Physiological Properties, Functions, and Trends in the Matrix Metalloproteinase Inhibitors in Inflammation-Mediated Human Diseases

Page: [2075 - 2112] Pages: 38

  • * (Excluding Mailing and Handling)

Abstract

Background: Matrix metalloproteinases (MMPs), also known as metalloproteinases, are enzymes that degrade proteins and require the presence of active metal atoms. There are more than 20 types of MMPs, and they promote cell migration through the proteolytic degradation of the extracellular basement. MMPs are upregulated in cancers and inflamed regions. MMPs have three conservation regions: pro-MMP, catalysis, and hemopexin. Through these domains, MMPs cleave matrixes and cell-cell barriers. Consequently, MMPs cleave the whole extracellular matrix (ECM). In other words, they decompose most of the components related to the ECM, in their roles as key enzymes in cellular and pathophysiological events in the body.

Introduction: Zn2+-containing endo-type peptidases directly degrade and remodel the ECM region in the progression of various diseases. MMPs are frequently found in abnormal disease status of inflammatory responses, periodontal lesion, inflammatory pulmonary lesion, arteriosclerotic smooth muscles, arthritis, and tumor metastasis and invasion. They are also known to participate in aging processes-such as wrinkle formation-by destroying collagen in the dermis. In particular, the onset of diseases via the MMP-dependent inflammatory response is caused by the breakdown of proteins in the ECM and the basement membranous region, which are the supporting structures of cells.

Methods: This review describes the developments in the research examining the general and selective inhibitors for MMP associated with various human diseases over the past 20 years in terms of structure remodeling, substrate-recognizing specificities, and pharmacological applicability.

Results: Among two similar types of MMPs, MMP-2 is known as gelatinase-A with a 72 kDa, while MMP-9 is termed gelatinase-B with a 92 kDa. Both of these play a key role in this action. Therefore, both enzymatic expression levels coincide during the onset and progression of diseases. Endogenous tissue inhibitors of matrix metalloproteinases (TIMPs) are highly specific for each MMP inhibitor type. The intrinsic factors regulate various MMP types by inhibiting the onset of various diseases mediated by MMP-dependent or independent inflammatory responses. The MMP- 9 and MMP-2 enzyme activity related to the prognosis of diseases associated with the inflammatory response are selectively inhibited by TIMP1 and TIMP2, respectively. The major pathogenesis of MMP-mediated diseases is related to the proliferation of inflammatory cells in various human tissues, which indicates their potential to diagnose or treat these diseases. The discovery of a substance that inhibits MMPs would be very important for preventing and treating various MMP-dependent diseases.

Conclusion: Considerable research has examined MMP inhibitors, but most of these have been synthetic compounds. Research using natural products as MMP inhibitors has only recently become a subject of interest. This review intends to discuss recent research trends regarding the physiological properties, functions, and therapeutic agents related to MMPs.

Keywords: matrix metalloproteinases (MMP), MMP-9, MMP-mediated pathogenesis, inflammation, MMP inhibitors

[1]
Dimas, G.G.; Didangelos, T.P.; Grekas, D.M. Matrix gelatinases in atherosclerosis and diabetic nephropathy: Progress and challenges. Curr. Vasc. Pharmacol., 2017, 15(6), 557-565.
[http://dx.doi.org/10.2174/1570161115666170202162345] [PMID: 28155628]
[2]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[3]
Khokha, R.; Murthy, A.; Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol., 2013, 13(9), 649-665.
[http://dx.doi.org/10.1038/nri3499] [PMID: 23969736]
[4]
Li, T.; Li, X.; Feng, Y.; Dong, G.; Wang, Y.; Yang, J. The role of matrix metalloproteinase-9 in atherosclerotic plaque instability. Mediators Inflamm., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3872367] [PMID: 33082709]
[5]
Park, J.; Choi, H.; Abekura, F.; Lim, H.S.; Im, J.H.; Yang, W.S.; Hwang, C.W.; Chang, Y.C.; Lee, Y.C.; Park, N.G.; Kim, C.H. Avenanthramide C suppresses matrix metalloproteinase-9 expression and migration through the MAPK/NF-kappaB signaling pathway in TNF-alpha-activated HASMC cells. Front. Pharmacol., 2021, 12, 621854.
[http://dx.doi.org/10.3389/fphar.2021.621854] [PMID: 33841150]
[6]
Lenci, E.; Cosottini, L.; Trabocchi, A. Novel matrix metalloproteinase inhibitors: An updated patent review (2014 - 2020). Expert Opin. Ther. Pat., 2021, 31(6), 509-523.
[http://dx.doi.org/10.1080/13543776.2021.1881481] [PMID: 33487088]
[7]
Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem., 2020, 194, 112260.
[http://dx.doi.org/10.1016/j.ejmech.2020.112260] [PMID: 32224379]
[8]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[9]
Yue, L.; Shi, Y.; Su, X.; Ouyang, L.; Wang, G.; Ye, T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur. J. Med. Chem., 2021, 224, 113714.
[http://dx.doi.org/10.1016/j.ejmech.2021.113714] [PMID: 34315043]
[10]
McGeehan, G.; Burkhart, W.; Anderegg, R.; Becherer, J.D.; Gillikin, J.W.; Graham, J.S. Sequencing and characterization of the soybean leaf metalloproteinase : Structural and functional similarity to the matrix metalloproteinase family. Plant Physiol., 1992, 99(3), 1179-1183.
[http://dx.doi.org/10.1104/pp.99.3.1179] [PMID: 16668986]
[11]
Delorme, V.G.R.; McCabe, P.F.; Kim, D.J.; Leaver, C.J. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber. Plant Physiol., 2000, 123(3), 917-928.
[http://dx.doi.org/10.1104/pp.123.3.917] [PMID: 10889240]
[12]
Liu, Y.; Dammann, C.; Bhattacharyya, M.K. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol., 2001, 127(4), 1788-1797.
[http://dx.doi.org/10.1104/pp.010593] [PMID: 11743122]
[13]
Zhao, P.; Zhang, F.; Liu, D.; Imani, J.; Langen, G.; Kogel, K.H. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens. PLoS One, 2017, 12(8), e0183577.
[http://dx.doi.org/10.1371/journal.pone.0183577] [PMID: 28832648]
[14]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci., 2017, 147, 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[15]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[16]
Glasheen, B.M.; Kabra, A.T.; Page-McCaw, A. Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2659-2664.
[http://dx.doi.org/10.1073/pnas.0804171106] [PMID: 19196956]
[17]
Chen, X.; Li, Y. Role of matrix metalloproteinases in skeletal muscle. Cell Adhes. Migr., 2009, 3(4), 337-341.
[http://dx.doi.org/10.4161/cam.3.4.9338] [PMID: 19667757]
[18]
Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a005058.
[http://dx.doi.org/10.1101/cshperspect.a005058] [PMID: 21917992]
[19]
Benjamin, M.M.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXS, 2012, 103, 209-279.
[http://dx.doi.org/10.1007/978-3-0348-0364-9_7] [PMID: 22642194]
[20]
Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci., 2020, 21(24), 9739.
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[21]
Raeeszadeh-Sarmazdeh, M.; Do, L.; Hritz, B. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells, 2020, 9(5), 1313.
[http://dx.doi.org/10.3390/cells9051313] [PMID: 32466129]
[22]
Radisky, E.S.; Raeeszadeh-Sarmazdeh, M.; Radisky, D.C. Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J. Cell. Biochem., 2017, 118(11), 3531-3548.
[http://dx.doi.org/10.1002/jcb.26185] [PMID: 28585723]
[23]
Fields, G.B. The rebirth of matrix metalloproteinase inhibitors: Moving beyond the dogma. Cells, 2019, 8(9), 984.
[http://dx.doi.org/10.3390/cells8090984] [PMID: 31461880]
[24]
Walker, C.; Mojares, E.; del Río Hernández, A. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci., 2018, 19(10), 3028.
[http://dx.doi.org/10.3390/ijms19103028] [PMID: 30287763]
[25]
Poltavets, V.; Kochetkova, M.; Pitson, S.M.; Samuel, M.S. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front. Oncol., 2018, 8, 431.
[http://dx.doi.org/10.3389/fonc.2018.00431] [PMID: 30356678]
[26]
Winer, A.; Adams, S.; Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol. Cancer Ther., 2018, 17(6), 1147-1155.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0646] [PMID: 29735645]
[27]
Jablonska-Trypuc, A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, (31)(sup1), 177-183.
[http://dx.doi.org/10.3109/14756366.2016.1161620] [PMID: 27028474]
[28]
Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol., 2019, 9, 1370.
[http://dx.doi.org/10.3389/fonc.2019.01370] [PMID: 31921634]
[29]
Laronha, H.; Caldeira, J. Structure and function of human matrix metalloproteinases. Cells, 2020, 9(5), 1076.
[http://dx.doi.org/10.3390/cells9051076] [PMID: 32357580]
[30]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[31]
Dufour, A.; Sampson, N.S.; Zucker, S.; Cao, J. Role of the hemopexin domain of matrix metalloproteinases in cell migration. J. Cell. Physiol., 2008, 217(3), 643-651.
[http://dx.doi.org/10.1002/jcp.21535] [PMID: 18636552]
[32]
Nikolov, A.; Popovski, N. Role of gelatinases MMP-2 and MMP-9 in healthy and complicated pregnancy and their future potential as preeclampsia biomarkers. Diagnostics (Basel), 2021, 11(3), 480.
[http://dx.doi.org/10.3390/diagnostics11030480] [PMID: 33803206]
[33]
Löffek, S.; Schilling, O.; Franzke, C.W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J., 2011, 38(1), 191-208.
[http://dx.doi.org/10.1183/09031936.00146510] [PMID: 21177845]
[34]
Engsig, M.T.; Chen, Q.J.; Vu, T.H.; Pedersen, A.C.; Therkidsen, B.; Lund, L.R.; Henriksen, K.; Lenhard, T.; Foged, N.T.; Werb, Z.; Delaissé, J.M. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J. Cell Biol., 2000, 151(4), 879-890.
[http://dx.doi.org/10.1083/jcb.151.4.879] [PMID: 11076971]
[35]
Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290.
[http://dx.doi.org/10.1007/s00726-010-0689-x] [PMID: 20640864]
[36]
Buache, E.; Thai, R.; Wendling, C.; Alpy, F.; Page, A.; Chenard, M.P.; Dive, V.; Ruff, M.; Dejaegere, A.; Tomasetto, C.; Rio, M.C. Functional relationship between matrix metalloproteinase-11 and matrix metalloproteinase-14. Cancer Med., 2014, 3(5), 1197-1210.
[http://dx.doi.org/10.1002/cam4.290] [PMID: 25081520]
[37]
Murphy, G.; Nagase, H. Progress in matrix metalloproteinase research. Mol. Aspects Med., 2008, 29(5), 290-308.
[http://dx.doi.org/10.1016/j.mam.2008.05.002] [PMID: 18619669]
[38]
Piskór, B.M.; Przylipiak, A.; Dąbrowska, E.; Niczyporuk, M.; Ławicki, S. Matrilysins and stromelysins in pathogenesis and diagnostics of cancers. Cancer Manag. Res., 2020, 12, 10949-10964.
[http://dx.doi.org/10.2147/CMAR.S235776] [PMID: 33154674]
[39]
Ke, B.; Fan, C.; Yang, L.; Fang, X. Matrix metalloproteinases-7 and kidney fibrosis. Front. Physiol., 2017, 8, 21.
[PMID: 28239354]
[40]
Jobin, P.G.; Butler, G.S.; Overall, C.M. New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11)(11 Pt A), 2043-2055.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.013] [PMID: 28526562]
[41]
Wilson, C.L.; Heppner, K.J.; Rudolph, L.A.; Matrisian, L.M. The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse. Mol. Biol. Cell, 1995, 6(7), 851-869.
[http://dx.doi.org/10.1091/mbc.6.7.851] [PMID: 7579699]
[42]
Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol., 2015, 44-46, 207-223.
[http://dx.doi.org/10.1016/j.matbio.2015.03.004] [PMID: 25794647]
[43]
Caley, M.P.; Martins, V.L.C.; O’Toole, E.A. Metalloproteinases and wound healing. Adv. Wound Care (New Rochelle), 2015, 4(4), 225-234.
[http://dx.doi.org/10.1089/wound.2014.0581] [PMID: 25945285]
[44]
Ota, I.; Li, X.Y.; Hu, Y.; Weiss, S.J. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20318-20323.
[http://dx.doi.org/10.1073/pnas.0910962106] [PMID: 19915148]
[45]
Tatti, O.; Arjama, M.; Ranki, A.; Weiss, S.J.; Keski-Oja, J.; Lehti, K. Membrane-type-3 matrix metalloproteinase (MT3-MMP) functions as a matrix composition-dependent effector of melanoma cell invasion. PLoS One, 2011, 6(12), e28325.
[http://dx.doi.org/10.1371/journal.pone.0028325] [PMID: 22164270]
[46]
Collison, J. MMP12 makes the cut. Nat. Rev. Rheumatol., 2018, 14(9), 501.
[http://dx.doi.org/10.1038/s41584-018-0056-y] [PMID: 30022107]
[47]
Müller, M.; Beck, I.M.; Gadesmann, J.; Karschuk, N.; Paschen, A.; Proksch, E.; Djonov, V.; Reiss, K.; Sedlacek, R. MMP19 is upregulated during melanoma progression and increases invasion of melanoma cells. Mod. Pathol., 2010, 23(4), 511-521.
[http://dx.doi.org/10.1038/modpathol.2009.183] [PMID: 20098411]
[48]
Bartlett, J.D.; Smith, C.E.; Hu, Y.; Ikeda, A.; Strauss, M.; Liang, T.; Hsu, Y.H.; Trout, A.H.; McComb, D.W.; Freeman, R.C.; Simmer, J.P.; Hu, J.C.C. MMP20-generated amelogenin cleavage products prevent formation of fan-shaped enamel malformations. Sci. Rep., 2021, 11(1), 10570.
[http://dx.doi.org/10.1038/s41598-021-90005-z] [PMID: 34012043]
[49]
Guimier, A.; Gabriel, G.C.; Bajolle, F.; Tsang, M.; Liu, H.; Noll, A.; Schwartz, M.; El Malti, R.; Smith, L.D.; Klena, N.T.; Jimenez, G.; Miller, N.A.; Oufadem, M.; Moreau de Bellaing, A.; Yagi, H.; Saunders, C.J.; Baker, C.N.; Di Filippo, S.; Peterson, K.A.; Thiffault, I.; Bole-Feysot, C.; Cooley, L.D.; Farrow, E.G.; Masson, C.; Schoen, P.; Deleuze, J.F.; Nitschké, P.; Lyonnet, S.; de Pontual, L.; Murray, S.A.; Bonnet, D.; Kingsmore, S.F.; Amiel, J.; Bouvagnet, P.; Lo, C.W.; Gordon, C.T. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nat. Genet., 2015, 47(11), 1260-1263.
[http://dx.doi.org/10.1038/ng.3376] [PMID: 26437028]
[50]
Zhang, J.; Pan, Q.; Yan, W.; Wang, Y.; He, X.; Zhao, Z. Overexpression of MMP21 and MMP28 is associated with gastric cancer progression and poor prognosis. Oncol. Lett., 2018, 15(5), 7776-7782.
[http://dx.doi.org/10.3892/ol.2018.8328] [PMID: 29731903]
[51]
Manicone, A.M.; Birkland, T.P.; Lin, M.; Betsuyaku, T.; van Rooijen, N.; Lohi, J.; Keski-Oja, J.; Wang, Y.; Skerrett, S.J.; Parks, W.C. Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia. J. Immunol., 2009, 182(6), 3866-3876.
[http://dx.doi.org/10.4049/jimmunol.0713949] [PMID: 19265166]
[52]
Jhund, P.S.; McMurray, J.J.V. The neprilysin pathway in heart failure: A review and guide on the use of sacubitril/valsartan. Heart, 2016, 102(17), 1342-1347.
[http://dx.doi.org/10.1136/heartjnl-2014-306775] [PMID: 27207980]
[53]
Bavishi, C.; Messerli, F.H.; Kadosh, B.; Ruilope, L.M.; Kario, K. Role of neprilysin inhibitor combinations in hypertension: Insights from hypertension and heart failure trials. Eur. Heart J., 2015, 36(30), 1967-1973.
[http://dx.doi.org/10.1093/eurheartj/ehv142] [PMID: 25898846]
[54]
Pavo, N.; Prausmüller, S.; Bartko, P.E.; Goliasch, G.; Hülsmann, M. Neprilysin as a biomarker: Challenges and opportunities. Card. Fail. Rev., 2020, 6, e23.
[http://dx.doi.org/10.15420/cfr.2019.21] [PMID: 32944293]
[55]
Vardeny, O.; Miller, R.; Solomon, S.D. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail., 2014, 2(6), 663-670.
[http://dx.doi.org/10.1016/j.jchf.2014.09.001] [PMID: 25306450]
[56]
Giebeler, N.; Zigrino, P. A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins (Basel), 2016, 8(4), 122.
[http://dx.doi.org/10.3390/toxins8040122] [PMID: 27120619]
[57]
Aljohmani, A.; Yildiz, D. A disintegrin and metalloproteinase-control elements in infectious diseases. Front. Cardiovasc. Med., 2020, 7, 608281.
[http://dx.doi.org/10.3389/fcvm.2020.608281] [PMID: 33392273]
[58]
Xu, J.; Mukerjee, S.; Silva-Alves, C.R.A.; Carvalho-Galvão, A.; Cruz, J.C.; Balarini, C.M.; Braga, V.A.; Lazartigues, E.; França-Silva, M.S. A disintegrin and metalloprotease 17 in the cardiovascular and central nervous systems. Front. Physiol., 2016, 7, 469.
[http://dx.doi.org/10.3389/fphys.2016.00469] [PMID: 27803674]
[59]
Freitas-Rodríguez, S.; Folgueras, A.R.; López-Otín, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11)(11 Pt A), 2015-2025.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.007] [PMID: 28499917]
[60]
Zipfel, P.; Rochais, C.; Baranger, K.; Rivera, S.; Dallemagne, P. Matrix metalloproteinases as new targets in Alzheimer’s aisease: Opportunities and challenges. J. Med. Chem., 2020, 63(19), 10705-10725.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00352] [PMID: 32459966]
[61]
Okamoto, T.; Akuta, T.; Tamura, F.; van Der Vliet, A.; Akaike, T. Molecular mechanism for activation and regulation of matrix metalloproteinases during bacterial infections and respiratory inflammation. Biol. Chem., 2004, 385(11), 997-1006.
[http://dx.doi.org/10.1515/BC.2004.130] [PMID: 15576319]
[62]
Tallant, C.; Marrero, A.; Gomis-Rüth, F.X. Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 20-28.
[http://dx.doi.org/10.1016/j.bbamcr.2009.04.003] [PMID: 19374923]
[63]
Khrenova, M.G.; Savitsky, A.P.; Topol, I.A.; Nemukhin, A.V. Exploration of the zinc finger motif in controlling activity of matrix metalloproteinases. J. Phys. Chem. B, 2014, 118(47), 13505-13512.
[http://dx.doi.org/10.1021/jp5088702] [PMID: 25375834]
[64]
Iyer, S.; Wei, S.; Brew, K.; Acharya, K.R. Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1. J. Biol. Chem., 2007, 282(1), 364-371.
[http://dx.doi.org/10.1074/jbc.M607625200] [PMID: 17050530]
[65]
Cerdà-Costa, N.; Xavier Gomis-Rüth, F. Architecture and function of metallopeptidase catalytic domains. Protein Sci., 2014, 23(2), 123-144.
[http://dx.doi.org/10.1002/pro.2400] [PMID: 24596965]
[66]
Yue, B. Biology of the extracellular matrix: An overview. J. Glaucoma, 2014, 23(8)(Suppl. 1), S20-S23.
[http://dx.doi.org/10.1097/IJG.0000000000000108] [PMID: 25275899]
[67]
Pompili, S.; Latella, G.; Gaudio, E.; Sferra, R.; Vetuschi, A. The charming world of the extracellular matrix: A dynamic and protective network of the intestinal wall. Front. Med. (Lausanne), 2021, 8, 610189.
[http://dx.doi.org/10.3389/fmed.2021.610189] [PMID: 33937276]
[68]
Giannandrea, M.; Parks, W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech., 2014, 7(2), 193-203.
[http://dx.doi.org/10.1242/dmm.012062] [PMID: 24713275]
[69]
Abe, H.; Kamimura, K.; Kobayashi, Y.; Ohtsuka, M.; Miura, H.; Ohashi, R.; Yokoo, T.; Kanefuji, T.; Suda, T.; Tsuchida, M.; Aoyagi, Y.; Zhang, G.; Liu, D.; Terai, S. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol. Ther. Nucleic Acids, 2016, 5, e276.
[http://dx.doi.org/10.1038/mtna.2015.49] [PMID: 26730813]
[70]
George, J.; Tsutsumi, M.; Tsuchishima, M. MMP-13 deletion decreases profibrogenic molecules and attenuates N -nitrosodimethylamine-induced liver injury and fibrosis in mice. J. Cell. Mol. Med., 2017, 21(12), 3821-3835.
[http://dx.doi.org/10.1111/jcmm.13304] [PMID: 28782260]
[71]
Van Wart, H.E.; Birkedal-Hansen, H. The cysteine switch: A principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. USA, 1990, 87(14), 5578-5582.
[http://dx.doi.org/10.1073/pnas.87.14.5578] [PMID: 2164689]
[72]
Jacobsen, J.A.; Major Jourden, J.L.; Miller, M.T.; Cohen, S.M. To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 72-94.
[http://dx.doi.org/10.1016/j.bbamcr.2009.08.006] [PMID: 19712708]
[73]
Klein, G.; Vellenga, E.; Fraaije, M.W.; Kamps, W.A.; de Bont, E.S.J.M. The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol., 2004, 50(2), 87-100.
[http://dx.doi.org/10.1016/j.critrevonc.2003.09.001] [PMID: 15157658]
[74]
Nagase, H.; Woessner, J.F., Jr Matrix metalloproteinases. J. Biol. Chem., 1999, 274(31), 21491-21494.
[http://dx.doi.org/10.1074/jbc.274.31.21491] [PMID: 10419448]
[75]
Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis., 2015, 2(`1), 26-34.
[76]
Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview. Eur. J. Med. Chem., 2017, 129, 72-109.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.014] [PMID: 28219048]
[77]
Adhikari, N.; Amin, S.A.; Jha, T. Collagenases and gelatinases and their inhibitors as anticancer agents.Cancer-Leading Proteases; Gupta, S.P., Ed.; Elsevier B.V.: Cambridge, 2020, pp. 265-294.
[http://dx.doi.org/10.1016/B978-0-12-818168-3.00010-3]
[78]
Gimeno, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Understanding the variability of the S1′ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discov. Today, 2020, 25(1), 38-57.
[http://dx.doi.org/10.1016/j.drudis.2019.07.013] [PMID: 31513929]
[79]
Rao, B. Recent developments in the design of specific Matrix Metalloproteinase inhibitors aided by structural and computational studies. Curr. Pharm. Des., 2005, 11(3), 295-322.
[http://dx.doi.org/10.2174/1381612053382115] [PMID: 15723627]
[80]
Zhang, C.; Kim, S.K. Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: The current situation and future prospects. Mar. Drugs, 2009, 7(2), 71-84.
[http://dx.doi.org/10.3390/md7020071] [PMID: 19597572]
[81]
Huang, H. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances. Sensors (Basel), 2018, 18(10), 3249.
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[82]
Amin, S.A.; Adhikari, N.; Jha, T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res., 2017, 122, 8-19.
[http://dx.doi.org/10.1016/j.phrs.2017.05.002] [PMID: 28501516]
[83]
Bronisz, E.; Kurkowska-Jastrzębska, I. Matrix metalloproteinase 9 in epilepsy: The role of neuroinflammation in seizure development. Mediators Inflamm., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/7369020] [PMID: 28104930]
[84]
Van den Steen, P.E.; Dubois, B.; Nelissen, I.; Rudd, P.M.; Dwek, R.A.; Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol., 2002, 37(6), 375-536.
[http://dx.doi.org/10.1080/10409230290771546] [PMID: 12540195]
[85]
Xu, D.; Zhou, J.; Lou, X.; He, J.; Ran, T.; Wang, W. Myroilysin is a new bacterial member of the M12A family of metzincin metallopeptidases and is activated by a cysteine switch mechanism. J. Biol. Chem., 2017, 292(13), 5195-5206.
[http://dx.doi.org/10.1074/jbc.M116.758110] [PMID: 28188295]
[86]
Tochowicz, A.; Goettig, P.; Evans, R.; Visse, R.; Shitomi, Y.; Palmisano, R.; Ito, N.; Richter, K.; Maskos, K.; Franke, D.; Svergun, D.; Nagase, H.; Bode, W.; Itoh, Y. The dimer interface of the membrane type 1 matrix metalloproteinase hemopexin domain: Crystal structure and biological functions. J. Biol. Chem., 2011, 286(9), 7587-7600.
[http://dx.doi.org/10.1074/jbc.M110.178434] [PMID: 21193411]
[87]
Mikhailova, M.; Xu, X.; Robichaud, T.K.; Pal, S.; Fields, G.B.; Steffensen, B. Identification of collagen binding domain residues that govern catalytic activities of matrix metalloproteinase-2 (MMP-2). Matrix Biol., 2012, 31(7-8), 380-388.
[http://dx.doi.org/10.1016/j.matbio.2012.10.001] [PMID: 23085623]
[88]
Chiao, Y.A.; Zamilpa, R.; Lopez, E.F.; Dai, Q.; Escobar, G.P.; Hakala, K.; Weintraub, S.T.; Lindsey, M.L. In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. J. Proteome Res., 2010, 9(5), 2649-2657.
[http://dx.doi.org/10.1021/pr100147r] [PMID: 20232908]
[89]
López-Pelegrín, M.; Ksiazek, M.; Karim, A.Y.; Guevara, T.; Arolas, J.L.; Potempa, J.; Gomis-Rüth, F.X. A novel mechanism of latency in matrix metalloproteinases. J. Biol. Chem., 2015, 290(8), 4728-4740.
[http://dx.doi.org/10.1074/jbc.M114.605956] [PMID: 25555916]
[90]
Ratnikov, B.I.; Deryugina, E.I.; Strongin, A.Y. Gelatin zymography and substrate cleavage assays of matrix metalloproteinase-2 in breast carcinoma cells overexpressing membrane type-1 matrix metalloproteinase. Lab. Invest., 2002, 82(11), 1583-1590.
[http://dx.doi.org/10.1097/01.LAB.0000038555.67772.DB] [PMID: 12429818]
[91]
Takino, T.; Sato, H.; Shinagawa, A.; Seiki, M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem., 1995, 270(39), 23013-23020.
[http://dx.doi.org/10.1074/jbc.270.39.23013] [PMID: 7559440]
[92]
Ra, H.J.; Parks, W.C. Control of matrix metalloproteinase catalytic activity. Matrix Biol., 2007, 26(8), 587-596.
[http://dx.doi.org/10.1016/j.matbio.2007.07.001] [PMID: 17669641]
[93]
Hadler-Olsen, E.; Fadnes, B.; Sylte, I.; Uhlin-Hansen, L.; Winberg, J.O. Regulation of matrix metalloproteinase activity in health and disease. FEBS J., 2011, 278(1), 28-45.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07920.x] [PMID: 21087458]
[94]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[95]
Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 3-19.
[http://dx.doi.org/10.1016/j.bbamcr.2009.07.004] [PMID: 19631700]
[96]
Kim, E.S.; Sohn, Y.W.; Moon, A. TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett., 2007, 252(1), 147-156.
[http://dx.doi.org/10.1016/j.canlet.2006.12.016] [PMID: 17258390]
[97]
Shin, Y.H.; Yoon, S.H.; Choe, E.Y.; Cho, S.H.; Woo, C.H.; Rho, J.Y.; Kim, J.H. PMA-induced up-regulation of MMP-9 is regulated by a PKCα-NF-κB cascade in human lung epithelial cells. Exp. Mol. Med., 2007, 39(1), 97-105.
[http://dx.doi.org/10.1038/emm.2007.11] [PMID: 17334233]
[98]
Song, J.; Wu, C.; Korpos, E.; Zhang, X.; Agrawal, S.M.; Wang, Y.; Faber, C.; Schäfers, M.; Körner, H.; Opdenakker, G.; Hallmann, R.; Sorokin, L. Focal MMP-2 and MMP-9 activity at the blood-brain barrier promotes chemokine-induced leukocyte migration. Cell Rep., 2015, 10(7), 1040-1054.
[http://dx.doi.org/10.1016/j.celrep.2015.01.037] [PMID: 25704809]
[99]
Quiding-Järbrink, M.; Smith, D.A.; Bancroft, G.J. Production of matrix metalloproteinases in response to mycobacterial infection. Infect. Immun., 2001, 69(9), 5661-5670.
[http://dx.doi.org/10.1128/IAI.69.9.5661-5670.2001] [PMID: 11500442]
[100]
Rodríguez, D.; Morrison, C.J.; Overall, C.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta Mol. Cell Res., 2010, 1803(1), 39-54.
[http://dx.doi.org/10.1016/j.bbamcr.2009.09.015] [PMID: 19800373]
[101]
Gonzalez-Avila, G.; Sommer, B.; Mendoza-Posada, D.A.; Ramos, C.; Garcia-Hernandez, A.A.; Falfan-Valencia, R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol. Hematol., 2019, 137, 57-83.
[http://dx.doi.org/10.1016/j.critrevonc.2019.02.010] [PMID: 31014516]
[102]
Yosef, G.; Arkadash, V.; Papo, N. Targeting the MMP-14/MMP-2/integrin αvβ3 axis with multispecific N-TIMP2–based antagonists for cancer therapy. J. Biol. Chem., 2018, 293(34), 13310-13326.
[http://dx.doi.org/10.1074/jbc.RA118.004406] [PMID: 29986882]
[103]
Zhong, S.; Khalil, R.A. A Disintegrin and Metalloproteinase (ADAM) and ADAM with thrombospondin motifs (ADAMTS) family in vascular biology and disease. Biochem. Pharmacol., 2019, 164, 188-204.
[http://dx.doi.org/10.1016/j.bcp.2019.03.033] [PMID: 30905657]
[104]
Higashiyama, S.; Nanba, D. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim. Biophys. Acta. Proteins Proteomics, 2005, 1751(1), 110-117.
[http://dx.doi.org/10.1016/j.bbapap.2004.11.009] [PMID: 16054021]
[105]
Pan, Y.; Han, C.; Wang, C.; Hu, G.; Luo, C.; Gan, X.; Zhang, F.; Lu, Y.; Ding, X. ADAM10 promotes pituitary adenoma cell migration by regulating cleavage of CD44 and L1. J. Mol. Endocrinol., 2012, 49(1), 21-33.
[http://dx.doi.org/10.1530/JME-11-0174] [PMID: 22586143]
[106]
Endo, K.; Takino, T.; Miyamori, H.; Kinsen, H.; Yoshizaki, T.; Furukawa, M.; Sato, H. Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J. Biol. Chem., 2003, 278(42), 40764-40770.
[http://dx.doi.org/10.1074/jbc.M306736200] [PMID: 12904296]
[107]
Gomes, L.R.; Terra, L.F.; Wailemann, R.A.M.; Labriola, L.; Sogayar, M.C. TGF-β1 modulates the homeostasis between MMPs and MMP inhibitors through p38 MAPK and ERK1/2 in highly invasive breast cancer cells. BMC Cancer, 2012, 12(1), 26.
[http://dx.doi.org/10.1186/1471-2407-12-26] [PMID: 22260435]
[108]
Joo, C.K.; Seomun, Y. Matrix metalloproteinase (MMP) and TGF-β1-stimulated cell migration in skin and cornea wound healing. Cell Adhes. Migr., 2008, 2(4), 252-253.
[http://dx.doi.org/10.4161/cam.2.4.6772] [PMID: 19262153]
[109]
Yabluchanskiy, A.; Ma, Y.; Iyer, R.P.; Hall, M.E.; Lindsey, M.L. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda), 2013, 28(6), 391-403.
[http://dx.doi.org/10.1152/physiol.00029.2013] [PMID: 24186934]
[110]
Niu, H.; Li, F.; Wang, Q.; Ye, Z.; Chen, Q.; Lin, Y. High expression level of MMP9 is associated with poor prognosis in patients with clear cell renal carcinoma. PeerJ, 2018, 6, e5050.
[http://dx.doi.org/10.7717/peerj.5050] [PMID: 30013825]
[111]
Schwingshackl, A.; Duszyk, M.; Brown, N.; Moqbel, R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-α. J. Allergy Clin. Immunol., 1999, 104(5), 983-990.
[http://dx.doi.org/10.1016/S0091-6749(99)70079-5] [PMID: 10550743]
[112]
Esnault, S.; Kelly, E.A.; Johnson, S.H.; DeLain, L.P.; Haedt, M.J.; Noll, A.L.; Sandbo, N.; Jarjour, N.N. Matrix metalloproteinase-9-dependent release of IL-1beta by human eosinophils. Mediators Inflamm., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/7479107] [PMID: 30906226]
[113]
Chakrabarti, S.; Patel, K.D. Regulation of matrix metalloproteinase-9 release from IL-8-stimulated human neutrophils. J. Leukoc. Biol., 2005, 78(1), 279-288.
[http://dx.doi.org/10.1189/jlb.1004612] [PMID: 15831558]
[114]
Chaudhary, A.K.; Singh, M.; Bharti, A.C.; Asotra, K.; Sundaram, S.; Mehrotra, R. Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J. Biomed. Sci., 2010, 17(1), 10.
[http://dx.doi.org/10.1186/1423-0127-17-10] [PMID: 20152059]
[115]
Cotignola, J.; Reva, B.; Mitra, N.; Ishill, N.; Chuai, S.; Patel, A.; Shah, S.; Vanderbeek, G.; Coit, D.; Busam, K.; Halpern, A.; Houghton, A.; Sander, C.; Berwick, M.; Orlow, I. Matrix Metalloproteinase-9 (MMP-9) polymorphisms in patients with cutaneous malignant melanoma. BMC Med. Genet., 2007, 8(1), 8-10.
[http://dx.doi.org/10.1186/1471-2350-8-10] [PMID: 17346338]
[116]
Christensen, J.; Shastri, V.P. Matrix-metalloproteinase-9 is cleaved and activated by Cathepsin K. BMC Res. Notes, 2015, 8(1), 322.
[http://dx.doi.org/10.1186/s13104-015-1284-8] [PMID: 26219353]
[117]
Serifova, X.; Ugarte-Berzal, E.; Opdenakker, G.; Vandooren, J. Homotrimeric MMP-9 is an active hitchhiker on alpha-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell. Mol. Life Sci., 2020, 77(15), 3013-3026.
[http://dx.doi.org/10.1007/s00018-019-03338-4] [PMID: 31642940]
[118]
Jotwani, R.; Eswaran, S.V.K.; Moonga, S.; Cutler, C.W. MMP-9/TIMP-1imbalance induced in human dendritic cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol., 2010, 58(3), 314-321.
[http://dx.doi.org/10.1111/j.1574-695X.2009.00637.x] [PMID: 20030715]
[119]
Ghaffarpour, S.; Ghazanfari, T.; Kabudanian Ardestani, S.; Pourfarzam, S.; Fallahi, F.; Shams, J.; Mirsharif, E.S.; Mohseni Majd, A.M.; Faghihzadeh, S. Correlation between MMP-9 and MMP-9/ TIMPs complex with pulmonary function in sulfur mustard exposed civilians: Sardasht-Iran cohort study. Arch. Iran Med., 2017, 20(2), 74-82.
[PMID: 28193079]
[120]
Craig, V.J.; Zhang, L.; Hagood, J.S.; Owen, C.A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2015, 53(5), 585-600.
[http://dx.doi.org/10.1165/rcmb.2015-0020TR] [PMID: 26121236]
[121]
Li, G.; Jin, F.; Du, J.; He, Q.; Yang, B.; Luo, P. Macrophage-secreted TSLP and MMP9 promote bleomycin-induced pulmonary fibrosis. Toxicol. Appl. Pharmacol., 2019, 366, 10-16.
[http://dx.doi.org/10.1016/j.taap.2019.01.011] [PMID: 30653976]
[122]
Espindola, M.S.; Habiel, D.M.; Coelho, A.L.; Stripp, B.; Parks, W.C.; Oldham, J.; Martinez, F.J.; Noth, I.; Lopez, D.; Mikels-Vigdal, A.; Smith, V.; Hogaboam, C.M. Differential responses to targeting matrix metalloproteinase 9 in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2021, 203(4), 458-470.
[http://dx.doi.org/10.1164/rccm.201910-1977OC] [PMID: 33052708]
[123]
Murthy, S.; Ryan, A.; He, C.; Mallampalli, R.K.; Carter, A.B. Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J. Biol. Chem., 2010, 285(32), 25062-25073.
[http://dx.doi.org/10.1074/jbc.M109.099655] [PMID: 20529870]
[124]
Ramírez, G.; Hagood, J.S.; Sanders, Y.; Ramírez, R.; Becerril, C.; Segura, L.; Barrera, L.; Selman, M.; Pardo, A. Absence of Thy-1 results in TGF-β induced MMP-9 expression and confers a profibrotic phenotype to human lung fibroblasts. Lab. Invest., 2011, 91(8), 1206-1218.
[http://dx.doi.org/10.1038/labinvest.2011.80] [PMID: 21577212]
[125]
Moon, S.K.; Cha, B.Y.; Kim, C.H. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-?B and AP-1: Involvement of the ras dependent pathway. J. Cell. Physiol., 2004, 198(3), 417-427.
[http://dx.doi.org/10.1002/jcp.10435] [PMID: 14755547]
[126]
Bratcher, P.E.; Weathington, N.M.; Nick, H.J.; Jackson, P.L.; Snelgrove, R.J.; Gaggar, A. MMP-9 cleaves SP-D and abrogates its innate immune functions in vitro. PLoS One, 2012, 7(7), e41881.
[http://dx.doi.org/10.1371/journal.pone.0041881] [PMID: 22860023]
[127]
Zhang, Q.; Tu, W.; Tian, K.; Han, L.; Wang, Q.; Chen, P.; Zhou, X. Sirtuin 6 inhibits myofibroblast differentiation via inactivating transforming growth factor-β1/Smad2 and nuclear factor-κB signaling pathways in human fetal lung fibroblasts. J. Cell. Biochem., 2019, 120(1), 93-104.
[http://dx.doi.org/10.1002/jcb.27128] [PMID: 30230565]
[128]
Legrand, C.; Gilles, C.; Zahm, J.M.; Polette, M.; Buisson, A.C.; Kaplan, H.; Birembaut, P.; Tournier, J.M. Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J. Cell Biol., 1999, 146(2), 517-529.
[http://dx.doi.org/10.1083/jcb.146.2.517] [PMID: 10427102]
[129]
Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem., 2016, 139(Suppl. 2), 91-114.
[http://dx.doi.org/10.1111/jnc.13415] [PMID: 26525923]
[130]
Iyer, R.P.; Jung, M.; Lindsey, M.L. MMP-9 signaling in the left ventricle following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol., 2016, 311(1), H190-H198.
[http://dx.doi.org/10.1152/ajpheart.00243.2016] [PMID: 27208160]
[131]
Lettner, T.; Lang, R.; Klausegger, A.; Hainzl, S.; Bauer, J.W.; Wally, V. MMP-9 and CXCL8/IL-8 are potential therapeutic targets in epidermolysis bullosa simplex. PLoS One, 2013, 8(7), e70123.
[http://dx.doi.org/10.1371/journal.pone.0070123] [PMID: 23894602]
[132]
Hiratsuka, S.; Nakamura, K.; Iwai, S.; Murakami, M.; Itoh, T.; Kijima, H.; Shipley, J.M.; Senior, R.M.; Shibuya, M. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2002, 2(4), 289-300.
[http://dx.doi.org/10.1016/S1535-6108(02)00153-8] [PMID: 12398893]
[133]
Nkyimbeng, T.; Ruppert, C.; Shiomi, T.; Dahal, B.; Lang, G.; Seeger, W.; Okada, Y.; D’Armiento, J.; Günther, A. Pivotal role of matrix metalloproteinase 13 in extracellular matrix turnover in idiopathic pulmonary fibrosis. PLoS One, 2013, 8(9), e73279.
[http://dx.doi.org/10.1371/journal.pone.0073279] [PMID: 24023851]
[134]
Cabrera, S.; Maciel, M.; Hernández-Barrientos, D.; Calyeca, J.; Gaxiola, M.; Selman, M.; Pardo, A. Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(5), L961-L976.
[http://dx.doi.org/10.1152/ajplung.00455.2017] [PMID: 30785343]
[135]
Berendsen, A.D.; Olsen, B.R. Bone development. Bone, 2015, 80, 14-18.
[http://dx.doi.org/10.1016/j.bone.2015.04.035] [PMID: 26453494]
[136]
Vu, T.H.; Shipley, J.M.; Bergers, G.; Berger, J.E.; Helms, J.A.; Hanahan, D.; Shapiro, S.D.; Senior, R.M.; Werb, Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 1998, 93(3), 411-422.
[http://dx.doi.org/10.1016/S0092-8674(00)81169-1] [PMID: 9590175]
[137]
Colnot, C.; Sidhu, S.S.; Balmain, N.; Poirier, F. Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev. Biol., 2001, 229(1), 203-214.
[http://dx.doi.org/10.1006/dbio.2000.9933] [PMID: 11133164]
[138]
Ortega, N.; Behonick, D.J.; Colnot, C.; Cooper, D.N.W.; Werb, Z. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol. Biol. Cell, 2005, 16(6), 3028-3039.
[http://dx.doi.org/10.1091/mbc.e04-12-1119] [PMID: 15800063]
[139]
Colnot, C.; Thompson, Z.; Miclau, T.; Werb, Z.; Helms, J.A. Altered fracture repair in the absence of MMP9. Development, 2003, 130(17), 4123-4133.
[http://dx.doi.org/10.1242/dev.00559] [PMID: 12874132]
[140]
Zhou, Z.; Apte, S.S.; Soininen, R.; Cao, R.; Baaklini, G.Y.; Rauser, R.W.; Wang, J.; Cao, Y.; Tryggvason, K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4052-4057.
[http://dx.doi.org/10.1073/pnas.060037197] [PMID: 10737763]
[141]
Kato, T.; Kure, T.; Chang, J.H.; Gabison, E.E.; Itoh, T.; Itohara, S.; Azar, D.T. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett., 2001, 508(2), 187-190.
[http://dx.doi.org/10.1016/S0014-5793(01)02897-6] [PMID: 11718713]
[142]
Lambert, V.; Wielockx, B.; Munaut, C.; Galopin, C.; Jost, M.; Itoh, T.; Werb, Z.; Baker, A.; Libert, C.; Krell, H.W.; Foidart, J.M.; Noël, A.; Rakic, J.M. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J., 2003, 17(15), 2290-2292.
[http://dx.doi.org/10.1096/fj.03-0113fje] [PMID: 14563686]
[143]
Chun, T.H.; Sabeh, F.; Ota, I.; Murphy, H.; McDonagh, K.T.; Holmbeck, K.; Birkedal-Hansen, H.; Allen, E.D.; Weiss, S.J. MT1-MMP–dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell Biol., 2004, 167(4), 757-767.
[http://dx.doi.org/10.1083/jcb.200405001] [PMID: 15545316]
[144]
Filippov, S.; Koenig, G.C.; Chun, T.H.; Hotary, K.B.; Ota, I.; Bugge, T.H.; Roberts, J.D.; Fay, W.P.; Birkedal-Hansen, H.; Holmbeck, K.; Sabeh, F.; Allen, E.D.; Weiss, S.J. MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J. Exp. Med., 2005, 202(5), 663-671.
[http://dx.doi.org/10.1084/jem.20050607] [PMID: 16147977]
[145]
Chantrain, C.F.; Shimada, H.; Jodele, S.; Groshen, S.; Ye, W.; Shalinsky, D.R.; Werb, Z.; Coussens, L.M.; DeClerck, Y.A. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res., 2004, 64(5), 1675-1686.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0160] [PMID: 14996727]
[146]
Lehti, K.; Allen, E.; Birkedal-Hansen, H.; Holmbeck, K.; Miyake, Y.; Chun, T.H.; Weiss, S.J. An MT1-MMP-PDGF receptor-β axis regulates mural cell investment of the microvasculature. Genes Dev., 2005, 19(8), 979-991.
[http://dx.doi.org/10.1101/gad.1294605] [PMID: 15805464]
[147]
Park, J.E.; Keller, G.A.; Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell, 1993, 4(12), 1317-1326.
[http://dx.doi.org/10.1091/mbc.4.12.1317] [PMID: 8167412]
[148]
Bergers, G.; Hanahan, D.; Coussens, L.M. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol., 1998, 42(7), 995-1002.
[PMID: 9853830]
[149]
Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; Hanahan, D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol., 2000, 2(10), 737-744.
[http://dx.doi.org/10.1038/35036374] [PMID: 11025665]
[150]
Lee, S.; Jilani, S.M.; Nikolova, G.V.; Carpizo, D.; Iruela-Arispe, M.L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol., 2005, 169(4), 681-691.
[http://dx.doi.org/10.1083/jcb.200409115] [PMID: 15911882]
[151]
Van den Steen, P.E.; Van Aelst, I.; Hvidberg, V.; Piccard, H.; Fiten, P.; Jacobsen, C.; Moestrup, S.K.; Fry, S.; Royle, L.; Wormald, M.R.; Wallis, R.; Rudd, P.M.; Dwek, R.A.; Opdenakker, G. The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J. Biol. Chem., 2006, 281(27), 18626-18637.
[http://dx.doi.org/10.1074/jbc.M512308200] [PMID: 16672230]
[152]
Charzewski, Ł.; Krzyśko, K.A.; Lesyng, B. Structural characterisation of inhibitory and non-inhibitory MMP-9–TIMP-1 complexes and implications for regulatory mechanisms of MMP-9. Sci. Rep., 2021, 11(1), 13376.
[http://dx.doi.org/10.1038/s41598-021-92881-x] [PMID: 34183752]
[153]
Olson, M.W.; Bernardo, M.M.; Pietila, M.; Gervasi, D.C.; Toth, M.; Kotra, L.P.; Massova, I.; Mobashery, S.; Fridman, R. Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J. Biol. Chem., 2000, 275(4), 2661-2668.
[http://dx.doi.org/10.1074/jbc.275.4.2661] [PMID: 10644727]
[154]
Bouchet, S.; Bauvois, B. Neutrophil gelatinase-associated lipocalin (NGAL), pro-matrix metalloproteinase-9 (pro-MMP-9) and their complex pro-MMP-9/NGAL in leukaemias. Cancers (Basel), 2014, 6(2), 796-812.
[http://dx.doi.org/10.3390/cancers6020796] [PMID: 24713998]
[155]
Di Carlo, A. Evaluation of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase-9 (MMP-9) and their complex MMP-9/NGAL in sera and urine of patients with kidney tumors. Oncol. Lett., 2013, 5(5), 1677-1681.
[http://dx.doi.org/10.3892/ol.2013.1252] [PMID: 23760084]
[156]
Winberg, J.O.; Kolset, S.O.; Berg, E.; Uhlin-Hansen, L. Macrophages secrete matrix metalloproteinase 9 covalently linked to the core protein of chondroitin sulphate proteoglycans. J. Mol. Biol., 2000, 304(4), 669-680.
[http://dx.doi.org/10.1006/jmbi.2000.4235] [PMID: 11099388]
[157]
Mittelstadt, M.L.; Patel, R.C. AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β. PLoS One, 2012, 7(8), e42152.
[http://dx.doi.org/10.1371/journal.pone.0042152] [PMID: 22879913]
[158]
Bansal, K.; Kapoor, N.; Narayana, Y.; Puzo, G.; Gilleron, M.; Balaji, K.N. PIM2 Induced COX-2 and MMP-9 expression in macrophages requires PI3K and Notch1 signaling. PLoS One, 2009, 4(3), e4911.
[http://dx.doi.org/10.1371/journal.pone.0004911] [PMID: 19290049]
[159]
Mason, D.P.; Kenagy, R.D.; Hasenstab, D.; Bowen-Pope, D.F.; Seifert, R.A.; Coats, S.; Hawkins, S.M.; Clowes, A.W. Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ. Res., 1999, 85(12), 1179-1185.
[http://dx.doi.org/10.1161/01.RES.85.12.1179] [PMID: 10590245]
[160]
Magid, R.; Murphy, T.J.; Galis, Z.S. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress. Role of c-Myc. J. Biol. Chem., 2003, 278(35), 32994-32999.
[http://dx.doi.org/10.1074/jbc.M304799200] [PMID: 12816956]
[161]
Remacle, A.G.; Rozanov, D.V.; Fugere, M.; Day, R.; Strongin, A.Y. Furin regulates the intracellular activation and the uptake rate of cell surface-associated MT1-MMP. Oncogene, 2006, 25(41), 5648-5655.
[http://dx.doi.org/10.1038/sj.onc.1209572] [PMID: 16636666]
[162]
Bigg, H.F.; Rowan, A.D.; Barker, M.D.; Cawston, T.E. Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J., 2007, 274(5), 1246-1255.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05669.x] [PMID: 17298441]
[163]
Liu, Y.; Liu, H.; Luo, X.; Deng, J.; Pan, Y.; Liang, H. Overexpression of SMYD3 and matrix metalloproteinase-9 are associated with poor prognosis of patients with gastric cancer. Tumour Biol., 2015, 36(6), 4377-4386.
[http://dx.doi.org/10.1007/s13277-015-3077-z] [PMID: 25627005]
[164]
Dragutinović, V.V.; Radovanović, N.S.; Izrael-Živković, L.T.; Vrvić, M.M. Detection of gelatinase B activity in serum of gastric cancer patients. World J. Gastroenterol., 2006, 12(1), 105-109.
[http://dx.doi.org/10.3748/wjg.v12.i1.105] [PMID: 16440426]
[165]
Chiranjeevi, P.; Spurthi, K.M.; Rani, N.S.; Kumar, G.R.; Aiyengar, T.M.; Saraswati, M.; Srilatha, G.; Kumar, G.K.; Sinha, S.; Kumari, C.S.; Reddy, B.N.; Vishnupriya, S.; Rani, H.S. Gelatinase B (−1562C/T) polymorphism in tumor progression and invasion of breast cancer. Tumour Biol., 2014, 35(2), 1351-1356.
[http://dx.doi.org/10.1007/s13277-013-1181-5] [PMID: 24357512]
[166]
van ’t Veer, L.J.; Dai, H.; van de Vijver, M.J.; He, Y.D.; Hart, A.A.M.; Mao, M.; Peterse, H.L.; van der Kooy, K.; Marton, M.J.; Witteveen, A.T.; Schreiber, G.J.; Kerkhoven, R.M.; Roberts, C.; Linsley, P.S.; Bernards, R.; Friend, S.H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871), 530-536.
[http://dx.doi.org/10.1038/415530a] [PMID: 11823860]
[167]
Niu, J.; Gu, X.; Turton, J.; Meldrum, C.; Howard, E.W.; Agrez, M. Integrin-mediated signalling of gelatinase B secretion in colon cancer cells. Biochem. Biophys. Res. Commun., 1998, 249(1), 287-291.
[http://dx.doi.org/10.1006/bbrc.1998.9128] [PMID: 9705874]
[168]
Agrez, M.; Gu, X.; Turton, J.; Meldrum, C.; Niu, J.; Antalis, T.; Howard, E.W. The alpha v beta 6 integrin induces gelatinase B secretion in colon cancer cells. Int. J. Cancer, 1999, 81(1), 90-97.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990331)81:1<90::AID-IJC16>3.0.CO;2-K] [PMID: 10077158]
[169]
Björklund, M.; Koivunen, E. Gelatinase-mediated migration and invasion of cancer cells. Biochim. Biophys. Acta, 2005, 1755(1), 37-69.
[PMID: 15907591]
[170]
Tokito, A.; Jougasaki, M. Matrix metalloproteinases in non-neoplastic disorders. Int. J. Mol. Sci., 2016, 17(7), 1178.
[http://dx.doi.org/10.3390/ijms17071178] [PMID: 27455234]
[171]
Gu, Z.; Cui, J.; Brown, S.; Fridman, R.; Mobashery, S.; Strongin, A.Y.; Lipton, S.A. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J. Neurosci., 2005, 25(27), 6401-6408.
[http://dx.doi.org/10.1523/JNEUROSCI.1563-05.2005] [PMID: 16000631]
[172]
Vandooren, J.; Knoops, S.; Aldinucci Buzzo, J.L.; Boon, L.; Martens, E.; Opdenakker, G.; Kolaczkowska, E. Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib: A comparative study. PLoS One, 2017, 12(4), e0174853.
[http://dx.doi.org/10.1371/journal.pone.0174853] [PMID: 28369077]
[173]
Boucher, B. Matrix metalloproteinase protein inhibitors: Highlighting a new beginning for metalloproteinases in medicine. Metalloproteinases Med., 2016, 3, 75-79.
[http://dx.doi.org/10.2147/MNM.S119588]
[174]
Churg, A.; Wang, R.; Wang, X.; Onnervik, P.O.; Thim, K.; Wright, J.L. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax, 2007, 62(8), 706-713.
[http://dx.doi.org/10.1136/thx.2006.068353] [PMID: 17311841]
[175]
Baugh, M.D.; Gavrilovic, J.; Davies, I.R.; Hughes, D.A.; Sampson, M.J. Monocyte matrix metalloproteinase production in type 2 diabetes and controls--a cross sectional study. Cardiovasc. Diabetol., 2003, 2(1), 3.
[http://dx.doi.org/10.1186/1475-2840-2-3] [PMID: 12672267]
[176]
Uemura, S.; Matsushita, H.; Li, W.; Glassford, A.J.; Asagami, T.; Lee, K.H.; Harrison, D.G.; Tsao, P.S. Diabetes mellitus enhances vascular matrix metalloproteinase activity: Role of oxidative stress. Circ. Res., 2001, 88(12), 1291-1298.
[http://dx.doi.org/10.1161/hh1201.092042] [PMID: 11420306]
[177]
Ebihara, I.; Nakamura, T.; Shimada, N.; Koide, H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am. J. Kidney Dis., 1998, 32(4), 544-550.
[http://dx.doi.org/10.1016/S0272-6386(98)70015-0] [PMID: 9774113]
[178]
Nguyen, T.T.; Ding, D.; Wolter, W.R.; Pérez, R.L.; Champion, M.M.; Mahasenan, K.V.; Hesek, D.; Lee, M.; Schroeder, V.A.; Jones, J.I.; Lastochkin, E.; Rose, M.K.; Peterson, C.E.; Suckow, M.A.; Mobashery, S.; Chang, M. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing. J. Med. Chem., 2018, 61(19), 8825-8837.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01005] [PMID: 30212201]
[179]
Fischer, T.; Senn, N.; Riedl, R. Design and structural evolution of matrix metalloproteinase inhibitors. Chemistry, 2019, 25(34), 7960-7980.
[http://dx.doi.org/10.1002/chem.201805361] [PMID: 30720221]
[180]
Devel, L.; Czarny, B.; Beau, F.; Georgiadis, D.; Stura, E.; Dive, V. Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 2010, 92(11), 1501-1508.
[http://dx.doi.org/10.1016/j.biochi.2010.07.017] [PMID: 20696203]
[181]
Nuti, E.; Cuffaro, D.; Bernardini, E.; Camodeca, C.; Panelli, L.; Chaves, S.; Ciccone, L.; Tepshi, L.; Vera, L.; Orlandini, E.; Nencetti, S.; Stura, E.A.; Santos, M.A.; Dive, V.; Rossello, A. Development of thioaryl-based matrix metalloproteinase-12 inhibitors with alternative zinc-binding groups: Synthesis, potentiometric, NMR, and crystallographic studies. J. Med. Chem., 2018, 61(10), 4421-4435.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00096] [PMID: 29727184]
[182]
Spicer, T.P.; Jiang, J.; Taylor, A.B.; Choi, J.Y.; Hart, P.J.; Roush, W.R.; Fields, G.B.; Hodder, P.S.; Minond, D. Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro. J. Med. Chem., 2014, 57(22), 9598-9611.
[http://dx.doi.org/10.1021/jm501284e] [PMID: 25330343]
[183]
Wu, J.; Rush, T.S., III; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z.B.; Skotnicki, J.; Levin, J.I.; Lovering, F.E. Identification of potent and selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(18), 4105-4109.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.019] [PMID: 16005220]
[184]
Choi, J.Y.; Fuerst, R.; Knapinska, A.M.; Taylor, A.B.; Smith, L.; Cao, X.; Hart, P.J.; Fields, G.B.; Roush, W.R. Structure-based design and synthesis of potent and selective matrix metalloproteinase 13 inhibitors. J. Med. Chem., 2017, 60(13), 5816-5825.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00514] [PMID: 28653849]
[185]
Nara, H.; Kaieda, A.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective matrix metalloproteinase (MMP)-13 inhibitors with a 1,2,4-triazol-3-yl moiety as a zinc binding group using a structure-based design approach. J. Med. Chem., 2017, 60(2), 608-626.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01007] [PMID: 27966948]
[186]
Nara, H.; Sato, K.; Kaieda, A.; Oki, H.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Design, synthesis, and biological activity of novel, potent, and highly selective fused pyrimidine-2-carboxamide-4-one-based matrix metalloproteinase (MMP)-13 zinc-binding inhibitors. Bioorg. Med. Chem., 2016, 24(23), 6149-6165.
[http://dx.doi.org/10.1016/j.bmc.2016.09.009] [PMID: 27825552]
[187]
Baggio, C.; Velazquez, J.V.; Fragai, M.; Nordgren, T.M.; Pellecchia, M. Therapeutic targeting of MMP-12 for the treatment of chronic obstructive pulmonary disease. J. Med. Chem., 2020, 63(21), 12911-12920.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01285] [PMID: 33107733]
[188]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J. Med. Chem., 2014, 57(21), 8886-8902.
[http://dx.doi.org/10.1021/jm500981k] [PMID: 25264600]
[189]
Ruminski, P.G.; Massa, M.; Strohbach, J.; Hanau, C.E.; Schmidt, M.; Scholten, J.A.; Fletcher, T.R.; Hamper, B.C.; Carroll, J.N.; Shieh, H.S.; Caspers, N.; Collins, B.; Grapperhaus, M.; Palmquist, K.E.; Collins, J.; Baldus, J.E.; Hitchcock, J.; Kleine, H.P.; Rogers, M.D.; McDonald, J.; Munie, G.E.; Messing, D.M.; Portolan, S.; Whiteley, L.O.; Sunyer, T.; Schnute, M.E. Discovery of N-(4-fluoro-3-methoxybenzyl)-6-(2-(((2S,5R)-5-(hydroxymethyl)- 1,4-dioxan-2-yl)methyl)-2H-tetrazol-5-yl)-2 methylpyrimi- dine-4-carboxamide. A highly selective and orally bioavailable matrix metalloproteinase-13 inhibitor for the potential treatment of osteoarthritis. J. Med. Chem., 2016, 59(1), 313-327.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01434] [PMID: 26653735]
[190]
Fischer, T.; Riedl, R. Development of a non-hydroxamate dual matrix metalloproteinase (MMP)-7/-13 inhibitor. Molecules, 2017, 22(9), 1548.
[http://dx.doi.org/10.3390/molecules22091548] [PMID: 32961647]
[191]
Senn, N.; Ott, M.; Lanz, J.; Riedl, R. Targeted polypharmacology: Discovery of a highly potent non-hydroxamate dual matrix metalloproteinase (MMP)-10/-13 inhibitor. J. Med. Chem., 2017, 60(23), 9585-9598.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01001] [PMID: 28953404]
[192]
El Ashry, E.S.H.; Awad, L.F.; Teleb, M.; Ibrahim, N.A.; Abu-Serie, M.M.; Abd Al Moaty, M.N. Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via dimroth rearrangement towards targeted polypharmacology. Bioorg. Chem., 2020, 96, 103616.
[http://dx.doi.org/10.1016/j.bioorg.2020.103616] [PMID: 32032847]
[193]
Scannevin, R.H.; Alexander, R.; Haarlander, T.M.; Burke, S.L.; Singer, M.; Huo, C.; Zhang, Y.M.; Maguire, D.; Spurlino, J.; Deckman, I.; Carroll, K.I.; Lewandowski, F.; Devine, E.; Dzordzorme, K.; Tounge, B.; Milligan, C.; Bayoumy, S.; Williams, R.; Schalk-Hihi, C.; Leonard, K.; Jackson, P.; Todd, M.; Kuo, L.C.; Rhodes, K.J. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. J. Biol. Chem., 2017, 292(43), 17963-17974.
[http://dx.doi.org/10.1074/jbc.M117.806075] [PMID: 28860188]
[194]
Alford, V.M.; Kamath, A.; Ren, X.; Kumar, K.; Gan, Q.; Awwa, M.; Tong, M.; Seeliger, M.A.; Cao, J.; Ojima, I.; Sampson, N.S. Targeting the hemopexin-like domain of latent matrix metalloproteinase-9 (proMMP-9) with a small molecule inhibitor prevents the formation of focal adhesion junctions. ACS Chem. Biol., 2017, 12(11), 2788-2803.
[http://dx.doi.org/10.1021/acschembio.7b00758] [PMID: 28945333]
[195]
Shiomi, T.; Lemaître, V.; D’Armiento, J.; Okada, Y. Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol. Int., 2010, 60(7), 477-496.
[http://dx.doi.org/10.1111/j.1440-1827.2010.02547.x] [PMID: 20594269]
[196]
Gupta, P.; Rettiganti, M.; Jeffries, H.E.; Scanlon, M.C.; Ghanayem, N.S.; Daufeldt, J.; Rice, T.B.; Wetzel, R.C. Risk factors and outcomes of in-hospital cardiac arrest following pediatric heart operations of varying complexity. Resuscitation, 2016, 105, 1-7.
[http://dx.doi.org/10.1016/j.resuscitation.2016.04.022] [PMID: 27185218]
[197]
Gkouveris, I.; Nikitakis, N.; Aseervatham, J.; Rao, N.; Ogbureke, K. Matrix metalloproteinases in head and neck cancer: Current perspectives. Metalloproteinases Med., 2017, 4, 47-61.
[http://dx.doi.org/10.2147/MNM.S105770]
[198]
Kim, S.; Kim, S.H.; Hur, S.M.; Lee, S.K.; Kim, W.W.; Kim, J.S.; Kim, J.H.; Choe, J.H.; Nam, S.J.; Lee, J.E.; Yang, J.H. Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells. J. Ethnopharmacol., 2009, 126(2), 252-257.
[http://dx.doi.org/10.1016/j.jep.2009.08.032] [PMID: 19715751]
[199]
Li, W.; Saji, S.; Sato, F.; Noda, M.; Toi, M. Potential clinical applications of matrix metalloproteinase inhibitors and their future prospects. Int. J. Biol. Markers, 2013, 28(2), 117-130.
[http://dx.doi.org/10.5301/JBM.5000026] [PMID: 23787494]
[200]
Hussain, A.; Harish, G.; Prabhu, S.A.; Mohsin, J.; Khan, M.A.; Rizvi, T.A.; Sharma, C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression. Cancer Epidemiol., 2012, 36(6), e387-e393.
[http://dx.doi.org/10.1016/j.canep.2012.07.005] [PMID: 22884883]
[201]
Chen, Y.J.; Chang, L.S. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol. Nutr. Food Res., 2012, 56(9), 1398-1412.
[http://dx.doi.org/10.1002/mnfr.201200167] [PMID: 22865631]
[202]
Maurya, D.K.; Nandakumar, N.; Devasagayam, T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr., 2010, 48(1), 85-90.
[http://dx.doi.org/10.3164/jcbn.11-004FR] [PMID: 21297918]
[203]
Khorsandi, K.; Kianmehr, Z.; hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int., 2020, 20(1), 18.
[http://dx.doi.org/10.1186/s12935-020-1100-y] [PMID: 31956296]
[204]
Chen, L.; Zhang, H.Y. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules, 2007, 12(5), 946-957.
[http://dx.doi.org/10.3390/12050946] [PMID: 17873830]
[205]
Saragusti, A.C.; Ortega, M.G.; Cabrera, J.L.; Estrin, D.A.; Marti, M.A.; Chiabrando, G.A. Inhibitory effect of quercetin on matrix metalloproteinase 9 activity Molecular mechanism and structure–activity relationship of the flavonoid–enzyme interaction. Eur. J. Pharmacol., 2010, 644(1-3), 138-145.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.001] [PMID: 20619256]
[206]
Hoekstra, R.; Eskens, F.A.L.M.; Verweij, J. Matrix metalloproteinase inhibitors: Current developments and future perspectives. Oncologist, 2001, 6(5), 415-427.
[http://dx.doi.org/10.1634/theoncologist.6-5-415] [PMID: 11675519]
[207]
Marshall, D.C.; Lyman, S.K.; McCauley, S.; Kovalenko, M.; Spangler, R.; Liu, C.; Lee, M.; O’Sullivan, C.; Barry-Hamilton, V.; Ghermazien, H.; Mikels-Vigdal, A.; Garcia, C.A.; Jorgensen, B.; Velayo, A.C.; Wang, R.; Adamkewicz, J.I.; Smith, V. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One, 2015, 10(5), e0127063.
[http://dx.doi.org/10.1371/journal.pone.0127063] [PMID: 25961845]
[208]
Martens, E.; Leyssen, A.; Van Aelst, I.; Fiten, P.; Piccard, H.; Hu, J.; Descamps, F.J.; Van den Steen, P.E.; Proost, P.; Van Damme, J.; Liuzzi, G.M.; Riccio, P.; Polverini, E.; Opdenakker, G. A monoclonal antibody inhibits gelatinase B/MMP-9 by selective binding to part of the catalytic domain and not to the fibronectin or zinc binding domains. Biochim. Biophys. Acta, Gen. Subj., 2007, 1770(2), 178-186.
[http://dx.doi.org/10.1016/j.bbagen.2006.10.012] [PMID: 17137715]
[209]
Pruijt, J.F.M.; Fibbe, W.E.; Laterveer, L.; Pieters, R.A.; Lindley, I.J.D.; Paemen, L.; Masure, S.; Willemze, R.; Opdenakker, G. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the Metalloproteinase gelatinase B (MMP-9). Proc. Natl. Acad. Sci. USA, 1999, 96(19), 10863-10868.
[http://dx.doi.org/10.1073/pnas.96.19.10863] [PMID: 10485917]
[210]
Alam, M.A. Methods for hydroxamic acid synthesis. Curr. Org. Chem., 2019, 23(9), 978-993.
[http://dx.doi.org/10.2174/1385272823666190424142821] [PMID: 32565717]
[211]
Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Bode, W.; Goettig, P.; Goettig, P. Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol., 2007, 371(4), 989-1006.
[http://dx.doi.org/10.1016/j.jmb.2007.05.068] [PMID: 17599356]
[212]
Geervliet, E.; Bansal, R. Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells, 2020, 9(5), 1212.
[http://dx.doi.org/10.3390/cells9051212] [PMID: 32414178]
[213]
Mu, X.; Bellayr, I.; Pan, H.; Choi, Y.; Li, Y. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice. PLoS One, 2013, 8(3), e59105.
[http://dx.doi.org/10.1371/journal.pone.0059105] [PMID: 23527099]
[214]
Almalki, S.G.; Agrawal, D.K. Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res. Ther., 2016, 7(1), 129.
[http://dx.doi.org/10.1186/s13287-016-0393-1] [PMID: 27612636]
[215]
Duarte, S.; Baber, J.; Fujii, T.; Coito, A.J. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol., 2015, 44-46, 147-156.
[http://dx.doi.org/10.1016/j.matbio.2015.01.004] [PMID: 25599939]