ZFP36L1 Promotes Gastric Cancer Progression via Regulating JNK and p38 MAPK Signaling Pathways

Page: [80 - 91] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The RNA-binding protein Zinc Finger Protein 36 like 1(ZFP36L1) plays an important role in regulating the AU-rich elements (AREs) in the 3′ untranslated region (3′ UTR) of mRNAs, indicating a potential link between its expression and cancers. However, the role and mechanism of ZFP36L1 in gastric cancer (GC) are unclear.

Objectives: This study aimed to explore the role and mechanism of ZFP36L1 in gastric cancer.

Materials and Methods: GC tissue samples and matched normal gastric tissues were collected, and the ZFP36L1 expression in these samples was evaluated by immunohistochemistry analysis. GC cells with different differentiation were selected for in vitro experiments. The ZFP36L1 expression in GC cells was examined by quantitative real-time polymerase chain reaction (qRTPCR) and Western blot analysis. The viability and invasiveness of GC cells were assayed by 5- Ethynyl-2-deoxyuridine (EdU) and Transwell assays, respectively. Western blot assay was used to detect the expression of epithelial-to-mesenchymal transition (EMT) related proteins and proteins of the c-Jun N-terminal kinase (JNK) and p38 Mitogen-Activated Protein Kinase (MAPK) signaling pathways.

Results: ZFP36L1 is overexpressed in GC tissues. Patients with high ZFP36L1 expression have a poor prognosis. Moreover, ZFP36L1 is overexpressed in the cell lines with a high degree of malignancy. ZFP36L1 increases cell proliferation, invasion, and migration in vitro. Furthermore, ZFP36L1 induces EMT. The JNK inhibitor and p38 inhibitor alone or in combination affect the biological function of GC cells. Furthermore, ZFP36L1 promotes GC progression by inhibiting JNK and p38 MAPK signaling pathways.

Conclusion: RNA-binding protein ZFP36L1 exerts a role in the occurrence of gastric cancer by the regulation of the JNK and p38 MAPK signaling pathways. The combination of inhibitors of the JNK and p38 MAPK signaling pathways could be a novel treatment strategy for gastric cancer.

Keywords: Gastric cancer, ZFP36L1, JNK pathway, p38 MAPK pathway, inhibitor, EMT, progression.

[1]
Zhao Q, Cao L, Guan L, et al. Immunotherapy for gastric cancer: Dilemmas and prospect. Brief Funct Genomics 2019; 18(2): 107-12.
[http://dx.doi.org/10.1093/bfgp/ely019] [PMID: 30388190]
[2]
Shi M, Gu Y, Jin K, et al. CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol Immunother 2021; 70(7): 1831-40.
[http://dx.doi.org/10.1007/s00262-020-02806-2] [PMID: 33389016]
[3]
Yu Y, Chen L, Zhao G, et al. RBBP8/CtIP suppresses P21 expression by interacting with CtBP and BRCA1 in gastric cancer. Oncogene 2020; 39(6): 1273-89.
[http://dx.doi.org/10.1038/s41388-019-1060-7] [PMID: 31636387]
[4]
Du F, Sun L, Chu Y, et al. DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways. Cancer Commun (Lond) 2018; 38(1): 45.
[http://dx.doi.org/10.1186/s40880-018-0315-y] [PMID: 29976242]
[5]
Zhou Q, Wu X, Wang X, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene 2020; 39(7): 1414-28.
[http://dx.doi.org/10.1038/s41388-019-1078-x] [PMID: 31659258]
[6]
Zhang K, Yang G, Wu W, et al. Decreased expression of caveolin-1 and E-Cadherin correlates with the clinicopathologic features of gastric cancer and the EMT process. Recent Patents Anticancer Drug Discov 2016; 11(2): 236-44.
[http://dx.doi.org/10.2174/1574892811666160128151437] [PMID: 26817615]
[7]
Almasi S, Kennedy BE, El-Aghil M, et al. TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J Biol Chem 2018; 293(10): 3637-50.
[http://dx.doi.org/10.1074/jbc.M117.817635] [PMID: 29343514]
[8]
Gao P, Tsai C, Yang Y, et al. Intraoperative radiotherapy in gastric and esophageal cancer: Meta-analysis of long-term outcomes and complications. Minerva Med 2017; 108(1): 74-83.
[http://dx.doi.org/10.23736/S0026-4806.16.04628-0] [PMID: 27701375]
[9]
Ren N, Jiang T, Wang C, et al. LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY) 2020; 12(11): 11025-41.
[http://dx.doi.org/10.18632/aging.103314] [PMID: 32516127]
[10]
Mohibi S, Chen X, Zhang J. Cancer the’RBP’eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203: 107390.
[http://dx.doi.org/10.1016/j.pharmthera.2019.07.001] [PMID: 31302171]
[11]
Kim SJ, Ju JS, Kang MH, et al. RNA-binding protein NONO contributes to cancer cell growth and confers drug resistance as a theranostic target in TNBC. Theranostics 2020; 10(18): 7974-92.
[http://dx.doi.org/10.7150/thno.45037] [PMID: 32724453]
[12]
Chatterji P, Rustgi AK. RNA binding proteins in intestinal epithelial biology and colorectal cancer. Trends Mol Med 2018; 24(5): 490-506.
[http://dx.doi.org/10.1016/j.molmed.2018.03.008] [PMID: 29627433]
[13]
Hodson DJ, Screen M, Turner M. RNA-binding proteins in hematopoiesis and hematological malignancy. Blood 2019; 133(22): 2365-73.
[http://dx.doi.org/10.1182/blood-2018-10-839985] [PMID: 30967369]
[14]
Gebauer F, Schwarzl T, Valcárcel J, et al. RNA-binding proteins in human genetic disease. Nat Rev Genet 2021; 22(3): 185-98.
[http://dx.doi.org/10.1038/s41576-020-00302-y] [PMID: 33235359]
[15]
Pereira B, Billaud M, Almeida R. RNA-binding proteins in cancer: Old players and new actors. Trends Cancer 2017; 3(7): 506-28.
[http://dx.doi.org/10.1016/j.trecan.2017.05.003] [PMID: 28718405]
[16]
Neelamraju Y, Gonzalez-Perez A, Bhat-Nakshatri P, et al. Mutational landscape of RNA-binding proteins in human cancers. RNA Biol 2018; 15(1): 115-29.
[http://dx.doi.org/10.1080/15476286.2017.1391436] [PMID: 29023197]
[17]
Qin H, Ni H, Liu Y, et al. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13(1): 90.
[http://dx.doi.org/10.1186/s13045-020-00927-w] [PMID: 32653017]
[18]
Du ZH, Ke M, Lu Y, et al. First Affiliated Hospital Medical Colledge Xian Jiaotong University assignee. Tumor marker serum cold-inducible RNA-binding protein for liver cancer and application thereof. China patent CN 110878117, 2020.
[19]
Guo J, Qu H, Chen Y, et al. The role of RNA-binding protein tristetraprolin in cancer and immunity. Med Oncol 2017; 34(12): 196.
[http://dx.doi.org/10.1007/s12032-017-1055-6] [PMID: 29124478]
[20]
Park JM, Lee TH, Kang TH. Roles of tristetraprolin in tumorigenesis. Int J Mol Sci 2018; 19(11): 19.
[http://dx.doi.org/10.3390/ijms19113384] [PMID: 30380668]
[21]
Chen MT, Dong L, Zhang XH, et al. ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6. Sci Rep 2015; 5: 16229.
[http://dx.doi.org/10.1038/srep16229] [PMID: 26542173]
[22]
Hodson DJ, Janas ML, Galloway A, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 2010; 11(8): 717-24.
[http://dx.doi.org/10.1038/ni.1901] [PMID: 20622884]
[23]
Halbeisen RE, Galgano A, Scherrer T, et al. Post-transcriptional gene regulation: From genome-wide studies to principles. Cell Mol Life Sci 2008; 65(5): 798-813.
[http://dx.doi.org/10.1007/s00018-007-7447-6] [PMID: 18043867]
[24]
Saini Y, Chen J, Patial S. The tristetraprolin family of RNA-binding proteins in cancer: Progress and future prospects. Cancers (Basel) 2020; 12(6): 12.
[http://dx.doi.org/10.3390/cancers12061539] [PMID: 32545247]
[25]
Otsuka H, Fukao A, Tomohiro T, et al. ARE-binding protein ZFP36L1 interacts with CNOT1 to directly repress translation via a deadenylation-independent mechanism. Biochimie 2020; 174: 49-56.
[http://dx.doi.org/10.1016/j.biochi.2020.04.010] [PMID: 32311426]
[26]
Wang Q, Ning H, Peng H, et al. Tristetraprolin inhibits macrophage IL-27-induced activation of antitumour cytotoxic T cell responses. Nat Commun 2017; 8(1): 867.
[http://dx.doi.org/10.1038/s41467-017-00892-y] [PMID: 29021521]
[27]
Rataj F, Planel S, Denis J, et al. Targeting AU-rich element-mediated mRNA decay with a truncated active form of the zinc-finger protein TIS11b/BRF1 impairs major hallmarks of mammary tumorigenesis. Oncogene 2019; 38(26): 5174-90.
[http://dx.doi.org/10.1038/s41388-019-0784-8] [PMID: 30914800]
[28]
Deng K, Wang H, Shan T, et al. Tristetraprolin inhibits gastric cancer progression through suppression of IL-33. Sci Rep 2016; 6: 24505.
[http://dx.doi.org/10.1038/srep24505] [PMID: 27074834]
[29]
Xing R, Zhou Y, Yu J, et al. Whole-genome sequencing reveals novel tandem-duplication hotspots and a prognostic mutational signature in gastric cancer. Nat Commun 2019; 10(1): 2037.
[http://dx.doi.org/10.1038/s41467-019-09644-6] [PMID: 31048690]
[30]
Zheng J, Zhang H, Ma R, et al. Long non-coding RNA KRT19P3 suppresses proliferation and metastasis through COPS7A-mediated NF-κB pathway in gastric cancer. Oncogene 2019; 38(45): 7073-88.
[http://dx.doi.org/10.1038/s41388-019-0934-z] [PMID: 31409899]
[31]
Lu Q, Chen Y, Sun D, et al. MicroRNA-181a functions as an oncogene in gastric cancer by targeting caprin-1. Front Pharmacol 2019; 9: 1565.
[http://dx.doi.org/10.3389/fphar.2018.01565] [PMID: 30687106]
[32]
Zhou F, Zhang C, Guan Y, et al. Screening the expression characteristics of several miRNAs in G93A-SOD1 transgenic mouse: Altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox9. J Neurochem 2018; 145(1): 51-67.
[http://dx.doi.org/10.1111/jnc.14229] [PMID: 28960306]
[33]
Wang Q, Liu H, Wang Q, et al. Involvement of c-Fos in cell proliferation, migration, and invasion in osteosarcoma cells accompanied by altered expression of Wnt2 and Fzd9. PLoS One 2017; 12(6): e0180558.
[http://dx.doi.org/10.1371/journal.pone.0180558] [PMID: 28665975]
[34]
Jemal A, Center MM, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 2010; 19(8): 1893-907.
[http://dx.doi.org/10.1158/1055-9965.EPI-10-0437] [PMID: 20647400]
[35]
Karimi P, Islami F, Anandasabapathy S, et al. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev 2014; 23(5): 700-13.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057] [PMID: 24618998]
[36]
Machlowska J, Baj J, Sitarz M, et al. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci 2020; 21(11): 21.
[http://dx.doi.org/10.3390/ijms21114012] [PMID: 32512697]
[37]
Wang H, Huang C. FOXM1 and its oncogenic signaling in gastric cancer. Recent Patents Anticancer Drug Discov 2015; 10(3): 270-9.
[http://dx.doi.org/10.2174/1574892810666150617112421] [PMID: 26081924]
[38]
Li R, Jiang J, Shi H, et al. CircRNA: A rising star in gastric cancer. Cell Mol Life Sci 2020; 77(9): 1661-80.
[http://dx.doi.org/10.1007/s00018-019-03345-5] [PMID: 31659415]
[39]
Dong XZ, Song Y, Lu YP, et al. Sanguinarine inhibits the proliferation of BGC-823 gastric cancer cells via regulating miR-96-5p/miR-29c-3p and the MAPK/JNK signaling pathway. J Nat Med 2019; 73(4): 777-88.
[http://dx.doi.org/10.1007/s11418-019-01330-7] [PMID: 31243669]
[40]
Loh XY, Sun QY, Ding LW, et al. RNA-binding protein ZFP36L1 suppresses hypoxia and cell-cycle signaling. Cancer Res 2020; 80(2): 219-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2796] [PMID: 31551365]
[41]
Planel S, Salomon A, Jalinot P, et al. A novel concept in antiangiogenic and antitumoral therapy: Multitarget destabilization of short-lived mRNAs by the zinc finger protein ZFP36L1. Oncogene 2010; 29(45): 5989-6003.
[http://dx.doi.org/10.1038/onc.2010.341] [PMID: 20802528]
[42]
Su X, Lu X, Bazai SK, et al. Comprehensive integrative profiling of upper tract urothelial carcinomas. Genome Biol 2021; 22(1): 7.
[http://dx.doi.org/10.1186/s13059-020-02230-w] [PMID: 33397444]
[43]
Lee SK, Kim SB, Kim JS, et al. Butyrate response factor 1 enhances cisplatin sensitivity in human head and neck squamous cell carcinoma cell lines. Int J Cancer 2005; 117(1): 32-40.
[http://dx.doi.org/10.1002/ijc.21133] [PMID: 15880358]
[44]
Misund K, Selvik LK, Rao S, et al. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells. PLoS One 2013; 8(9): e76234.
[http://dx.doi.org/10.1371/journal.pone.0076234] [PMID: 24086717]
[45]
Vogel KU, Bell LS, Galloway A, et al. The RNA-binding proteins Zfp36l1 and Zfp36l2 enforce the thymic β-selection checkpoint by limiting DNA damage response signaling and cell cycle progression. J Immunol 2016; 197(7): 2673-85.
[http://dx.doi.org/10.4049/jimmunol.1600854] [PMID: 27566829]
[46]
Zekavati A, Nasir A, Alcaraz A, et al. Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS One 2014; 9(7): e102625.
[http://dx.doi.org/10.1371/journal.pone.0102625] [PMID: 25014217]
[47]
Wilson MM, Weinberg RA, Lees JA, et al. Emerging mechanisms by which EMT programs control stemness. Trends Cancer 2020; 6(9): 775-80.
[http://dx.doi.org/10.1016/j.trecan.2020.03.011] [PMID: 32312682]
[48]
Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother 2021; 133: 110909.
[http://dx.doi.org/10.1016/j.biopha.2020.110909] [PMID: 33227701]
[49]
Bakir B, Chiarella AM, Pitarresi JR, et al. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol 2020; 30(10): 764-76.
[http://dx.doi.org/10.1016/j.tcb.2020.07.003] [PMID: 32800658]
[50]
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[51]
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT factors and metabolic pathways in cancer. Front Oncol 2020; 10: 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[52]
Montorsi L, Guizzetti F, Alecci C, et al. Loss of ZFP36 expression in colorectal cancer correlates to wnt/ß-catenin activity and enhances epithelial-to-mesenchymal transition through upregulation of ZEB1, SOX9 and MACC1. Oncotarget 2016; 7(37): 59144-57.
[http://dx.doi.org/10.18632/oncotarget.10828] [PMID: 27463018]
[53]
Sun XJ, Liu BY, Yan S, et al. MicroRNA-29a promotes pancreatic cancer growth by inhibiting tristetraprolin. Cell Physiol Biochem 2015; 37(2): 707-18.
[http://dx.doi.org/10.1159/000430389] [PMID: 26356262]
[54]
Gurzu S, Banias L, Bara T, et al. The epithelial-mesenchymal transition pathway in two cases with gastric metastasis originating from breast carcinoma, one with a metachronous primary gastric cancer. Recent Patents Anticancer Drug Discov 2018; 13(1): 118-24.
[http://dx.doi.org/10.2174/2212798409666171101121108] [PMID: 29090670]
[55]
Sui X, Kong N, Ye L, et al. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett 2014; 344(2): 174-9.
[http://dx.doi.org/10.1016/j.canlet.2013.11.019] [PMID: 24333738]
[56]
Park GY, Pathak HB, Godwin AK, et al. Epithelial-stromal communication via CXCL1-CXCR2 interaction stimulates growth of ovarian cancer cells through p38 activation. Cell Oncol (Dordr) 2021; 44(1): 77-92.
[http://dx.doi.org/10.1007/s13402-020-00554-0] [PMID: 32910411]
[57]
Gururajan M, Chui R, Karuppannan AK, et al. c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood 2005; 106(4): 1382-91.
[http://dx.doi.org/10.1182/blood-2004-10-3819] [PMID: 15890690]
[58]
Huang Z, Yan DP, Ge BX. JNK regulates cell migration through promotion of tyrosine phosphorylation of paxillin. Cell Signal 2008; 20(11): 2002-12.
[http://dx.doi.org/10.1016/j.cellsig.2008.07.014] [PMID: 18713649]
[59]
Dhanasekaran DN, Reddy EP. JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer 2017; 8(9-10): 682-94.
[http://dx.doi.org/10.18632/genesandcancer.155] [PMID: 29234486]
[60]
Kuan CY, Yang DD, Samanta Roy DR, et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999; 22(4): 667-76.
[http://dx.doi.org/10.1016/S0896-6273(00)80727-8] [PMID: 10230788]
[61]
Sun Y, Yang T, Xu Z. The JNK pathway and neuronal migration. J Genet Genomics 2007; 34(11): 957-65.
[http://dx.doi.org/10.1016/S1673-8527(07)60108-8] [PMID: 18037132]
[62]
Tuncman G, Hirosumi J, Solinas G, et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci USA 2006; 103(28): 10741-6.
[http://dx.doi.org/10.1073/pnas.0603509103] [PMID: 16818881]
[63]
Cellurale C, Sabio G, Kennedy NJ, et al. Requirement of c-Jun NH(2)-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 2011; 31(7): 1565-76.
[http://dx.doi.org/10.1128/MCB.01122-10] [PMID: 21282468]
[64]
Semba T, Sammons R, Wang X, et al. JNK signaling in stem cell self-renewal and differentiation. Int J Mol Sci 2020; 21(7): 21.
[http://dx.doi.org/10.3390/ijms21072613] [PMID: 32283767]
[65]
Changchien CY, Chang HH, Dai MS, et al. Distinct JNK/VEGFR signaling on angiogenesis of breast cancer-associated pleural fluid based on hormone receptor status. Cancer Sci 2021; 112(2): 781-91.
[http://dx.doi.org/10.1111/cas.14772] [PMID: 33315285]
[66]
Hammouda MB, Ford AE, Liu Y, et al. The JNK signaling pathway in inflammatory skin disorders and cancer. Cells 2020; 9(4): 9.
[http://dx.doi.org/10.3390/cells9040857] [PMID: 32252279]
[67]
Wolf ER, McAtarsney CP, Bredhold KE, et al. Mutant and wild-type p53 form complexes with p73 upon phosphorylation by the kinase JNK. Sci Signal 2018; 11(524): 11.
[http://dx.doi.org/10.1126/scisignal.aao4170] [PMID: 29615516]
[68]
Cuenda A, Sanz-Ezquerro JJ. p38γ and p38δ: From spectators to key physiological players. Trends Biochem Sci 2017; 42(6): 431-42.
[http://dx.doi.org/10.1016/j.tibs.2017.02.008] [PMID: 28473179]
[69]
Peluso I, Yarla NS, Ambra R, et al. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol 2019; 56: 185-95.
[http://dx.doi.org/10.1016/j.semcancer.2017.09.002] [PMID: 28912082]
[70]
Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 2009; 9(8): 537-49.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[71]
Wu Q, Wu W, Fu B, et al. JNK signaling in cancer cell survival. Med Res Rev 2019; 39(6): 2082-104.
[http://dx.doi.org/10.1002/med.21574] [PMID: 30912203]
[72]
Hanson L, Ross S. Asreazeneca AB assignee. Combination of a MAPK pathway iihibitor and an antisense compound targeted to Kras WO 2018146316, 2018.
[73]
Yu H, Wu CL, Wang X, et al. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res 2019; 38(1): 448.
[http://dx.doi.org/10.1186/s13046-019-1467-6] [PMID: 31685029]
[74]
Chen X, Chen Y, Lin X, et al. The drug combination of SB202190 and SP600125 significantly inhibit the growth and metastasis of olaparib-resistant ovarian cancer cell. Curr Pharm Biotechnol 2018; 19(6): 506-13.
[http://dx.doi.org/10.2174/1389201019666180713102656] [PMID: 30003858]
[75]
Gao T, Zhao P, Yu X, et al. Use of saikosaponin D and JNK inhibitor SP600125, alone or in combination, inhibits malignant properties of human osteosarcoma U2 cells. Am J Transl Res 2019; 11(4): 2070-80.
[PMID: 31105818]
[76]
Li G, Dai Y, Tan J, et al. SB203580 protects against inflammatory response and lung injury in a mouse model of lipopolysaccharide induced acute lung injury. Mol Med Rep 2020; 22(2): 1656-62.
[http://dx.doi.org/10.3892/mmr.2020.11214] [PMID: 32626961]
[77]
He T, Liu S, Chen S, et al. The p38 MAPK inhibitor SB203580 abrogates tumor necrosis factor-induced proliferative expansion of mouse CD4+Foxp3+ regulatory T cells. Front Immunol 2018; 9: 1556.
[http://dx.doi.org/10.3389/fimmu.2018.01556] [PMID: 30038619]
[78]
Hu G, Zhuang X. Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences assignee. Combination of JNK inhibitor and TGF beta inhibitor China patent CN 108785678, 2018.
[79]
Song Q, Lin H. Korea University industry university cooperation group assignee. Pharmaceutical composition for preventing or treating choriocarcinoma comprising coumestrol Korea patent KR 102127291, 2020.
[80]
Mallampati S, Mani SA, Paranjape AN, et al. Inhibition of P38 MAPK for the treatment of cancer. WO 2017117182, 2017.
[81]
Jiang CH, Xiao T, Zheng D, et al. Application of p38-MAPK signal channel inhibitor in preparation of drug for treating nasopharynx cancer China patent CN 111407893, 2020.