Factors and Mechanisms Affecting the Secretion of Recombinant Protein in CHO Cells

Page: [391 - 400] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The market demand for recombinant therapeutic proteins (RTPs) has promoted the development of various protein expression host and bioprocessing technologies. Since mammalian cells have the unique advantage of being able to direct the correct folding of proteins and provide post-translational processing such as complex glycosylation, the RTPs produced by them currently account for approximately 80% of the approved marketed RTPs. Among them, Chinese hamster ovary (CHO) cells are currently the preferred host cells for the production of RTPs. Production of RTPs in CHO cells involves the synthesis, processing, transport, and secretion of proteins. The secretion process of proteins is one of the key steps, which greatly limits the yield and quality of RTPs. Here, we review the recombinant protein secretion process of CHO cells and its influencing factors, and further discuss the optimization strategy for recombinant protein secretion and expression in CHO cells.

Keywords: CHO cells, RTPs, protein secretion, secretory bottleneck, mammalian cell, glycosylation.

Graphical Abstract

[1]
Rudge, S.R.; Ladisch, M.R. Industrial challenges of recombinant proteins. Adv. Biochem. Eng. Biotechnol., 2020, 171, 1-22.
[2]
Wells, E.; Robinson, A.S. Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnol. J., 2017, 12(1), 1600105.
[http://dx.doi.org/10.1002/biot.201600105]
[3]
Gutierrez-Gonzalez, M.; Latorre, Y.; Zuniga, R.; Aguillon, J.C.; Molina, M.C.; Altamirano, C. Transcription factor engineering in CHO cells for recombinant protein production. Crit. Rev. Biotechnol., 2019, 39(5), 665-679.
[http://dx.doi.org/10.1080/07388551.2019.1605496]
[4]
Kim, J.Y.; Kim, Y.G.; Lee, G.M. CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Appl. Microbiol. Biotechnol., 2012, 93(3), 917-930.
[http://dx.doi.org/10.1007/s00253-011-3758-5]
[5]
Hiller, G.W.; Ovalle, A.M.; Gagnon, M.P.; Curran, M.L.; Wang, W. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnol. Bioeng., 2017, 114(7), 1438-1447.
[http://dx.doi.org/10.1002/bit.26259]
[6]
Wang, W.; Zheng, W.; Hu, F.; He, X.; Wu, D.; Zhang, W.; Liu, H.; Ma, X. Enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9. ACS Synth. Biol., 2018, 7(5), 1259-1268.
[http://dx.doi.org/10.1021/acssynbio.7b00375]
[7]
Zhou, Y.; Raju, R.; Alves, C.; Gilbert, A. Debottlenecking protein secretion and reducing protein aggregation in the cellular host. Curr. Opin. Biotechnol., 2018, 53, 151-157.
[http://dx.doi.org/10.1016/j.copbio.2018.01.007]
[8]
Owji, H.; Nezafat, N.; Negahdaripour, M.; Hajiebrahimi, A.; Ghasemi, Y. A comprehensive review of signal peptides: Structure, roles, and applications. Eur. J. Cell Biol., 2018, 97(6), 422-441.
[http://dx.doi.org/10.1016/j.ejcb.2018.06.003]
[9]
Hiss, J.A.; Schneider, G. Architecture, function and prediction of long signal peptides. Brief. Bioinform., 2009, 10(5), 569-578.
[http://dx.doi.org/10.1093/bib/bbp030]
[10]
Walter, P.; Blobel, G. Translocation of proteins across the endoplasmic reticulum III. Signal Recognition Protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol., 1981, 91(2 Pt 1), 557-561.
[http://dx.doi.org/10.1083/jcb.91.2.557]
[11]
Lakkaraju, A.K.; Mary, C.; Scherrer, A.; Johnson, A.E.; Strub, K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell, 2008, 133(3), 440-451.
[http://dx.doi.org/10.1016/j.cell.2008.02.049]
[12]
Schwarz, D.S.; Blower, M.D. The endoplasmic reticulum: Structure, function and response to cellular signaling. Cell. Mol. Life Sci., 2016, 73(1), 79-94.
[http://dx.doi.org/10.1007/s00018-015-2052-6]
[13]
Bethune, J.; Wieland, F.T. Assembly of COPI and COPII vesicular coat proteins on membranes. Annu. Rev. Biophys., 2018, 47(1), 63-83.
[http://dx.doi.org/10.1146/annurev-biophys-070317-033259]
[14]
Cottam, N.P.; Ungar, D. Retrograde vesicle transport in the golgi. Protoplasma, 2012, 249(4), 943-955.
[http://dx.doi.org/10.1007/s00709-011-0361-7]
[15]
Kurokawa, K.; Nakano, A. The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus. J. Biochem., 2019, 165(2), 109-114.
[http://dx.doi.org/10.1093/jb/mvy080]
[16]
Lowe, M. Structural organization of the golgi apparatus. Curr. Opin. Cell Biol., 2011, 23(1), 85-93.
[http://dx.doi.org/10.1016/j.ceb.2010.10.004]
[17]
Zhang, X.; Wang, Y. Glycosylation quality control by the golgi structure. J. Mol. Biol., 2016, 428(16), 3183-3193.
[http://dx.doi.org/10.1016/j.jmb.2016.02.030]
[18]
Goth, C.K.; Vakhrushev, S.Y.; Joshi, H.J.; Clausen, H.; Schjoldager, K.T. Fine-tuning limited proteolysis: A major role for regulated site-specific o-glycosylation. Trends Biochem. Sci., 2018, 43(4), 269-284.
[http://dx.doi.org/10.1016/j.tibs.2018.02.005]
[19]
Sun, Z.; Brodsky, J.L. Protein quality control in the secretory pathway. J. Cell Biol., 2019, 218(10), 3171-3187.
[http://dx.doi.org/10.1083/jcb.201906047]
[20]
Reinhart, D.; Sommeregger, W.; Debreczeny, M.; Gludovacz, E.; Kunert, R. In search of expression bottlenecks in recombinant CHO cell lines--a case study. Appl. Microbiol. Biotechnol., 2014, 98(13), 5959-5965.
[http://dx.doi.org/10.1007/s00253-014-5584-z]
[21]
Berger, A.; Le Fourn, V.; Masternak, J.; Regamey, A.; Bodenmann, I.; Girod, P.A.; Mermod, N. Overexpression of transcription factor Foxa1 and target genes remediate therapeutic protein production bottlenecks in Chinese hamster ovary cells. Biotechnol. Bioeng., 2020, 117(4), 1101-1116.
[http://dx.doi.org/10.1002/bit.27274]
[22]
Panda, A.K.; Nandi, S.K.; Chakraborty, A.; Nagaraj, R.H.; Biswas, A. Differential role of arginine mutations on the structure and functions of alpha-crystallin. Biochim. Biophys. Acta, Gen. Subj., 2016, 1860(1)(1 Pt B), 199-210.
[http://dx.doi.org/10.1016/j.bbagen.2015.06.004]
[23]
Guo, D.; Gao, A.; Michels, D.A.; Feeney, L.; Eng, M.; Chan, B.; Laird, M.W.; Zhang, B.; Yu, X.C.; Joly, J.; Snedecor, B.; Shen, A. Mechanisms of unintended amino acid sequence changes in recombinant monoclonal antibodies expressed in Chinese hamster ovary (CHO) cells. Biotechnol. Bioeng., 2010, 107(1), 163-171.
[http://dx.doi.org/10.1002/bit.22780]
[24]
Liu, Y. A code within the genetic code: codon usage regulates cotranslational protein folding. Cell Commun. Signal., 2020, 18(1), 145.
[http://dx.doi.org/10.1186/s12964-020-00642-6]
[25]
Welch, M.; Govindarajan, S.; Ness, J.E.; Villalobos, A.; Gurney, A.; Minshull, J.; Gustafsson, C. Design parameters to control synthetic gene expression in Escherichia coli. PLoS One, 2009, 4(9), e7002.
[http://dx.doi.org/10.1371/journal.pone.0007002]
[26]
Attallah, C.; Etcheverrigaray, M.; Kratje, R.; Oggero, M. A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species. Protein Expr. Purif., 2017, 132, 27-33.
[http://dx.doi.org/10.1016/j.pep.2017.01.003]
[27]
Duffy, J.; Patham, B.; Mensa-Wilmot, K. Discovery of functional motifs in h-regions of trypanosome signal sequences. Biochem. J., 2010, 426(2), 135-145.
[http://dx.doi.org/10.1042/BJ20091277]
[28]
Geukens, N.; Frederix, F.; Reekmans, G.; Lammertyn, E.; Van Mellaert, L.; Dehaen, W.; Maes, G.; Anne, J. Analysis of type I signal peptidase affinity and specificity for preprotein substrates. Biochem. Biophys. Res. Commun., 2004, 314(2), 459-467.
[http://dx.doi.org/10.1016/j.bbrc.2003.12.122]
[29]
Kober, L.; Zehe, C.; Bode, J. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol. Bioeng., 2013, 110(4), 1164-1173.
[http://dx.doi.org/10.1002/bit.24776]
[30]
Zhou, Q.; Qiu, H. The mechanistic impact of n-glycosylation on stability, pharmacokinetics, and immunogenicity of therapeutic proteins. J. Pharm. Sci., 2019, 108(4), 1366-1377.
[http://dx.doi.org/10.1016/j.xphs.2018.11.029]
[31]
Fu, J.; Gao, J.; Liang, Z.; Yang, D. PDI-regulated disulfide bond formation in protein folding and biomolecular assembly. Molecules, 2020, 26(1), 171.
[http://dx.doi.org/10.3390/molecules26010171]
[32]
Mathias, S.; Wippermann, A.; Raab, N.; Zeh, N.; Handrick, R.; Gorr, I.; Schulz, P.; Fischer, S.; Gamer, M.; Otte, K. Unraveling what makes a monoclonal antibody difficult-to-express: From intracellular accumulation to incomplete folding and degradation via ERAD. Biotechnol. Bioeng., 2020, 117(1), 5-16.
[http://dx.doi.org/10.1002/bit.27196]
[33]
Hussain, H.; Maldonado-Agurto, R.; Dickson, A.J. The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnol. Lett., 2014, 36(8), 1581-1593.
[http://dx.doi.org/10.1007/s10529-014-1537-y]
[34]
Pecoraro, A.; Pagano, M.; Russo, G.; Russo, A. Role of autophagy in cancer cell response to nucleolar and endoplasmic reticulum stress. Int. J. Mol. Sci., 2020, 21(19), 7334.
[http://dx.doi.org/10.3390/ijms21197334]
[35]
Khan, N.Z.; Lindquist, E.; Alezzawi, M.; Aronsson, H. Understanding plastid vesicle transport - Could it provide benefit for human medicine? Mini Rev. Med. Chem., 2017, 17(13), 1128-1139.
[http://dx.doi.org/10.2174/1389557516666160906102221]
[36]
Wickner, W.; Rizo, J. A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol. Biol. Cell, 2017, 28(6), 707-711.
[http://dx.doi.org/10.1091/mbc.e16-07-0517]
[37]
Peng, R.W.; Fussenegger, M. Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells. Biotechnol. Bioeng., 2009, 102(4), 1170-1181.
[http://dx.doi.org/10.1002/bit.22141]
[38]
Peng, R.W.; Abellan, E.; Fussenegger, M. Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol. Bioeng., 2011, 108(3), 611-620.
[http://dx.doi.org/10.1002/bit.22986]
[39]
Zhang, W.; Liu, X.; Tang, H.; Zhang, X.; Zhou, Y.; Fan, L.; Wang, H.; Tan, W.S.; Zhao, L. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl. Microbiol. Biotechnol., 2020, 104(16), 6953-6966.
[http://dx.doi.org/10.1007/s00253-020-10744-3]
[40]
Vergara, M.; Becerra, S.; Berrios, J.; Osses, N.; Reyes, J.; Rodriguez-Moya, M.; Gonzalez, R.; Altamirano, C. Differential effect of culture temperature and specific growth rate on CHO cell behavior in chemostat culture. PLoS One, 2014, 9(4), e93865.
[http://dx.doi.org/10.1371/journal.pone.0093865]
[41]
Routledge, S.J. Beyond de-foaming: The effects of antifoams on bioprocess productivity. Comput. Struct. Biotechnol. J., 2012, 3(4), e201210014.
[http://dx.doi.org/10.5936/csbj.201210014]
[42]
Fischer, S.; Handrick, R.; Otte, K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol. Adv., 2015, 33(8), 1878-1896.
[http://dx.doi.org/10.1016/j.biotechadv.2015.10.015]
[43]
Pybus, L.P.; James, D.C.; Dean, G.; Slidel, T.; Hardman, C.; Smith, A.; Daramola, O.; Field, R. Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain. Biotechnol. Prog., 2014, 30(1), 188-197.
[http://dx.doi.org/10.1002/btpr.1839]
[44]
Hussain, H.; Fisher, D.I.; Roth, R.G.; Mark Abbott, W.; Carballo-Amador, M.A.; Warwicker, J.; Dickson, A.J. A protein chimera strategy supports production of a model “difficult-to-express” recombinant target. FEBS Lett., 2018, 592(14), 2499-2511.
[http://dx.doi.org/10.1002/1873-3468.13170]
[45]
Gibson, S.J.; Bond, N.J.; Milne, S.; Lewis, A.; Sheriff, A.; Pettman, G.; Pradhan, R.; Higazi, D.R.; Hatton, D. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains. Biotechnol. Bioeng., 2017, 114(9), 1970-1977.
[http://dx.doi.org/10.1002/bit.26301]
[46]
You, M.; Yang, Y.; Zhong, C.; Chen, F.; Wang, X.; Jia, T.; Chen, Y.; Zhou, B.; Mi, Q.; Zhao, Q.; An, Z.; Luo, W.; Xia, N. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl. Microbiol. Biotechnol., 2018, 102(14), 5953-5964.
[http://dx.doi.org/10.1007/s00253-018-8986-5]
[47]
Le Fourn, V.; Girod, P.A.; Buceta, M.; Regamey, A.; Mermod, N. CHO cell engineering to prevent polypeptide aggregation and improve therapeutic protein secretion. Metab. Eng., 2014, 21, 91-102.
[http://dx.doi.org/10.1016/j.ymben.2012.12.003]
[48]
Ghaderi, D.; Zhang, M.; Hurtado-Ziola, N.; Varki, A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev., 2012, 28(1), 147-175.
[http://dx.doi.org/10.5661/bger-28-147]
[49]
Coats, M.T.; Bydlinski, N.; Maresch, D.; Diendorfer, A.; Klanert, G.; Borth, N. mRNA transfection into CHO-Cells reveals production bottlenecks. Biotechnol. J., 2020, 15(2), e1900198.
[http://dx.doi.org/10.1002/biot.201900198]
[50]
Dreesen, I.A.; Fussenegger, M. Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of Chinese hamster ovary cells. Biotechnol. Bioeng., 2011, 108(4), 853-866.
[http://dx.doi.org/10.1002/bit.22990]
[51]
Omasa, T.; Takami, T.; Ohya, T.; Kiyama, E.; Hayashi, T.; Nishii, H.; Miki, H.; Kobayashi, K.; Honda, K.; Ohtake, H. Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells. J. Biosci. Bioeng., 2008, 106(6), 568-573.
[http://dx.doi.org/10.1263/jbb.106.568]
[52]
Schuck, S.; Prinz, W.A.; Thorn, K.S.; Voss, C.; Walter, P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J. Cell Biol., 2009, 187(4), 525-536.
[http://dx.doi.org/10.1083/jcb.200907074]
[53]
Fagone, P.; Sriburi, R.; Ward-Chapman, C.; Frank, M.; Wang, J.; Gunter, C.; Brewer, J.W.; Jackowski, S. Phospholipid biosynthesis program underlying membrane expansion during B-lymphocyte differentiation. J. Biol. Chem., 2007, 282(10), 7591-7605.
[http://dx.doi.org/10.1074/jbc.M608175200]
[54]
Sriburi, R.; Jackowski, S.; Mori, K.; Brewer, J.W. XBP1: A link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol., 2004, 167(1), 35-41.
[http://dx.doi.org/10.1083/jcb.200406136]
[55]
Bommiasamy, H.; Back, S.H.; Fagone, P.; Lee, K.; Meshinchi, S.; Vink, E.; Sriburi, R.; Frank, M.; Jackowski, S.; Kaufman, R.J.; Brewer, J.W. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci., 2009, 122(Pt 10), 1626-1636.
[http://dx.doi.org/10.1242/jcs.045625]
[56]
Budge, J.D.; Knight, T.J.; Povey, J.; Roobol, J.; Brown, I.R.; Singh, G.; Dean, A.; Turner, S.; Jaques, C.M.; Young, R.J.; Racher, A.J.; Smales, C.M. Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production. Metab. Eng., 2020, 57, 203-216.
[http://dx.doi.org/10.1016/j.ymben.2019.11.007]
[57]
Margittai, E.; Sitia, R. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic, 2011, 12(1), 1-8.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01108.x]
[58]
Feige, M.J.; Hendershot, L.M. Disulfide bonds in ER protein folding and homeostasis. Curr. Opin. Cell Biol., 2011, 23(2), 167-175.
[http://dx.doi.org/10.1016/j.ceb.2010.10.012]
[59]
Bertolotti, M.; Yim, S.H.; Garcia-Manteiga, J.M.; Masciarelli, S.; Kim, Y.J.; Kang, M.H.; Iuchi, Y.; Fujii, J.; Vene, R.; Rubartelli, A.; Rhee, S.G.; Sitia, R. B- to plasma-cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses. Antioxid. Redox Signal., 2010, 13(8), 1133-1144.
[http://dx.doi.org/10.1089/ars.2009.3079]
[60]
Kober, F.X.; Koelmel, W.; Kuper, J.; Drechsler, J.; Mais, C.; Hermanns, H.M.; Schindelin, H. The crystal structure of the proteindisulfide isomerase family member ERp27 provides insights into its substrate binding capabilities. J. Biol. Chem., 2013, 288(3), 2029-2039.
[http://dx.doi.org/10.1074/jbc.M112.410522]
[61]
Hansen, H.G.; Pristovsek, N.; Kildegaard, H.F.; Lee, G.M. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol. Adv., 2017, 35(1), 64-76.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.008]
[62]
Borth, N.; Mattanovich, D.; Kunert, R.; Katinger, H. Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol. Prog., 2005, 21(1), 106-111.
[http://dx.doi.org/10.1021/bp0498241]
[63]
Chung, J.Y.; Lim, S.W.; Hong, Y.J.; Hwang, S.O.; Lee, G.M. Effect of doxycycline-regulated calnexin and calreticulin expression on specific thrombopoietin productivity of recombinant Chinese hamster ovary cells. Biotechnol. Bioeng., 2004, 85(5), 539-546.
[http://dx.doi.org/10.1002/bit.10919]
[64]
Mohan, C.; Kim, Y.G.; Koo, J.; Lee, G.M. Assessment of cell engineering strategies for improved therapeutic protein production in CHO cells. Biotechnol. J., 2008, 3(5), 624-630.
[http://dx.doi.org/10.1002/biot.200700249]
[65]
Nishimiya, D.; Mano, T.; Miyadai, K.; Yoshida, H.; Takahashi, T. Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl. Microbiol. Biotechnol., 2013, 97(6), 2531-2539.
[http://dx.doi.org/10.1007/s00253-012-4365-9]
[66]
Becker, E.; Florin, L.; Pfizenmaier, K.; Kaufmann, H. An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fedbatch processes. J. Biotechnol., 2008, 135(2), 217-223.
[http://dx.doi.org/10.1016/j.jbiotec.2008.03.008]
[67]
Cain, K.; Peters, S.; Hailu, H.; Sweeney, B.; Stephens, P.; Heads, J.; Sarkar, K.; Ventom, A.; Page, C.; Dickson, A. A CHO cell line engineered to express XBP1 and ERO1-Lalpha has increased levels of transient protein expression. Biotechnol. Prog., 2013, 29(3), 697-706.
[http://dx.doi.org/10.1002/btpr.1693]
[68]
Lee, J.S.; Ha, T.K.; Park, J.H.; Lee, G.M. Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnol. Bioeng., 2013, 110(8), 2195-2207.
[http://dx.doi.org/10.1002/bit.24879]
[69]
Doolan, P.; Meleady, P.; Barron, N.; Henry, M.; Gallagher, R.; Gammell, P.; Melville, M.; Sinacore, M.; McCarthy, K.; Leonard, M.; Charlebois, T.; Clynes, M. Microarray and proteomics expression profiling identifies several candidates, including the Valosin-Containing Protein (VCP), involved in regulating high cellular growth rate in production CHO cell lines. Biotechnol. Bioeng., 2010, 106(1), 42-56.
[http://dx.doi.org/10.1002/bit.22670]
[70]
Jaluria, P.; Betenbaugh, M.; Konstantopoulos, K.; Shiloach, J. Enhancement of cell proliferation in various mammalian cell lines by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnol., 2007, 7(1), 71.
[http://dx.doi.org/10.1186/1472-6750-7-71]
[71]
Kuystermans, D.; Al-Rubeai, M. cMyc increases cell number through uncoupling of cell division from cell size in CHO cells. BMC Biotechnol., 2009, 9(1), 76.
[http://dx.doi.org/10.1186/1472-6750-9-76]
[72]
Majors, B.S.; Chiang, G.G.; Pederson, N.E.; Betenbaugh, M.J. Directed evolution of mammalian anti-apoptosis proteins by somatic hypermutation. Protein Eng. Des. Sel., 2012, 25(1), 27-38.
[http://dx.doi.org/10.1093/protein/gzr052]
[73]
Cui, J.; Placzek, W.J. Post-transcriptional regulation of antiapoptotic BCL2 family members. Int. J. Mol. Sci., 2018, 19(1), 308.
[http://dx.doi.org/10.3390/ijms19010308]
[74]
Mamriev, D.; Larisch, S. Another one bites the dust; ARTS enables degradation of Bcl-2 by XIAP. Mol. Cell. Oncol., 2018, 5(4), e1441630.
[http://dx.doi.org/10.1080/23723556.2018.1441630]
[75]
Figueroa, B., Jr; Chen, S.; Oyler, G.A.; Hardwick, J.M.; Betenbaugh, M.J. Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol. Bioeng., 2004, 85(6), 589-600.
[http://dx.doi.org/10.1002/bit.10913]
[76]
Huo, J.; Xu, S.; Lam, K.P. FAIM: An antagonist of Fas-Killing and beyond. Cells, 2019, 8(6), 541.
[http://dx.doi.org/10.3390/cells8060541]
[77]
Fernandez-Marrero, Y.; Spinner, S.; Kaufmann, T.; Jost, P.J. Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia, 2016, 30(11), 2152-2159.
[http://dx.doi.org/10.1038/leu.2016.213]
[78]
Hanada, K.; Kumagai, K.; Yasuda, S.; Miura, Y.; Kawano, M.; Fukasawa, M.; Nishijima, M. Molecular machinery for nonvesicular trafficking of ceramide. Nature, 2003, 426(6968), 803-809.
[http://dx.doi.org/10.1038/nature02188]
[79]
Florin, L.; Pegel, A.; Becker, E.; Hausser, A.; Olayioye, M.A.; Kaufmann, H. Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells. J. Biotechnol., 2009, 141(1-2), 84-90.
[http://dx.doi.org/10.1016/j.jbiotec.2009.02.014]
[80]
Ronda, C.; Pedersen, L.E.; Hansen, H.G.; Kallehauge, T.B.; Betenbaugh, M.J.; Nielsen, A.T.; Kildegaard, H.F. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a webbased target finding tool. Biotechnol. Bioeng., 2014, 111(8), 1604-1616.
[http://dx.doi.org/10.1002/bit.25233]
[81]
Li, S.W.; Wright, M.; Healey, J.F.; Hutchinson, J.M.; O’Rourke, S.; Mesa, K.A.; Lollar, P.; Berman, P.W. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS One, 2020, 15(5), e0233866.
[http://dx.doi.org/10.1371/journal.pone.0233866]
[82]
Shin, S.W.; Kim, D.; Lee, J.S. Controlling ratios of plasmid-based double cut donor and CRISPR/Cas9 components to enhance targeted integration of transgenes in Chinese hamster ovary cells. Int. J. Mol. Sci., 2021, 22(5), 2407.
[http://dx.doi.org/10.3390/ijms22052407]
[83]
Sauerwald, T.M.; Betenbaugh, M.J.; Oyler, G.A. Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol. Bioeng., 2002, 77(6), 704-716.
[http://dx.doi.org/10.1002/bit.10154]
[84]
Wong, D.C.; Wong, K.T.; Nissom, P.M.; Heng, C.K.; Yap, M.G. Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol. Bioeng., 2006, 95(3), 350-361.
[http://dx.doi.org/10.1002/bit.20871]
[85]
Majors, B.S.; Betenbaugh, M.J.; Pederson, N.E.; Chiang, G.G. Mcl-1 overexpression leads to higher viabilities and increased production of humanized monoclonal antibody in Chinese hamster ovary cells. Biotechnol. Prog., 2009, 25(4), 1161-1168.
[http://dx.doi.org/10.1002/btpr.192]
[86]
Loh, W.P.; Loo, B.; Zhou, L.; Zhang, P.; Lee, D.Y.; Yang, Y.; Lam, K.P. Overexpression of microRNAs enhances recombinant protein production in Chinese hamster ovary cells. Biotechnol. J., 2014, 9(9), 1140-1151.
[http://dx.doi.org/10.1002/biot.201400050]
[87]
Fischer, S.; Marquart, K.F.; Pieper, L.A.; Fieder, J.; Gamer, M.; Gorr, I.; Schulz, P.; Bradl, H. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Biotechnol. Bioeng., 2017, 114(7), 1495-1510.
[http://dx.doi.org/10.1002/bit.26280]
[88]
Raab, N.; Mathias, S.; Alt, K.; Handrick, R.; Fischer, S.; Schmieder, V.; Jadhav, V.; Borth, N.; Otte, K. CRISPR/Cas9-mediated knockout of MicroRNA-744 improves antibody titer of CHO production cell lines. Biotechnol. J., 2019, 14(5), e1800477.
[http://dx.doi.org/10.1002/biot.201800477]
[89]
Rouiller, Y.; Bielser, J.M.; Bruhlmann, D.; Jordan, M.; Broly, H.; Stettler, M. Screening and assessment of performance and molecule quality attributes of industrial cell lines across different fed-batch systems. Biotechnol. Prog., 2016, 32(1), 160-170.
[http://dx.doi.org/10.1002/btpr.2186]
[90]
Handlogten, M.W.; Lee-O’Brien, A.; Roy, G.; Levitskaya, S.V.; Venkat, R.; Singh, S.; Ahuja, S. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnol. Bioeng., 2018, 115(1), 126-138.
[http://dx.doi.org/10.1002/bit.26460]
[91]
Vergara, M.; Torres, M.; Muller, A.; Avello, V.; Acevedo, C.; Berrios, J.; Reyes, J.G.; Valdez-Cruz, N.A.; Altamirano, C. High glucose and low specific cell growth but not mild hypothermia improve specific r-protein productivity in chemostat culture of CHO cells. PLoS One, 2018, 13(8), e0202098.
[http://dx.doi.org/10.1371/journal.pone.0202098]
[92]
Josse, L.; Xie, J.; Proud, C.G.; Smales, C.M. mTORC1 signalling and eIF4E/4E-BP1 translation initiation factor stoichiometry influence recombinant protein productivity from GS-CHOK1 cells. Biochem. J., 2016, 473(24), 4651-4664.
[http://dx.doi.org/10.1042/BCJ20160845]
[93]
Nojima, H.; Tokunaga, C.; Eguchi, S.; Oshiro, N.; Hidayat, S.; Yoshino, K.; Hara, K.; Tanaka, N.; Avruch, J.; Yonezawa, K. The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem., 2003, 278(18), 15461-15464.
[http://dx.doi.org/10.1074/jbc.C200665200]
[94]
Mahameed, M.; Tirosh, B. Engineering CHO cells with an oncogenic KIT improves cells growth, resilience to stress, and productivity. Biotechnol. Bioeng., 2017, 114(11), 2560-2570.
[http://dx.doi.org/10.1002/bit.26356]
[95]
McVey, D.; Aronov, M.; Rizzi, G.; Cowan, A.; Scott, C.; Megill, J.; Russell, R.; Tirosh, B. CHO cells knocked out for TSC2 display an improved productivity of antibodies under fed batch conditions. Biotechnol. Bioeng., 2016, 113(9), 1942-1952.
[http://dx.doi.org/10.1002/bit.25951]
[96]
Mahameed, M.; Obiedat, A.; Beck, G.; Johnson, J.C.; Tirosh, B. Low concentrations of cadmium chloride promotes protein translation and improve cell line productivity. Biotechnol. Bioeng., 2019, 116(3), 569-580.
[http://dx.doi.org/10.1002/bit.26888]
[97]
Srirangan, K.; Loignon, M.; Durocher, Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: Retrospective analysis and future directions. Crit. Rev. Biotechnol., 2020, 40(6), 833-851.
[http://dx.doi.org/10.1080/07388551.2020.1768043]