Ethnopharmacology, Phytochemistry, and Pharmacology of Highland Barley Monascus purpureus Went: A Comprehensive Review

Page: [1083 - 1092] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Highland barley Monascus purpureus Went, a traditional Tibetan medicine with food functions, which is fermented by Monascus purpureus with highland barley as substrate. It possesses various medical functions of promoting blood circulation and removing blood stasis, invigorating spleen and promoting digestion in folk of the Qinghai-Tibet Plateau in China. This review provides a comprehensive overview of ethnopharmacology, phytochemistry, and pharmacology of highland barley Monascus purpureus Went.

Methods: The references of highland barley Monascus purpureus Went were retrieved from the online database, such as Web of Science, Google Scholar, SciFinder, PubMed, SpringLink, Elsevier, Willy, CNKI, and so on.

Results: Phytochemical research revealed that highland barley Monascus purpureus Went contained multiple chemical components, including Monascus pigments, monacolins, lactones, and other compounds. The reported pharmacological activities of highland barley Monascus purpureus Went included hypolipidemic, anti-nonalcoholic fatty liver disease, and hepatoprotective activities.

Conclusion: In a word, botany, ethnopharmacology, phytochemistry and pharmacology of highland barley Monascus purpureus Went were reviewed comprehensively in this paper. In the future, highland barley Monascus purpureus Went needs further study, such as paying more attention to quality control and utilization of medicine. Therefore, this review may provide a theoretical basis and valuable data for future studies and exploitations on highland barley Monascus purpureus Went.

Keywords: Highland barley monascus purpureus went, ethnopharmacology, phytochemistry, pharmacology, Lactones, fatty liver diseases.

Graphical Abstract

[1]
Wei, R.R.; Ma, Q.G. Hypolipidemic lactone derivatives from highland barley Monascus. Chem. Nat. Compd., 2020, 56, 607-610.
[http://dx.doi.org/10.1007/s10600-020-03104-0]
[2]
Wu, H.C.; Chen, J.J.; Wu, M.D.; Cheng, M.J.; Chang, H.S. Identification of new pigments produced by the fermented rice of the fungus Monascus pilosus and their anti-inflammatory activity. Phytochem. Lett., 2020, 40, 181-187.
[http://dx.doi.org/10.1016/j.phytol.2020.04.014]
[3]
Hao, J.; Tu, Z.X.; Ji, F.D.; Liu, Y.; Wu, J.; Zhang, C.P.; Zhang, J.L.; Wei, W. Optimization of fermentation technology of functional highland barley Monascus for high yield monacolin K. China Brew, 2021, 40, 66-71.
[4]
Olusesan, O.; Micheal, H.K.K.; Marthe, C.F.; Edwin, M.M.; Derek, T.N. Traditional uses, phytochemistry, pharmacology and other potential applications of Vitellaria paradoxa Gaertn. (Sapotaceae): A review. Arab. J. Chem., 2021, 14, 103213.
[http://dx.doi.org/10.1016/j.arabjc.2021.103213]
[5]
Yang, J.H.; Tseng, Y.H.; Lee, Y.L.; Mau, J.L. Antioxidant properties of methanolic extracts from monascal rice. Lebensm. Wiss. Technol., 2006, 39, 740-747.
[http://dx.doi.org/10.1016/j.lwt.2005.06.002]
[6]
Luo, S.D.D.; Qiang, X.L. Investigation and research report on the analysis of the unique components of highland barley and the status of development and utilization. Tibet. Sci. Technol., 2001, 8, 55-64.
[7]
Zang, J.W.; Kan, J.Q.; Chen, Z.D.; Zhao, G.H. Research on components and application status of highland barley. China Food Addit, 2004, 4, 43-46.
[8]
Zhang, F.F.; Zhou, L.P.; Jia, X.Q.; Ding, X. Research progress in the use of Monascus. Niangjiu Ke-Ji, 2009, 181, 91-94.
[9]
Zhao, X.J.; Liu, Z.G. Fermentation conditions optimization and lipid-lowering function of lovastatin in Monascus rice. China Brew, 2014, 33, 32-35.
[10]
Zhou, L.H.; Wan, Q.; Liu, M. Xiong; Zhao, H. Study on solid-state fermentation technology of highland barley Monascus. China Brew, 2012, 31, 46-49.
[11]
Tan, Y.L.; Ma, Y.T.; Liu, Q.; Wang, W.T.; Huang, F. Quality standard for highland barley Monascus. World Sci. Technol. Mod. Trad. Chin. Med. Mater. Med., 2015, 17, 614-619.
[12]
Tan, Y.L.; Ma, Y.T.; Yu, Z.F.; Wen, J.; Liu, Q. Comparative study on β-glucan in new resource highland barley Monascus and highland barley. Lishizhen Med. Mater. Med. Res, 2015, 26, 1247-1248.
[13]
Liu, Y.Q.; Zhang, H.; Tian, F.W. Advances in the effects study of the cholesterol-reducing microbial. Food Mach, 2003, 18, 6-9.
[14]
Lu, X.L.; Zhao, S.X.; Gong, H.M. The present situation of application research on Monascus and its prospect. Food Sci. Technol., 2001, 1, 43-46.
[15]
Jeun, J.; Jung, H.; Kim, J.H.; Kim, Y.O.; Youn, S.H.; Shin, C.S. Effect of the Monascus pigment threonine derivative on regulation of the cholesterol level in mice. Food Chem., 2008, 107, 1078-1085.
[http://dx.doi.org/10.1016/j.foodchem.2007.09.021]
[16]
Ho, B.Y.; Pan, T.M. The Monascus metabolite monacolin K reduces tumor progression and metastasis of Lewis lung carcinoma cells. J. Agric. Food Chem., 2009, 57(18), 8258-8265.
[http://dx.doi.org/10.1021/jf901619w] [PMID: 19754167]
[17]
Su, N.W.; Lin, Y.L.; Lee, M.H.; Ho, C.Y. Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J. Agric. Food Chem., 2005, 53(6), 1949-1954.
[http://dx.doi.org/10.1021/jf048310e] [PMID: 15769119]
[18]
Jiang, D.H.; Hao, J.; Ye, Y.; Hou, J.H. Studies on screening of higher γ-aminobutyric acid-producing Monascus and optimization of fermentative parameters. Eur. Food Res. Technol., 2011, 232, 541-547.
[http://dx.doi.org/10.1007/s00217-010-1413-5]
[19]
Lee, C.L.; Wen, J.Y.; Hsu, Y.W.; Pan, T.M. Monascus-fermented yellow pigments monascin and ankaflavin showed antiobesity effect via the suppression of differentiation and lipogenesis in obese rats fed a high-fat diet. J. Agric. Food Chem., 2013, 61(7), 1493-1500.
[http://dx.doi.org/10.1021/jf304015z] [PMID: 23360447]
[20]
Zhao, C.Z.; Jiang, W.; Zhu, Y.Y.; Wang, C.Z.; Zhong, W.H.; Wu, G.; Chen, J.; Zhu, M.N.; Wu, Q.L.; Du, X.L.; Luo, Y.Y.; Li, M.; Wang, H.L.; Zhao, H.; Ma, Q.G.; Zhong, G.Y.; Wei, R.R. Highland barley Monascus purpureus Went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcoholic fatty liver disease by regulating lipid metabolism in golden hamsters. J. Ethnopharmacol., 2022, 286, 114922.
[http://dx.doi.org/10.1016/j.jep.2021.114922] [PMID: 34923087]
[21]
Wei, R.R.; He, M.H.; Sang, Z.P.; Dong, J.H.; Ma, Q.G. Structurally diverse Monascus pigments with hypolipidemic and hepatoprotective activities from highland barley Monascus. Fitoterapia, 2022, 156, 105090.
[http://dx.doi.org/10.1016/j.fitote.2021.105090] [PMID: 34838621]
[22]
Jia, H.; Fan, L.Y.; Xu, D.X.; Yuan, Y.H.; Wang, S.J.; Qin, A.H.; Cao, Y.P. The progress of the research on the preparation of Monascus pigment, microcapsule spray granulating and its physical and chemical properties. Cereal Food Ind., 2019, 26, 30-34.
[23]
Passmore, M.; Gallo, A.; Lewandowski, J.R.; Jenner, M. Molecular basis for acyl carrier protein-ketoreductase interaction in trans-acyltransferase polyketide synthases. Chem. Sci. (Camb.), 2021, 12(41), 13676-13685.
[http://dx.doi.org/10.1039/D1SC03478B] [PMID: 34760152]
[24]
Wu, H.C.; Cheng, M.J.; Wu, M.D.; Chen, J.J.; Chen, Y.L.; Chang, H.S. Three new constituents from the fungus of Monascus purpureus and their anti-inflammatory activity. Phytochem. Lett., 2013, 31, 242-248.
[http://dx.doi.org/10.1016/j.phytol.2018.12.017]
[25]
Hsu, Y.W.; Hsu, L.C.; Liang, Y.H.; Kuo, Y.H.; Pan, T.M. Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J. Agric. Food Chem., 2010, 58(14), 8211-8216.
[http://dx.doi.org/10.1021/jf100930j] [PMID: 20597545]
[26]
Hsu, Y.W.; Hsu, L.C.; Liang, Y.H.; Kuo, Y.H.; Pan, T.M. New bioactive orange pigments with yellow fluorescence from Monascus-fermented dioscorea. J. Agric. Food Chem., 2011, 59(9), 4512-4518.
[http://dx.doi.org/10.1021/jf1045987] [PMID: 21506577]
[27]
Yuliana, A.; Wibowo, M.S.; Julianti, E. Solubility and toxicity level of Monascus pigments. Trends Technol. Sci. Res, 2018, 2, 65-67.
[http://dx.doi.org/10.19080/TTSR.2018.02.555594]
[28]
Cheng, M.J.; Wu, M.D.; Chen, I.S.; Tseng, M.; Yuan, G.F. Chemical constituents from the fungus Monascus purpureus and their anti-fungal activity. Phytochem. Lett., 2011, 4, 372-376.
[http://dx.doi.org/10.1016/j.phytol.2011.08.003]
[29]
Chen, F.G.; Zhang, D.; Liu, M.; Xiong, Y.; Zhang, S.L.; Zhao, H. Content determination of lovastatin and lovastatin acid in highland barley Monascus purpureus by HPLC. China Brew, 2016, 35, 162-165.
[30]
Wei, R.R.; Ma, Q.G.; Jiang, W.; Zhong, G.Y.; Sang, Z.P. Hypolipidemic activity of monacolin derivatives from the highland barley Monascus purpureus. Chem. Nat. Compd., 2020, 56, 1072-1075.
[http://dx.doi.org/10.1007/s10600-020-03229-2]
[31]
Li, X.M.; Shen, X.H.; Duan, Z.W.; Guo, S.R. A new monacolin analogue from Xuezhikang capsule. Yao Xue Xue Bao, 2011, 46(5), 564-567.
[PMID: 21800545]
[32]
Endo, A.; Komagata, D.; Shimada, H. Monacolin M, a new inhibitor of cholesterol biosynthesis. J. Antibiot. (Tokyo), 1986, 39(12), 1670-1673.
[http://dx.doi.org/10.7164/antibiotics.39.1670] [PMID: 3818440]
[33]
Liu, M.T.; Li, J.J.; Shang, X.Y.; Li, S.; Li, L.L.; Luan, N.; Jin, Z.L. Structure elucidation and complete NMR spectral assignment of an unusual aromatic monacolin analog from Monascus purpureus-fermented rice. Magn. Reson. Chem., 2011, 49(3), 129-131.
[http://dx.doi.org/10.1002/mrc.2714] [PMID: 21322007]
[34]
Money, T.; Comer, F.W.; Webster, G.R.B.; Wright, I.G.; Scot, A.I. Pyrone studies-I: Biogenetic-type synthesis of phenolic compounds. Tetrahedron, 1967, 23, 3435-3448.
[http://dx.doi.org/10.1016/S0040-4020(01)92309-9]
[35]
Yahaya, I.; Seferoglu, N.; Seferoglu, Z. Improved one-pot synthetic conditions for synthesis of functionalized fluorescent coumarin-thiophene hybrids: Syntheses, DFT studies, photophysical and thermal properties. Tetrahedron, 2019, 75, 2143-2154.
[http://dx.doi.org/10.1016/j.tet.2019.02.034]
[36]
Hashimoto, M.; Wakana, D.; Ueda, M.; Kobayashi, D.; Goda, Y.; Fujii, I. Product identification of non-reducing polyketide synthases with C-terminus methyltransferase domain from Talaromyces stipitatus using Aspergillus oryzae heterologous expression. Bioorg. Med. Chem. Lett., 2015, 25(7), 1381-1384.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.057] [PMID: 25770780]
[37]
Herz, W.; Viswanathan, N. Constituents of Iva species. II. The structures of asperilin and ivasperin, two new sesquiterpene lactones. J. Org. Chem., 1964, 29, 1022-1026.
[http://dx.doi.org/10.1021/jo01028a009]
[38]
Walter, V.; Ilda, K.S.; Richard, C.R.; Werner, H. Granilin and ivasperin from Ambrosia polystachya. 13C-NMR spectra of hydroxylated isoalantones. Phytochemistry, 1976, 15, 1531-1532.
[http://dx.doi.org/10.1016/S0031-9422(00)88931-1]
[39]
Hu, J.P.; Yan, O.; Qi, S.S.; Zhao, H. The effect of fermentation conditions on the production of Monacolin K and β-glucan of hullesbarley. Monascus. Shipin Yu Fajiao Gongye, 2017, 43, 134-139.
[40]
Tan, Y.L. Study on chemical composition and quality standard of highland barley Monascus.Master's Thesis, Chengdu University Trading Chinease Medicine, 2015, 8-11.
[41]
Zhang, R.X.; Li, Q.; Zhu, L.J.; Liu, C.F.; Li, Y.X. Study on the γ-aminobutyric acid (GABA) in highland barley Monascus beer. J. Food Sci. Biotechnol., 2018, 37, 1148-1152.
[42]
Wang, B.Y. Studies on the processing technology and quality of highland barley Monascus purple sweet potato wine. Master's Thesis Sichuan Agricultural University, 2017, 10-11.
[43]
Luo, H.L.; Qian, Z. The effect of highland barley Monascus purpureus Went on blood lipids in patients with dyslipidemia. Chin’s Naturopathy, 2020, 28, 57-59.
[44]
Lonardo, A.; Byrne, C.D.; Caldwell, S.H.; Cortez-Pinto, H.; Targher, G. Global epidemiology of nonalcoholic fatty liver disease: Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016, 64(4), 1388-1389.
[http://dx.doi.org/10.1002/hep.28584] [PMID: 27038241]
[45]
Parikh, N.D.; Marrero, W.J.; Wang, J.; Steuer, J.; Tapper, E.B.; Konerman, M.; Singal, A.G.; Hutton, D.W.; Byon, E.; Lavieri, M.S. Projected increase in obesity and non-alcoholic-steatohepatitis-related liver transplantation waitlist additions in the United States. Hepatology, 2019, 70(2), 487-495.
[http://dx.doi.org/10.1002/hep.29473] [PMID: 28833326]
[46]
Jorgensen, R.A. Nonalcoholic fatty liver disease. Gastroenterol. Nurs., 2003, 26(4), 150-154.
[http://dx.doi.org/10.1097/00001610-200307000-00003] [PMID: 12920429]
[47]
Zhu, J.Z.; Dai, Y.N.; Wang, Y.M.; Zhou, Q.Y.; Yu, C.H.; Li, Y.M. Prevalence of nonalcoholic fatty liver disease and economy. Dig. Dis. Sci., 2015, 60(11), 3194-3202.
[http://dx.doi.org/10.1007/s10620-015-3728-3] [PMID: 26017679]
[48]
Wu, Y.; Zheng, Q.; Zou, B.; Yeo, Y.H.; Li, X.; Li, J.; Xie, X.; Feng, Y.; Stave, C.D.; Zhu, Q.; Cheung, R.; Nguyen, M.H. The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: A meta-analysis. Hepatol. Int., 2020, 14(2), 259-269.
[http://dx.doi.org/10.1007/s12072-020-10023-3] [PMID: 32130675]
[49]
Ross, A.B.; Godin, J.P.; Minehira, K.; Kirwan, J.P. Increasing whole grain intake as part of prevention and treatment of nonalcoholic fatty liver disease. Int. J. Endocrinol., 2013, 2013, 585876.
[http://dx.doi.org/10.1155/2013/585876] [PMID: 23762052]
[50]
Liu, H.; Chen, T.; Xie, X.; Wang, X.; Luo, Y.; Xu, N.; Sa, Z.; Zhang, M.; Chen, Z.; Hu, X.; Li, J. Hepatic lipidomics analysis reveals the ameliorative effects of highland barley β-glucan on western diet-induced nonalcoholic fatty liver disease mice. J. Agric. Food Chem., 2021, 69(32), 9287-9298.
[http://dx.doi.org/10.1021/acs.jafc.1c03379] [PMID: 34347479]
[51]
Choi, J.S.; Kim, H.; Jung, M.H.; Hong, S.; Song, J. Consumption of barley β-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol. Nutr. Food Res., 2010, 54(7), 1004-1013.
[http://dx.doi.org/10.1002/mnfr.200900127] [PMID: 20112296]
[52]
Xu, K.; Jiang, J.S.; Feng, Z.M.; Yang, Y.N.; Li, L.; Zang, C.X.; Zhang, P.C. Bioactive sesquiterpenoid and polyacetylene glycosides from Atractylodes lancea. J. Nat. Prod., 2016, 79(6), 1567-1575.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00066] [PMID: 27228227]