol. Sci., 2019, 20(10), 2511.
[http://dx.doi.org/10.3390/ijms20102511] [PMID: 31117311]
[12]
Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov., 2017, 16(3), 181-202.
[http://dx.doi.org/10.1038/nrd.2016.199] [PMID: 27807347]
[13]
Mayer, G. The chemical biology of aptamers. Angew. Chem. Int. Ed., 2009, 48(15), 2672-2689.
[http://dx.doi.org/10.1002/anie.200804643] [PMID: 19319884]
[14]
Ahmad, K.M.; Oh, S.S.; Kim, S.; McClellen, F.M.; Xiao, Y.; Soh, H.T. Probing the limits of aptamer affinity with a microfluidic SELEX platform. PLoS One, 2011, 6(11), e27051.
[http://dx.doi.org/10.1371/journal.pone.0027051] [PMID: 22110600]
[15]
Wu, Y.X.; Kwon, Y.J. Aptamers: The “evolution” of SELEX. Methods, 2016, 106, 21-28.
[http://dx.doi.org/10.1016/j.ymeth.2016.04.020] [PMID: 27109056]
[16]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[17]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[18]
Jain, K.K. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat., 2005, 4(4), 407-416.
[http://dx.doi.org/10.1177/153303460500400408] [PMID: 16029059]
[19]
Jahan, S.; Karim, M.E.; Chowdhury, E.H. Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics. Biomedicines, 2021, 9(2), 114.
[http://dx.doi.org/10.3390/biomedicines9020114] [PMID: 33530291]
[20]
Maier, K.E.; Jangra, R.K.; Shieh, K.R. A new transferrin receptor aptamer inhibits new world hemorrhagic fever mammarenavirus entry. Mol. Ther. Nucleic Acids, 2016, 5, e321.
[http://dx.doi.org/10.1038/mtna.2016.32] [PMID: 27219515]
[21]
Liu, Z.; Duan, J.H.; Song, Y.M. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med., 2012, 10(1), 148.
[http://dx.doi.org/10.1186/1479-5876-10-148] [PMID: 22817844]
[22]
Ghassami, E.; Varshosaz, J.; Mirian, M.; Jahanian-Najafabadi, A. HER‐2 aptamer‐targeted Ecoflex® nanoparticles loaded with docetaxel promote breast cancer cells apoptosis and anti‐metastatic effect. IET Nanobiotechnol., 2019, 13(4), 428-434.
[http://dx.doi.org/10.1049/iet-nbt.2018.5047] [PMID: 31171748]
[23]
Iida, J.; Clancy, R.; Dorchak, J. DNA aptamers against exon v10 of CD44 inhibit breast cancer cell migration. PLoS One, 2014, 9(2), e88712.
[http://dx.doi.org/10.1371/journal.pone.0088712] [PMID: 24586375]
[24]
Ahirwar, R.; Nahar, S.; Aggarwal, S.; Ramachandran, S.; Maiti, S.; Nahar, P. In silico selection of an aptamer to estrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci. Rep., 2016, 6(1), 21285.
[http://dx.doi.org/10.1038/srep21285] [PMID: 26899418]
[25]
Esposito, C.L.; Passaro, D.; Longobardo, I. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One, 2011, 6(9), e24071.
[http://dx.doi.org/10.1371/journal.pone.0024071] [PMID: 21915281]
[26]
Reyes-Reyes, E.M.; Šalipur, F.R.; Shams, M.; Forsthoefel, M.K.; Bates, P.J. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol. Oncol., 2015, 9(7), 1392-1405.
[http://dx.doi.org/10.1016/j.molonc.2015.03.012] [PMID: 25911416]
[27]
Jafari, R.; Majidi Zolbanin, N.; Majidi, J. Anti-Mucin1 Aptamer-conjugated Chitosan nanoparticles for targeted co-delivery of Docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran. Biomed. J., 2019, 23(1), 21-33.
[http://dx.doi.org/10.29252/ibj.23.1.21] [PMID: 30041514]
[28]
Tajrishi, M.M.; Tuteja, R.; Tuteja, N. Nucleolin. Commun. Integr. Biol., 2011, 4(3), 267-275.
[http://dx.doi.org/10.4161/cib.4.3.14884] [PMID: 21980556]
[29]
Huang, Y.; Shi, H.; Zhou, H.; Song, X.; Yuan, S.; Luo, Y. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood, 2006, 107(9), 3564-3571.
[http://dx.doi.org/10.1182/blood-2005-07-2961] [PMID: 16403913]
[30]
Gregório, A.C.; Lacerda, M.; Figueiredo, P.; Simões, S.; Dias, S.; Moreira, J.N. Meeting the needs of breast cancer: A nucleolin’s perspective. Crit. Rev. Oncol. Hematol., 2018, 125, 89-101.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.008] [PMID: 29650282]
[31]
Serin, G.; Joseph, G.; Faucher, C. Localization of nucleolin binding sites on human and mouse pre-ribosomal RNA. Biochimie, 1996, 78(6), 530-538.
[http://dx.doi.org/10.1016/0300-9084(96)84759-6] [PMID: 8915542]
[32]
Ginisty, H.; Amalric, F.; Bouvet, P. Nucleolin functions in the first step of ribosomal RNA processing. EMBO J., 1998, 17(5), 1476-1486.
[http://dx.doi.org/10.1093/emboj/17.5.1476] [PMID: 9482744]
[33]
Cong, R.; Das, S.; Bouvet, P. The multiple properties and functions of nucleolin. In: The nucleolus; Protein Reviews, Springer, NY, 2011; pp. 185-212.
[http://dx.doi.org/10.1007/978-1-4614-0514-6_9]
[34]
Ginisty, H.; Sicard, H.; Roger, B.; Bouvet, P. Structure and functions of nucleolin. J. Cell Sci., 1999, 112(6), 761-772.
[http://dx.doi.org/10.1242/jcs.112.6.761] [PMID: 10036227]
[35]
Masuzawa, T.; Oyoshi, T. Roles of the RGG domain and RNA recognition motif of nucleolin in G-quadruplex stabilization. ACS Omega, 2020, 5(10), 5202-5208.
[http://dx.doi.org/10.1021/acsomega.9b04221] [PMID: 32201808]
[36]
Jia, W.; Yao, Z.; Zhao, J.; Guan, Q.; Gao, L. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci., 2017, 186, 1-10.
[http://dx.doi.org/10.1016/j.lfs.2017.07.025] [PMID: 28751161]
[37]
Chen, Z.; Xu, X. Roles of nucleolin. Saudi Med. J., 2016, 37(12), 1312-1318.
[http://dx.doi.org/10.15537/smj.2016.12.15972] [PMID: 27874146]
[38]
Daniely, Y.; Dimitrova, D.D.; Borowiec, J.A. Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell. Biol., 2002, 22(16), 6014-6022.
[http://dx.doi.org/10.1128/MCB.22.16.6014-6022.2002] [PMID: 12138209]
[39]
Lim, K.H.; Park, J.J.; Gu, B.H.; Kim, J.O.; Park, S.G.; Baek, K.H. HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response. Sci. Rep., 2015, 5(1), 12793.
[http://dx.doi.org/10.1038/srep12793] [PMID: 26238070]
[40]
Mayer, G.; Ahmed, M.S.L.; Dolf, A.; Endl, E.; Knolle, P.A.; Famulok, M. Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat. Protoc., 2010, 5(12), 1993-2004.
[http://dx.doi.org/10.1038/nprot.2010.163] [PMID: 21127492]
[41]
Cerchia, L.; de Franciscis, V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol., 2010, 28(10), 517-525.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.005] [PMID: 20719399]
[43]
Chen, Y.; Lin, J.S. The application of aptamer in apoptosis. Biochimie, 2017, 132, 1-8.
[http://dx.doi.org/10.1016/j.biochi.2016.10.008] [PMID: 27750037]
[44]
Soundararajan, S.; Chen, W.; Spicer, E.K.; Courtenay-Luck, N.; Fernandes, D.J. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res., 2008, 68(7), 2358-2365.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5723] [PMID: 18381443]
[45]
National Cancer Institute. Anti-nucleolin Aptamer AS1411., Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/anti-nucleolin-aptamer-as1411
[46]
Rampal, G.; Khanna, N.; Thind, T.S.; Arora, S.; Vig, A.P. Role of isothiocyanates as anticancer agents and their contributing molecular and cellular mechanisms. Med Chem Drug Discov, 2012, 3, 79-93.
[47]
Sprick, M.R.; Weigand, M.A.; Rieser, E. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity, 2000, 12(6), 599-609.
[http://dx.doi.org/10.1016/S1074-7613(00)80211-3] [PMID: 10894160]
[48]
Xia, Y; Shen, S; Verma, IM. NF-κB, an active player in human cancers Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[49]
Fusella, F.; Seclì, L.; Busso, E. The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat. Commun., 2017, 8(1), 1636.
[http://dx.doi.org/10.1038/s41467-017-01829-1] [PMID: 29158506]
[50]
Bharti, A.C.; Aggarwal, B.B. Nuclear factor-kappa B and cancer: Its role in prevention and therapy. Biochem. Pharmacol., 2002, 64(5-6), 883-888.
[http://dx.doi.org/10.1016/S0006-2952(02)01154-1] [PMID: 12213582]
[51]
Girvan, A.C.; Teng, Y.; Casson, L.K. AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther., 2006, 5(7), 1790-1799.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0361] [PMID: 16891465]
[52]
Aggarwal, BB; Sung, B. NF-κB in cancer: A matter of life and death. Cancer Discov., 2011, 1(6), 469-471.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0260] [PMID: 22586649]
[53]
Grzegrzolka, J.; Biala, M.; Wojtyra, P. Expression of EMT markers SLUG and TWIST in breast cancer. Anticancer Res., 2015, 35(7), 3961-3968.
[PMID: 26124343]
[54]
Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature, 2000, 408(6810), 307-310.
[http://dx.doi.org/10.1038/35042675] [PMID: 11099028]
[55]
Cummins, J.M.; Rago, C.; Kohli, M.; Kinzler, K.W.; Lengauer, C.; Vogelstein, B. Disruption of HAUSP gene stabilizes p53. Nature, 2004, 428(6982), 1-2, 486.
[http://dx.doi.org/10.1038/nature02501] [PMID: 15058298]
[56]
Ronai, Z. Balancing Mdm2 — a Daxx–HAUSP matter. Nat. Cell Biol., 2006, 8(8), 790-791.
[http://dx.doi.org/10.1038/ncb0806-790] [PMID: 16880812]
[57]
Cheng, Y.; Zhao, G.; Zhang, S. AS1411-induced growth inhibition of glioma cells by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 via nucleolin. PLoS One, 2016, 11(12), e0167094.
[http://dx.doi.org/10.1371/journal.pone.0167094] [PMID: 27907160]
[58]
Bates, P.J.; Reyes-Reyes, E.M.; Malik, M.T.; Murphy, E.M.; O’Toole, M.G.; Trent, J.O. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5), 1414-1428.
[http://dx.doi.org/10.1016/j.bbagen.2016.12.015] [PMID: 28007579]
[59]
Mosafer, J.; Abnous, K.; Tafaghodi, M.; Mokhtarzadeh, A.; Ramezani, M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur. J. Pharm. Biopharm., 2017, 113, 60-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.009] [PMID: 28012991]
[60]
Yazdian-Robati, R.; Bayat, P.; Oroojalian, F. Therapeutic applications of AS1411 aptamer, an update review. Int. J. Biol. Macromol., 2020, 155, 1420-1431.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.118] [PMID: 31734366]
[61]
Xing, H.; Tang, L.; Yang, X. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(39), 5288-5297.
[http://dx.doi.org/10.1039/c3tb20412j] [PMID: 24159374]
[62]
Liao, Z.X.; Chuang, E.Y.; Lin, C.C. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control. Release, 2015, 208, 42-51.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.032] [PMID: 25637705]
[63]
Li, X.; Yu, Y.; Ji, Q.; Qiu, L. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine, 2015, 11(1), 175-184.
[http://dx.doi.org/10.1016/j.nano.2014.08.013] [PMID: 25218928]
[64]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. Eur. J. Pharm. Biopharm., 2016, 102, 152-158.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.013] [PMID: 26987703]
[65]
Mohammadzadeh, P.; Cohan, R.A.; Ghoreishi, S.M.; Bitarafan-Rajabi, A.; Ardestani, M.S. AS1411 aptamer-anionic linear globular dendrimer G2-Iohexol selective nano-theranostics. Sci. Rep., 2017, 7(1), 11832.
[http://dx.doi.org/10.1038/s41598-017-12150-8] [PMID: 28928437]
[66]
Mehrnia, S.S.; Hashemi, B.; Mowla, S.J.; Nikkhah, M.; Arbabi, A. Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles. Radiat. Oncol., 2021, 16(1), 33.
[http://dx.doi.org/10.1186/s13014-021-01751-3] [PMID: 33568174]
[67]
Motaghi, H.; Mehrgardi, M.A.; Bouvet, P. Carbon dots-AS1411 aptamer nanoconjugate for ultrasensitive spectrofluorometric detection of cancer cells. Sci. Rep., 2017, 7(1), 10513.
[http://dx.doi.org/10.1038/s41598-017-11087-2] [PMID: 28874822]
[68]
Murphy, E.M.; Centner, C.S.; Bates, P.J.; Malik, M.T.; Kopechek, J.A. Delivery of thymoquinone to cancer cells with as 1411-conjugated nanodroplets. PLoS One, 2020, 15(5), e0233466.
[http://dx.doi.org/10.1371/journal.pone.0233466] [PMID: 32437399]
[69]
Bates, P.J.; Laber, D.A.; Miller, D.M.; Thomas, S.D.; Trent, J.O. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol., 2009, 86(3), 151-164.
[http://dx.doi.org/10.1016/j.yexmp.2009.01.004] [PMID: 19454272]
[70]
Gavhane, Y.N.; Yadav, A.V. Loss of orally administered drugs in GI tract. Saudi Pharm. J., 2012, 20(4), 331-344.
[http://dx.doi.org/10.1016/j.jsps.2012.03.005] [PMID: 23960808]
[71]
Jain, V.; Jain, S.; Mahajan, S.C. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment. Curr. Drug Deliv., 2015, 12(2), 177-191.
[http://dx.doi.org/10.2174/1567201811666140822112516] [PMID: 25146439]
[72]
Tortorella, S.; Karagiannis, T.C. Transferrin receptor-mediated endocytosis: A useful target for cancer therapy. J. Membr. Biol., 2014, 247(4), 291-307.
[http://dx.doi.org/10.1007/s00232-014-9637-0] [PMID: 24573305]
[73]
Marshall, M.L.; Wagstaff, K.M. Internalized functional DNA aptamers as alternative cancer therapies. Front. Pharmacol., 2020, 11, 1115.
[http://dx.doi.org/10.3389/fphar.2020.01115] [PMID: 32848740]
[74]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alrokayan, S.A.; Kumar, S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clin. Chim. Acta, 2014, 436, 78-92.
[http://dx.doi.org/10.1016/j.cca.2014.05.004] [PMID: 24836529]
[75]
Gugger, M.; White, R.; Song, S. GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung. Dis. Markers, 2008, 24(1), 41-50.
[http://dx.doi.org/10.1155/2008/857474] [PMID: 18057535]
[76]
Hartmann, L.C.; Keeney, G.L.; Lingle, W.L. Folate receptor overexpression is associated with poor outcome in breast cancer. Int. J. Cancer, 2007, 121(5), 938-942.
[http://dx.doi.org/10.1002/ijc.22811] [PMID: 17487842]
[77]
Reyes-Reyes, E.M.; Teng, Y.; Bates, P.J. A new paradigm for aptamer therapeutic AS1411 action: Uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res., 2010, 70(21), 8617-8629.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0920] [PMID: 20861190]
[78]
Soundararajan, S.; Wang, L.; Sridharan, V. Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol. Pharmacol., 2009, 76(5), 984-991.
[http://dx.doi.org/10.1124/mol.109.055947] [PMID: 19657047]
[79]
Zhang, J.; Chen, R.; Fang, X.; Chen, F.; Wang, Y.; Chen, M. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res., 2015, 8(1), 201-218.
[http://dx.doi.org/10.1007/s12274-014-0619-4]
[80]
Wu, J.; Song, C.; Jiang, C.; Shen, X.; Qiao, Q.; Hu, Y. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol. Pharm., 2013, 10(10), 3555-3563.
[http://dx.doi.org/10.1021/mp300686g] [PMID: 23679916]
[81]
Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. (Engl. Ed.), 2013, 5(4), 34-43.
[http://dx.doi.org/10.32607/20758251-2013-5-4-34-43] [PMID: 24455181]
[82]
Bukari, B.; Samarasinghe, R.M.; Noibanchong, J.; Shigdar, S.L. Non-invasive delivery of therapeutics into the brain: The potential of aptamers for targeted delivery. Biomedicines, 2020, 8(5), 120.
[http://dx.doi.org/10.3390/biomedicines8050120] [PMID: 32422973]