Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive strain whose resistance against existing antibiotics is a significant concern for researchers across the globe. Gram-positive infections, particularly methicillin-resistant Staphylococcus aureus spreading among S. aureus isolates, increased exponentially from 29% in 2009 to 47% in 2014. Literature reviews revealed that about 13-74% of S. aureus strains are Methicillin-resistant worldwide.
Objective: In this article, we have summarized the mechanism of bacterium resistance, molecular targets to treat MRSA, and the activity of reported pyridine and pyrimidine derivatives against methicillin-resistant Staphylococcus aureus.
Results: The data collected for this study from online peer-reviewed research articles and the Molecular-docking study of reported anti-MRSA agents performed using the Maestro Module of Schrodinger software. In silico studies showed that some pyridine derivatives have better binding interactions than standard anti-MRSA agents.
Conclusion: Molecular docking studies of reported pyridine derivatives resulted in excellent hits for developing novel anti- MRSA agents. Overall, this study will be of immense importance for researchers designing and developing target-based anti-MRSA agents.
Keywords: Staphylococcus aureus, MRSA, Resistance, Pyridine, Pyrimidine, and Molecular docking