Diagnostic Role and Methods of Detection of Cardiac Troponins: An Opinion from Historical and Current Points of View

Article ID: e100622205865 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The laboratory methods for the determination of cardiac troponins (cTnI, cTnT) used nowadays are extremely diverse, which has a significant impact on our understanding of the biology and diagnostic the value of cTnI and cTnT as biomarkers. The main classification of methods for the determination of cTnI and cTnT is based on the sensitivity of the immunoassay. Low- and moderately sensitive detection methods are known to be relatively less sensitive, which leads to a relatively late confirmation of cardiomyocyte death. Due to the new highly sensitive methods used to determine cTnI and cTnT, designated as a highly or ultrasensitive immunoassays (hs-TnT and hs-TnT), we received new, revised data about the biology of cardiac troponin molecules. In particular, it became clear that they can be considered products of normal myocardium metabolism since hs-TnT and hs-TnT are detected in almost all healthy patients. It also turned out that hs-TnT and hs-TnT differ by gender (in men, troponin concentration in the blood is higher than in women), age (in elderly patients, the levels of troponins are higher than in young ones) and circadian cycles (morning concentrations of troponins are higher than in the evening). A large variety of methods for determining cTnI and cTnT, differing in their diagnostic capabilities, creates the need for tests to perform an unbiased assessment of the analytical characteristics of each method. This review focuses on the most pressing issues related to the discussion of the biological characteristics of cardiac troponin and the analytical characteristics of troponin immunoassays from a historical and contemporary point of view.

Keywords: Cardiac troponins, Troponin T, troponin I, biochemistry, analytical properties, high-sensitive immunological tests, 99th percentile, acute myocardial infarction, diagnosis.

Graphical Abstract

[1]
Boussouf SE, Geeves MA. Tropomyosin and troponin cooperativity on the thin filament. Adv Exp Med Biol 2007; 592: 99-109.
[http://dx.doi.org/10.1007/978-4-431-38453-3_10] [PMID: 17278359]
[2]
Maeda Y, Nitanai Y, Oda T. From the crystal structure of troponin to the mechanism of calcium regulation of muscle contraction. Adv Exp Med Biol 2007; 592: 37-46.
[http://dx.doi.org/10.1007/978-4-431-38453-3_5] [PMID: 17278354]
[3]
Chaulin AM. Biology of cardiac troponins: Emphasis on metabolism. Biology (Basel) 2022; 11(3): 429.
[http://dx.doi.org/10.3390/biology11030429]
[4]
Vikhorev PG, Vikhoreva NN. Cardiomyopathies and related changes in contractility of human heart muscle. Int J Mol Sci 2018; 19(8): 2234.
[http://dx.doi.org/10.3390/ijms19082234]
[5]
Cheng Y, Regnier M. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Arch Biochem Biophys 2016; 601: 11-21.
[http://dx.doi.org/10.1016/j.abb.2016.02.004] [PMID: 26851561]
[6]
Pasquale F, Syrris P, Kaski JP, Mogensen J, McKenna WJ, Elliott P. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ Cardiovasc Genet 2012; 5(1): 10-7.
[http://dx.doi.org/10.1161/CIRCGENETICS.111.959973] [PMID: 22144547]
[7]
Messner B, Baum H, Fischer P, Quasthoff S, Neumeier D. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am J Clin Pathol 2000; 114(4): 544-9.
[http://dx.doi.org/10.1309/8KCL-UQRF-6EEL-36XK] [PMID: 11026100]
[8]
Ricchiuti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem 1999; 45(12): 2129-35.
[http://dx.doi.org/10.1093/clinchem/45.12.2129] [PMID: 10585344]
[9]
Wens SCA, Schaaf GJ, Michels M, et al. Elevated plasma cardiac troponin T levels caused by skeletal muscle damage in Pompe disease. Circ Cardiovasc Genet 2016; 9(1): 6-13.
[http://dx.doi.org/10.1161/CIRCGENETICS.115.001322] [PMID: 26787432]
[10]
Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated cardiac troponin T in patients with skeletal myopathies. J Am Coll Cardiol 2018; 71(14): 1540-9.
[http://dx.doi.org/10.1016/j.jacc.2018.01.070] [PMID: 29622161]
[11]
Rusakov DY, Vologdina NN, Tulayeva ON. The development of striated cardiac muscle tissue in the walls of the caval and pulmonary veins. Journal of Anatomy and Histopathology 2015; 4(3): 105-5.
[12]
Chaulin AM, Duplyakov DV. Analytical review of modern information on the physiological and pathochemical mechanisms of the release of cardiospecific proteins from muscle tissue, methodology and technologies of their research, interpretation of the results. Laboratory Diagnostics. Eastern Europe 2022; 11(1): 78-97. [In Russian
[http://dx.doi.org/10.34883/PI.2022.11.1.018]
[13]
Dhoot GK, Gell PG, Perry SV. The localization of the different forms of troponin I in skeletal and cardiac muscle cells. Exp Cell Res 1978; 117(2): 357-70.
[http://dx.doi.org/10.1016/0014-4827(78)90149-0] [PMID: 152712]
[14]
Filatov VL, Katruha AG, Bulargina TV, Gusev NB. Troponin: Structure, properties and mechanism of functioning. Biochemistry 1999. [https://journals.belozersky.msu.ru/biochemistry/paper/1999/09/1155]
[15]
Chaulin AM. Features of the metabolisms of cardiac troponin molecules—Part 1: The main stages of metabolism, release stage. Curr Issues Mol Biol 2022; 44(3): 1376-94.
[http://dx.doi.org/10.3390/cimb44030092]
[16]
Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 2018; 72(18): 2231-64.
[http://dx.doi.org/10.1016/j.jacc.2018.08.1038] [PMID: 30153967]
[17]
Chaulin AM, Duplyakov DV. Cardiac troponins: Current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa 2021; 63(4): 486-93.
[http://dx.doi.org/10.33678/cor.2021.041]
[18]
Chaulin AM, Karslyan LS, Duplyakov DV. Non-coronarogenic causes of increased cardiac troponins in clinical practice. 2019; 4(3): 105-5.
[http://dx.doi.org/10.17816/clinpract16309]
[19]
Chaulin AM, Duplyakov DV. MicroRNAs in atrial fibrillation: Pathophysiological aspects and potential biomarkers. Int J Biom 2020; 10(3): 198-205.http://ijbm.org/v10i3_4.htm
[http://dx.doi.org/10.21103/Article10(3)_RA3]
[20]
Chaulin AM, Abashina OE, Duplyakov DV. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russian Open Med J 2020.https://romj.org/2020-0305
[http://dx.doi.org/10.15275/rusomj.2020.0305]
[21]
Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases 2020; 9(3): 69-80.
[http://dx.doi.org/10.17802/2306-1278-2020-9-3-69-80]
[22]
Chaulin AM. Elevation mechanisms and diagnostic consideration of cardiac troponins under conditions not associated with myocardial infarction. Part 1. Life (Basel) 2021; 11(9): 914.
[http://dx.doi.org/10.3390/life11090914] [PMID: 34575063]
[23]
Wilhelm J, Hettwer S, Schuermann M, et al. Elevated troponin in septic patients in the emergency department: Frequency, causes, and prognostic implications. Clin Res Cardiol 2014; 103(7): 561-7.
[http://dx.doi.org/10.1007/s00392-014-0684-4] [PMID: 24535379]
[24]
Chaulin AM, Duplyakov DV. Cardioprotective strategies for doxorubicin-induced cardiotoxicity: Present and future. Ration Pharmacother Cardiol 2022; 18(1): 103-12.
[http://dx.doi.org/10.20996/1819-6446-2022-02-11]
[25]
Dubin RF, Li Y, He J, et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: A cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol 2013; 14(1): 229.
[http://dx.doi.org/10.1186/1471-2369-14-229] [PMID: 24148285]
[26]
Zümrütdal A, Bakinen O, Uçan H, Atalay HV, Bodur H. Relationship between uremic myopathy and false-positive cardiac troponin T test. Nephron J 2000; 86(4): 522-3.
[http://dx.doi.org/10.1159/000045852] [PMID: 11124612]
[27]
Chaulin AM. Diagnostic value of highly sensitive cardiac troponins and mechanisms of their increase in serum and urine in arterial hypertension. Riv Ital Med Lab 2021; 17(2): 99-107.
[http://dx.doi.org/10.23736/S1825-859X.21.00107-9]
[28]
Klinkenberg LJJ, Wildi K, van der Linden N, et al. Diurnal rhythm of cardiac troponin: Consequences for the diagnosis of acute myocardial infarction. Clin Chem 2016; 62(12): 1602-11.
[http://dx.doi.org/10.1373/clinchem.2016.257485] [PMID: 27707754]
[29]
Chaulin AM, Duplyakov DV. Comorbidity in chronic obstructive pulmonary disease and cardiovascular disease. Cardiovasc Therapy and Prevention 2021; 20(3): 2539.
[http://dx.doi.org/10.15829/1728-8800-2021-2539]
[30]
Apple FS, Jaffe AS, Collinson P, et al. IFCC educational materials on selected analytical and clinical applications of high sensitivity cardiac troponin assays. Clin Biochem 2015; 48(4-5): 201-3.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.08.021] [PMID: 25204966]
[31]
Bohn MK, Higgins V, Kavsak P, Hoffman B, Adeli K. High-Sensitivity generation 5 cardiac troponin t sex- and age-specific 99th percentiles in the CALIPER cohort of healthy children and adolescents. Clin Chem 2019; 65(4): 589-91.
[http://dx.doi.org/10.1373/clinchem.2018.299156] [PMID: 30737206]
[32]
Eggers KM, Lindahl B. High-Sensitivity cardiac troponin t, age, and outcome in non-st-elevation myocardial infarction. Clin Chem 2021; 67(12): 1732-4.
[http://dx.doi.org/10.1093/clinchem/hvab214] [PMID: 34718474]
[33]
Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russian Journal of Cardiology 2020; 25: 4061.
[http://dx.doi.org/10.15829/1560-4071-2020-4061]
[34]
Shah AS, Griffiths M, Lee KK, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: Prospective cohort study. BMJ 2015; 350: g7873.
[http://dx.doi.org/10.1136/bmj.g7873] [PMID: 25609052]
[35]
Trupp RJ, Albert G, Ziegler A. Sex-specific 99th percentiles derived from the AACC universal sample bank for the roche gen 5 cTnT assay: Comorbidities and statistical methods influence derivation of reference limits. Clin Biochem 2018; 52: 173.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.11.003] [PMID: 29113784]
[36]
van der Linden N, Cornelis T, Klinkenberg LJJ, et al. Strong diurnal rhythm of troponin T, but not troponin I, in a patient with renal dysfunction. Int J Cardiol 2016; 221: 287-8.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.268] [PMID: 27404692]
[37]
Chaulin AM, Duplyakov DV. Mechanisms of increase and diagnostic role of highly sensitive troponins in arterial hypertension. Ann Cardiol Angeiol (Paris) 2021; 71(2): 99-106.
[http://dx.doi.org/10.1016/j.ancard.2021.09.004]
[38]
Chaulin AM. Elevation mechanisms and diagnostic consideration of cardiac troponins under conditions not associated with myocardial infarction. Part 2. Life (Basel) 2021; 11: 11-1175.
[http://dx.doi.org/10.3390/life11111175]
[39]
Chaulin AM, Duplyakov DV. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae 2021; 17(3): 79-84.
[http://dx.doi.org/10.22514/sv.2021.050]
[40]
Chaulin AM, Grigorieva JV, Suvorova GN, Duplyakov DV. Experimental modeling of hypothyroidism: Principles, methods, several advanced research directions in cardiology. Russian Open Medical Journal 2021; 10(3): e0311.
[http://dx.doi.org/10.15275/rusomj.2021.0311]
[41]
Pervan P, Svaguša T. Prkačin I, Savuk A, Bakos M, Perkov S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae. J Intens Care Signa Vitae 2017; 13 (Suppl. 3): 62-4.
[http://dx.doi.org/10.22514/SV133.062017.13]
[42]
Chaulin AM, Karslyan LS, Grigoriyeva EV, Nurbaltaeva DA, Duplyakov DV. Clinical and diagnostic value of cardiac markers in human biological fluids. 2019; 59(11): 66-75.
[http://dx.doi.org/10.18087/cardio.2019.11.n414]
[43]
Mirzaii-Dizgah I, Riahi E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis 2013; 19(2): 180-4.
[http://dx.doi.org/10.1111/j.1601-0825.2012.01968.x] [PMID: 22834943]
[44]
Chaulin AM, Duplyakova PD, Bikbaeva GR, Tukhbatova AA, Grigorieva EV, Duplyakov DV. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russian Journal of Cardiology 2020; 25(12): 3814.
[http://dx.doi.org/10.15829/1560-4071-2020-3814]
[45]
Chaulin A. Clinical and diagnostic value of highly sensitive cardiac troponins in arterial hypertension. Vasc Health Risk Manag 2021; 17: 431-43.
[http://dx.doi.org/10.2147/VHRM.S315376] [PMID: 34366667]
[46]
Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J 1987; 113(6): 1333-44.
[http://dx.doi.org/10.1016/0002-8703(87)90645-4] [PMID: 3591601]
[47]
Katus HA, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem 1992; 38(3): 386-93.https://pubmed.ncbi.nlm.nih.gov/1547556/
[http://dx.doi.org/10.1093/clinchem/38.3.386] [PMID: 1547556]
[48]
Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined-a consensus document of the joint european society of Cardiology/American college of cardiology committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36(3): 959-69.
[http://dx.doi.org/10.1016/S0735-1097(00)00804-4] [PMID: 10987628]
[49]
Hermsen D, Apple F, Garcia-Beltràn L, et al. Results from a multicenter evaluation of the 4th generation Elecsys Troponin T assay. Clin Lab 2007; 53(1-2): 1-9. [https://pubmed.ncbi.nlm.nih.gov/17323819/]
[PMID: 17323819]
[50]
Reichlin T, Hochholzer W, Stelzig C, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 2009; 54(1): 60-8.
[http://dx.doi.org/10.1016/j.jacc.2009.01.076] [PMID: 19555842]
[51]
Mingels A, Jacobs L, Michielsen E, Swaanenburg J, Wodzig W, van Dieijen-Visser M. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem 2009; 55(1): 101-8.
[http://dx.doi.org/10.1373/clinchem.2008.106427] [PMID: 18988757]
[52]
Chaulin AM, Duplyakov DV. Environmental factors and cardiovascular diseases. Hygiene and Sanitation 2021; 100(3): 223-8.
[http://dx.doi.org/10.47470/0016-9900-2021-100-3-223-228]
[53]
Keller T, Zeller T, Ojeda F, et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 2011; 306(24): 2684-93.
[http://dx.doi.org/10.1001/jama.2011.1896] [PMID: 22203537]
[54]
Adams JE III, Bodor GS, Dávila-Román VG, et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 1993; 88(1): 101-6.
[http://dx.doi.org/10.1161/01.CIR.88.1.101] [PMID: 8319322]
[55]
Apple FS. Counterpoint: Standardization of cardiac troponin I assays will not occur in my lifetime. Clin Chem 2012; 58(1): 169-71.
[http://dx.doi.org/10.1373/clinchem.2011.166165] [PMID: 21940657]
[56]
International federation of clinical chemistry and laboratory medicine: Task force on clinical applications of cardiac bio-markers. Analytical Characteristics of Commercial Cardiac Troponin I and T Assays Declared by the Manufacturer. http://www.ifcc.org/media/477275/ifccenewsmay2018.pdf
[57]
Anand A, Shah ASV, Beshiri A, Jaffe AS, Mills NL. Global adoption of high-sensitivity cardiac troponins and the universal definition of myocardial infarction. Clin Chem 2019; 65(3): 484-9.
[http://dx.doi.org/10.1373/clinchem.2018.298059] [PMID: 30626631]
[58]
Chaulin AM. Phosphorylation and fragmentation of the cardiac Troponin T: Mechanisms, role in pathophysiology and laboratory diagnosis. Int J Biom 2021; 11(3): 250-9.
[http://dx.doi.org/10.21103/Article11(3)_RA2]
[59]
Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 2008; S49-52.
[60]
Apple FS. A new season for cardiac troponin assays: It’s time to keep a scorecard. Clin Chem 2009; 55(7): 1303-6.
[http://dx.doi.org/10.1373/clinchem.2009.128363] [PMID: 19478023]
[61]
Collinson PO, Heung YM, Gaze D, et al. Influence of population selection on the 99th percentile reference value for cardiac troponin assays. Clin Chem 2012; 58(1): 219-25.
[http://dx.doi.org/10.1373/clinchem.2011.171082] [PMID: 22100808]
[62]
Eggers KM, Apple FS, Lind L, Lindahl B. The applied statistical approach highly influences the 99th percentile of cardiac troponin I. Clin Biochem 2016; 49(15): 1109-12.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.08.012] [PMID: 27556285]
[63]
Chaulin AM, Abashina OE, Duplyakov DV. High-sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovascular Therapy and Prevention 2021; 20(2): 2590.
[http://dx.doi.org/10.15829/1728-8800-2021-2590]
[64]
Cervellin G, Mattiuzzi C, Bovo C, Lippi G. Diagnostic algorithms for acute coronary syndrome-is one better than another? Ann Transl Med 2016; 4(10): 193.
[http://dx.doi.org/10.21037/atm.2016.05.16] [PMID: 27294089]
[65]
Mullova IS, Chaulin AM, Svechkov AI, Pavlova TV, Limareva LV, Duplyakov DV. Experimental models of pulmonary embolism. Russian Journal of Cardiology 2022; 27(1S): 4887.
[http://dx.doi.org/10.15829/1560-4071-2022-4887]
[66]
Sörensen NA, Neumann JT, Ojeda F, et al. Challenging the 99th percentile: A lower troponin cutoff leads to low mortality of chest pain patients. Int J Cardiol 2017; 232: 289-93.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.167] [PMID: 28087181]
[67]
Lippi G, Bonfanti L, Dipalo M, Aloe R, Cervellin G. Clinical, organizational and economic analysis of high-sensitivity cardiac troponin testing in the emergency department. Ann Res Hosp 2017; 1: 44.
[http://dx.doi.org/10.21037/arh.2017.09.02]
[68]
Ferencik M, Mayrhofer T, Lu MT, et al. High-sensitivity cardiac troponin I as a gatekeeper for coronary computed tomography angiography and stress testing in patients with acute chest pain. Clin Chem 2017; 63(11): 1724-33.
[http://dx.doi.org/10.1373/clinchem.2017.275552] [PMID: 28923845]
[69]
Jaeger C, Wildi K, Twerenbold R, et al. One-hour rule-in and ruleout of acute myocardial infarction using high-sensitivity cardiac troponin I. Am Heart J 2016; 171(1): 92-102.e1, 5.
[http://dx.doi.org/10.1016/j.ahj.2015.07.022] [PMID: 26699605]
[70]
Chaulin A. Current characteristics of methods for determining cardiac troponins and their diagnostic value: A mini-review. Rev Fac Cien Med Univ Nac Cordoba 2021; 78(4): 415-22.
[http://dx.doi.org/10.31053/1853.0605.v78.n4.32988]
[71]
Rubini Gimenez M, Twerenbold R, Jaeger C, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med 2015; 128(8): 861-870.e4.
[http://dx.doi.org/10.1016/j.amjmed.2015.01.046] [PMID: 25840034]
[72]
Chaulin AM. Prognostic significance and pathophysiological mechanisms of increasing the levels of cardiospecific troponins in biological fluids in arterial hypertension (literature review). Ann Russian Acad Med Sci 2022; 77(1): 43-52.
[http://dx.doi.org/10.15690/vramn1587]
[73]
Reichlin T, Schindler C, Drexler B, et al. One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch Intern Med 2012; 172(16): 1211-8.
[http://dx.doi.org/10.1001/archinternmed.2012.3698] [PMID: 22892889]
[74]
Rubini Giménez M, Hoeller R, Reichlin T, et al. Rapid rule out of acute myocardial infarction using undetectable levels of high-sensitivity cardiac troponin. Int J Cardiol 2013; 168(4): 3896-901.
[http://dx.doi.org/10.1016/j.ijcard.2013.06.049] [PMID: 23876467]
[75]
Chaulin AM. Cardiac troponins metabolism: From biochemical mechanisms to clinical practice (literature review). Int J Mol Sci 2021; 22(20): 10928.
[http://dx.doi.org/10.3390/ijms222010928] [PMID: 34681585]
[76]
Chaulin AM. Mechanisms for cardiac troponin increase in arterial hypertension. Int J Biom 2021; 11(4): 397-402.
[http://dx.doi.org/10.21103/Article11(4)_RA2]
[77]
Garcia-Osuna A, Gaze D, Grau-Agramunt M, et al. Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: Analytical validation and biological features. Clin Chim Acta 2018; 486: 224-31.
[http://dx.doi.org/10.1016/j.cca.2018.08.015] [PMID: 30110608]
[78]
Chaulin AM, Duplyakov DV. Increased natriuretic peptides not associated with heart failure. Russian J Cardiol 2020; 25(4S): 4140.
[http://dx.doi.org/10.15829/1560-4071-2020-4140]
[79]
Chaulin AM, Duplyakov DV. High-sensitivity cardiac troponins: Circadian rhythms. Cardiovas Therap Prevent 2021; 20(1): 2639.
[http://dx.doi.org/10.15829/1728-8800-2021-2639]
[80]
Chaulin AM. Cardiac troponins: Current information on the main analytical characteristics of determination methods and new diagnostic possibilities. edwave 2021; 21(11): e8498.
[http://dx.doi.org/10.5867/medwave.2021.11.002132]