Deciphering the Role of S-adenosyl Homocysteine Nucleosidase in Quorum Sensing Mediated Biofilm Formation

Page: [211 - 225] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

S-adenosylhomocysteine nucleosidase (MTAN) is a protein that plays a crucial role in several pathways of bacteria that are essential for its survival and pathogenesis. In addition to the role of MTAN in methyl-transfer reactions, methionine biosynthesis, and polyamine synthesis, MTAN is also involved in bacterial quorum sensing (QS). In QS, chemical signaling autoinducer (AI) secreted by bacteria assists cell to cell communication and is regulated in a cell density-dependent manner. They play a significant role in the formation of bacterial biofilm. MTAN plays a major role in the synthesis of these autoinducers. Signaling molecules secreted by bacteria, i.e., AI-1 are recognized as acylated homoserine lactones (AHL) that function as signaling molecules within bacteria. QS enables bacteria to establish physical interactions leading to biofilm formation. The formation of biofilm is a primary reason for the development of multidrug-resistant properties in pathogenic bacteria like Enterococcus faecalis (E. faecalis). In this regard, inhibition of E. faecalis MTAN (EfMTAN) will block the QS and alter the bacterial biofilm formation. In addition to this, it will also block methionine biosynthesis and many other critical metabolic processes. It should also be noted that inhibition of EfMTAN will not have any effect on human beings as this enzyme is not present in humans. This review provides a comprehensive overview of the structural-functional relationship of MTAN. We have also highlighted the current status, enigmas that warrant further studies, and the prospects for identifying potential inhibitors of EfMTAN for the treatment of E. faecalis infections. In addition to this, we have also reported structural studies of EfMTAN using homology modeling and highlighted the putative binding sites of the protein.

Keywords: Biofilms, diseases, microbial-cell interaction, MTAN, quorum sensing, bacteria.

Graphical Abstract

[1]
Wang, S.; Thomas, K.; Schramm, V.L. Catalytic site cooperativity in dimeric methylthioadenosine nucleosidase. Biochemistry, 2014, 53(9), 1527-1535.
[http://dx.doi.org/10.1021/bi401589n] [PMID: 24502544]
[2]
Parveen, N.; Cornell, K.A. Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol. Microbiol., 2011, 79(1), 7-20.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07455.x] [PMID: 21166890]
[3]
Choi-Rhee, E.; Cronan, J.E. A nucleosidase required for in vivo function of the S-adenosyl-L-methionine radical enzyme, biotin synthase. Chem. Biol., 2005, 12(5), 589-593.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.012] [PMID: 15911379]
[4]
Zhao, X.; Yu, Z.; Ding, T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 2020, 8(3), 425.
[http://dx.doi.org/10.3390/microorganisms8030425] [PMID: 32192182]
[5]
Li, Y.H.; Tian, X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel), 2012, 12(3), 2519-2538.
[http://dx.doi.org/10.3390/s120302519] [PMID: 22736963]
[6]
Fuqua, C.; Parsek, M.R.; Greenberg, E.P. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annu. Rev. Genet., 2001, 35(1), 439-468.
[http://dx.doi.org/10.1146/annurev.genet.35.102401.090913] [PMID: 11700290]
[7]
Wang, S.C.; Frey, P.A. S-adenosylmethionine as an oxidant: The radical SAM superfamily. Trends Biochem. Sci., 2007, 32(3), 101-110.
[http://dx.doi.org/10.1016/j.tibs.2007.01.002] [PMID: 17291766]
[8]
Cornell, K.A.; Knippel, R.J.; Cortright, G.R.; Fonken, M.; Guerrero, C.; Hall, A.R.; Mitchell, K.A.; Thurston, J.H.; Erstad, P.; Tao, A.; Xu, D.; Parveen, N. Characterization of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidases from Borrelia burgdorferi: Antibiotic targets for Lyme disease. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(1), 129455.
[http://dx.doi.org/10.1016/j.bbagen.2019.129455] [PMID: 31669585]
[9]
Gonzalez, J.; Firica, T.; Mimenza, A.; Lines, E. Analysis of novel inhibitors of borrelia MTA/SAH nucleosidases. Undergraduate Research and Scholarship Conference, 2017.
[10]
Xu, D.; Zuo, J.; Chen, Z.; Lv, X.; Hu, J.; Wu, X.; Qi, K.; Mi, R.; Huang, Y.; Miao, J.; Jiang, W.; Wang, S.; Wang, C.; Han, X. Different activated methyl cycle pathways affect the pathogenicity of avian pathogenic Escherichia coli. Vet. Microbiol., 2017, 211, 160-168.
[http://dx.doi.org/10.1016/j.vetmic.2017.10.017] [PMID: 29102113]
[11]
Collier, J. Epigenetic regulation of the bacterial cell cycle. Curr. Opin. Microbiol., 2009, 12(6), 722-729.
[http://dx.doi.org/10.1016/j.mib.2009.08.005] [PMID: 19783470]
[12]
Jarrett, J.T. The generation of 5′-deoxyadenosyl radicals by adenosylmethionine-dependent radical enzymes. Curr. Opin. Chem. Biol., 2003, 7(2), 174-182.
[http://dx.doi.org/10.1016/S1367-5931(03)00022-X] [PMID: 12714049]
[13]
Beeston, A.L.; Surette, M.G. pfs-dependent regulation of autoinducer 2 production in Salmonella enterica serova Typhimurium. J. Bacteriol., 2002, 184(13), 3450-3456.
[http://dx.doi.org/10.1128/JB.184.13.3450-3456.2002] [PMID: 12057938]
[14]
Roy, V.; Adams, B.L.; Bentley, W.E. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microb. Technol., 2011, 49(2), 113-123.
[http://dx.doi.org/10.1016/j.enzmictec.2011.06.001] [PMID: 22112397]
[15]
Dorgan, K.M.; Wooderchak, W.L.; Wynn, D.P.; Karschner, E.L.; Alfaro, J.F.; Cui, Y.; Zhou, Z.S.; Hevel, J.M. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal. Biochem., 2006, 350(2), 249-255.
[http://dx.doi.org/10.1016/j.ab.2006.01.004] [PMID: 16460659]
[16]
Gao, Q.; Zheng, D.; Yuan, Z. Substrate preference of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase in Burkholderia thailandensis. FEMS Microbiol. Lett., 2013, 339(2), 110-116.
[http://dx.doi.org/10.1111/1574-6968.12059] [PMID: 23198993]
[17]
Sekowska, A.; Dénervaud, V.; Ashida, H.; Michoud, K.; Haas, D.; Yokota, A.; Danchin, A. Bacterial variations on the methionine salvage pathway. BMC Microbiol., 2004, 4(1), 9.
[http://dx.doi.org/10.1186/1471-2180-4-9] [PMID: 15102328]
[18]
Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′-methylthioadenosine. IUBMB Life, 2009, 61(12), 1132-1142.
[http://dx.doi.org/10.1002/iub.278] [PMID: 19946895]
[19]
Cacciapuoti, G.; Bertoldo, C.; Brio, A.; Zappia, V.; Porcelli, M. Purification and characterization of 5′-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus: Substrate specificity and primary structure analysis. Extremophiles, 2003, 7(2), 159-168.
[http://dx.doi.org/10.1007/s00792-002-0307-2] [PMID: 12664268]
[20]
Stępkowski, T.; Brzeziński, K.; Legocki, A.B.; Jaskólski, M.; Béna, G. Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences. Mol. Phylogenet. Evol., 2005, 34(1), 15-28.
[http://dx.doi.org/10.1016/j.ympev.2004.09.008] [PMID: 15579379]
[21]
Sun, J.; Daniel, R.; Wagner-Döbler, I.; Zeng, A.P. Is autoinducer-2 a universal signal for interspecies communication: A comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol., 2004, 4(1), 36.
[http://dx.doi.org/10.1186/1471-2148-4-36] [PMID: 15456522]
[22]
Markham, G.D.; Pajares, M.A. Structure-function relationships in methionine adenosyltransferases. Cell. Mol. Life Sci., 2009, 66(4), 636-648.
[http://dx.doi.org/10.1007/s00018-008-8516-1] [PMID: 18953685]
[23]
Doherty, N.C.; Shen, F.; Halliday, N.M.; Barrett, D.A.; Hardie, K.R.; Winzer, K.; Atherton, J.C. In Helicobacter pylori, LuxS is a key enzyme in cysteine provision through a reverse transsulfuration pathway. J. Bacteriol., 2010, 192(5), 1184-1192.
[http://dx.doi.org/10.1128/JB.01372-09] [PMID: 20061483]
[24]
Kamarthapu, V.; Rao, K.V.; Srinivas, P.N.; Reddy, G.B.; Reddy, V.D. Structural and kinetic properties of Bacillus subtilis S-adenosylmethionine synthetase expressed in Escherichia coli. Biochim. Biophys. Acta, 2008, 1784(12), 1949-1958.
[http://dx.doi.org/10.1016/j.bbapap.2008.06.006] [PMID: 18634909]
[25]
Cheng, X.; Roberts, R.J. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res., 2001, 29(18), 3784-3795.
[http://dx.doi.org/10.1093/nar/29.18.3784] [PMID: 11557810]
[26]
Jeltsch, A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem, 2002, 3(4), 274-293.
[http://dx.doi.org/10.1002/1439-7633(20020402)3:4<274:AID-CBIC274>3.0.CO;2-S] [PMID: 11933228]
[27]
Zelinskaya, N.; Rankin, C.R.; Macmaster, R.; Savic, M.; Conn, G.L. Expression, purification and crystallization of adenosine 1408 aminoglycoside-resistance rRNA methyltransferases for structural studies. Protein Expr. Purif., 2011, 75(1), 89-94.
[http://dx.doi.org/10.1016/j.pep.2010.07.005] [PMID: 20667473]
[28]
Kossykh, V.G.; Lloyd, R.S. A DNA adenine methyltransferase of Escherichia coli that is cell cycle regulated and essential for viability. J. Bacteriol., 2004, 186(7), 2061-2067.
[http://dx.doi.org/10.1128/JB.186.7.2061-2067.2004] [PMID: 15028690]
[29]
Parsons, J.F.; Greenhagen, B.T.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry, 2007, 46(7), 1821-1828.
[http://dx.doi.org/10.1021/bi6024403] [PMID: 17253782]
[30]
Boissier, F.; Bardou, F.; Guillet, V.; Uttenweiler-Joseph, S.; Daffé, M.; Quémard, A.; Mourey, L. Further insight into S-adenosylmethionine-dependent methyltransferases: Structural characterization of Hma, an enzyme essential for the biosynthesis of oxygenated mycolic acids in Mycobacterium tuberculosis. J. Biol. Chem., 2006, 281(7), 4434-4445.
[http://dx.doi.org/10.1074/jbc.M510250200] [PMID: 16356931]
[31]
Wecksler, S.R.; Stoll, S.; Tran, H.; Magnusson, O.T.; Wu, S.P.; King, D.; Britt, R.D.; Klinman, J.P. Pyrroloquinoline quinone biogenesis: Demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry, 2009, 48(42), 10151-10161.
[http://dx.doi.org/10.1021/bi900918b] [PMID: 19746930]
[32]
Casero, R.A., Jr; Pegg, A.E. Polyamine catabolism and disease. Biochem. J., 2009, 421(3), 323-338.
[http://dx.doi.org/10.1042/BJ20090598] [PMID: 19589128]
[33]
Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol., 2010, 42(1), 39-51.
[http://dx.doi.org/10.1016/j.biocel.2009.07.009] [PMID: 19643201]
[34]
Ceccaldi, A.; Rajavelu, A.; Champion, C.; Rampon, C.; Jurkowska, R.; Jankevicius, G.; Sénamaud-Beaufort, C.; Ponger, L.; Gagey, N.; Ali, H.D.; Tost, J.; Vriz, S.; Ros, S.; Dauzonne, D.; Jeltsch, A.; Guianvarc’h, D.; Arimondo, P.B. C5-DNA methyltransferase inhibitors: From screening to effects on zebrafish embryo development. ChemBioChem, 2011, 12(9), 1337-1345.
[http://dx.doi.org/10.1002/cbic.201100130] [PMID: 21633996]
[35]
Misson, L.; Burn, R.; Vit, A.; Hildesheim, J.; Beliaeva, M.A.; Blankenfeldt, W.; Seebeck, F.P. Inhibition and regulation of the ergothioneine biosynthetic methyltransferase EgtD. ACS Chem. Biol., 2018, 13(5), 1333-1342.
[http://dx.doi.org/10.1021/acschembio.8b00127] [PMID: 29658702]
[36]
Hendricks, C.L.; Ross, J.R.; Pichersky, E.; Noel, J.P.; Zhou, Z.S. An enzyme-coupled colorimetric assay for S-adenosylmethionine-dependent methyltransferases. Anal. Biochem., 2004, 326(1), 100-105.
[http://dx.doi.org/10.1016/j.ab.2003.11.014] [PMID: 14769341]
[37]
Broderick, J.B.; Duffus, B.R.; Duschene, K.S.; Shepard, E.M. Radical S-adenosylmethionine enzymes. Chem. Rev., 2014, 114(8), 4229-4317.
[http://dx.doi.org/10.1021/cr4004709] [PMID: 24476342]
[38]
Gutierrez, J.A.; Crowder, T.; Rinaldo-Matthis, A.; Ho, M.C.; Almo, S.C.; Schramm, V.L. Transition state analogs of 5′-methylthioadenosine nucleosidase disrupt quorum sensing. Nat. Chem. Biol., 2009, 5(4), 251-257.
[http://dx.doi.org/10.1038/nchembio.153] [PMID: 19270684]
[39]
Holden, M.T.; Ram Chhabra, S.; de Nys, R.; Stead, P.; Bainton, N.J.; Hill, P.J.; Manefield, M.; Kumar, N.; Labatte, M.; England, D.; Rice, S.; Givskov, M.; Salmond, G.P.; Stewart, G.S.; Bycroft, B.W.; Kjelleberg, S.; Williams, P. Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol. Microbiol., 1999, 33(6), 1254-1266.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01577.x] [PMID: 10510239]
[40]
Nealson, K.H.; Hastings, J.W. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev., 1979, 43(4), 496-518.
[http://dx.doi.org/10.1128/mr.43.4.496-518.1979] [PMID: 396467]
[41]
Bramhachari, P.V.; Sheela, G.M. Vibrio fischeri symbiotically synchronizes bioluminescence in marine animals via quorum sensing mechanism. InImplication of Quorum Sensing System in Biofilm Formation and Virulence; Springer: Singapore, 2018, pp. 207-219.
[http://dx.doi.org/10.1007/978-981-13-2429-1_13]
[42]
Winzer, K.; Hardie, K.R.; Burgess, N.; Doherty, N.; Kirke, D.; Holden, M.T.G.; Linforth, R.; Cornell, K.A.; Taylor, A.J.; Hill, P.J.; Williams, P.; Lux, S. Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology, 2002, 148(Pt 4), 909-922.
[http://dx.doi.org/10.1099/00221287-148-4-909] [PMID: 11932438]
[43]
Riley, S.P.; Bykowski, T.; Babb, K.; von Lackum, K.; Stevenson, B. Genetic and physiological characterization of the Borrelia burgdorferi ORF BB0374-pfs-metK-luxS operon. Microbiology, 2007, 153(Pt 7), 2304-2311.
[http://dx.doi.org/10.1099/mic.0.2006/004424-0] [PMID: 17600074]
[44]
Bao, Y.; Li, Y.; Jiang, Q.; Zhao, L.; Xue, T.; Hu, B.; Sun, B. Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) of Staphylococcus aureus is essential for the virulence independent of LuxS/AI-2 system. Int. J. Med. Microbiol., 2013, 303(4), 190-200.
[http://dx.doi.org/10.1016/j.ijmm.2013.03.004] [PMID: 23611628]
[45]
Bao, Y.; Zhang, X.; Jiang, Q.; Xue, T.; Sun, B. Pfs promotes autolysis-dependent release of eDNA and biofilm formation in Staphylococcus aureus. Med. Microbiol. Immunol. (Berl.), 2015, 204(2), 215-226.
[http://dx.doi.org/10.1007/s00430-014-0357-y] [PMID: 25187407]
[46]
Han, T.; Li, Y.; Shan, Q.; Liang, W.; Hao, W.; Li, Y.; Tan, X.; Gu, J. Characterization of S-adenosylhomocysteine/Methylthio-adenosine nucleosidase on secretion of AI-2 and biofilm formation of Escherichia coli. Microb. Pathog., 2017, 108, 78-84.
[http://dx.doi.org/10.1016/j.micpath.2017.05.015] [PMID: 28487228]
[47]
Rasmussen, T.B.; Givskov, M. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol., 2006, 296(2-3), 149-161.
[http://dx.doi.org/10.1016/j.ijmm.2006.02.005] [PMID: 16503194]
[48]
Kimura, E.; Bersani-Amado, C.A.; Igarashi, K. Inhibition of cell growth and polyamine levels in lymphocytes caused by the combination of methotrexate and Chloroquine. Lat. Am. J. Pharm., 2007, 26(3), 424.
[49]
Fong, J.; Zhang, C.; Yang, R.; Boo, Z.Z.; Tan, S.K.; Nielsen, T.E.; Givskov, M.; Liu, X.W.; Bin, W.; Su, H.; Yang, L. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa. Sci. Rep., 2018, 8(1), 1155.
[http://dx.doi.org/10.1038/s41598-018-19504-w] [PMID: 29348452]
[50]
Ferro, A.J.; Barrett, A.; Shapiro, S.K. Kinetic properties and the effect of substrate analogues on 5′-methylthioadenosine nucleosidase from Escherichia coli. Biochim. Biophys. Acta, 1976, 438(2), 487-494.
[http://dx.doi.org/10.1016/0005-2744(76)90264-3] [PMID: 782530]
[51]
Della Ragione, F.; Porcelli, M.; Cartenì-Farina, M.; Zappia, V.; Pegg, A.E. Escherichia coli S-adenosylhomocysteine/5′-methylthioadenosine nucleosidase. Purification, substrate specificity and mechanism of action. Biochem. J., 1985, 232(2), 335-341.
[http://dx.doi.org/10.1042/bj2320335] [PMID: 3911944]
[52]
Siu, K.K.; Lee, J.E.; Smith, G.D.; Horvatin-Mrakovcic, C.; Howell, P.L. Structure of Staphylococcus aureus 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2008, 64(Pt 5), 343-350.
[http://dx.doi.org/10.1107/S1744309108009275] [PMID: 18453700]
[53]
Siu, K.K. Characterization of the Substrate Specificity and Catalytic Mechanism of 5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase, PhD dissertation, 2010.
[54]
Lee, J.E.; Cornell, K.A.; Riscoe, M.K.; Howell, P.L. Structure of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase inhibitor complexes provide insight into the conformational changes required for substrate binding and catalysis. J. Biol. Chem., 2003, 278(10), 8761-8770.
[http://dx.doi.org/10.1074/jbc.M210836200] [PMID: 12496243]
[55]
Lee, J.E.; Singh, V.; Evans, G.B.; Tyler, P.C.; Furneaux, R.H.; Cornell, K.A.; Riscoe, M.K.; Schramm, V.L.; Howell, P.L. Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J. Biol. Chem., 2005, 280(18), 18274-18282.
[http://dx.doi.org/10.1074/jbc.M414471200] [PMID: 15746096]
[56]
Chang, C.D.; Coward, J.K. Effect of S-adenosylhomocysteine and S-tubercidinylhomocysteine on transfer ribonucleic acid methylation in phytohemagglutinin-stimulated lymphocytes. Mol. Pharmacol., 1975, 11(6), 701-707.
[PMID: 1207668]
[57]
Wang, S.; Haapalainen, A.M.; Yan, F.; Du, Q.; Tyler, P.C.; Evans, G.B.; Rinaldo-Matthis, A.; Brown, R.L.; Norris, G.E.; Almo, S.C.; Schramm, V.L. A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori. Biochemistry, 2012, 51(35), 6892-6894.
[http://dx.doi.org/10.1021/bi3009664] [PMID: 22891633]
[58]
Wetlaufer, D.B.; Ristow, S. Acquisition of three-dimensional structure of proteins. Annu. Rev. Biochem., 1973, 42(1), 135-158.
[http://dx.doi.org/10.1146/annurev.bi.42.070173.001031] [PMID: 4581224]
[59]
Decherchi, S.; Berteotti, A.; Bottegoni, G.; Rocchia, W.; Cavalli, A. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning. Nat. Commun., 2015, 6(1), 6155.
[http://dx.doi.org/10.1038/ncomms7155] [PMID: 25625196]
[60]
Lee, J.E.; Cornell, K.A.; Riscoe, M.K.; Howell, P.L. Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase reveals similarity to the purine nucleoside phosphorylases. Structure, 2001, 9(10), 941-953.
[http://dx.doi.org/10.1016/S0969-2126(01)00656-6] [PMID: 11591349]
[61]
Lee, J.E.; Smith, G.D.; Horvatin, C.; Huang, D.J.; Cornell, K.A.; Riscoe, M.K.; Howell, P.L. Structural snapshots of MTA/AdoHcy nucleosidase along the reaction coordinate provide insights into enzyme and nucleoside flexibility during catalysis. J. Mol. Biol., 2005, 352(3), 559-574.
[http://dx.doi.org/10.1016/j.jmb.2005.07.027] [PMID: 16109423]
[62]
Sirinupong, N.; Brunzelle, J.; Ye, J.; Pirzada, A.; Nico, L.; Yang, Z. Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. J. Biol. Chem., 2010, 285(52), 40635-40644.
[http://dx.doi.org/10.1074/jbc.M110.168187] [PMID: 20943667]
[63]
Lee, J.E.; Luong, W.; Huang, D.J.; Cornell, K.A.; Riscoe, M.K.; Howell, P.L. Mutational analysis of a nucleosidase involved in quorum-sensing autoinducer-2 biosynthesis. Biochemistry, 2005, 44(33), 11049-11057.
[http://dx.doi.org/10.1021/bi050493q] [PMID: 16101288]
[64]
Thomas, K.; Cameron, S.A.; Almo, S.C.; Burgos, E.S.; Gulab, S.A.; Schramm, V.L. Active site and remote contributions to catalysis in methylthioadenosine nucleosidases. Biochemistry, 2015, 54(15), 2520-2529.
[http://dx.doi.org/10.1021/bi501487w] [PMID: 25806409]
[65]
Ronning, D.R.; Iacopelli, N.M.; Mishra, V. Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Protein Sci., 2010, 19(12), 2498-2510.
[http://dx.doi.org/10.1002/pro.524] [PMID: 20954236]
[66]
Mishra, V.; Ronning, D.R. Crystal structures of the Helicobacter pylori MTAN enzyme reveal specific interactions between S-adenosylhomocysteine and the 5′-alkylthio binding subsite. Biochemistry, 2012, 51(48), 9763-9772.
[http://dx.doi.org/10.1021/bi301221k] [PMID: 23148563]
[67]
Kim, R.Q.; Offen, W.A.; Davies, G.J.; Stubbs, K.A. Structural enzymology of Helicobacter pylori methylthioadenosine nucleosidase in the futalosine pathway. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 1), 177-185.
[http://dx.doi.org/10.1107/S1399004713026655] [PMID: 24419390]
[68]
Wang, S.; Cameron, S.A.; Clinch, K.; Evans, G.B.; Wu, Z.; Schramm, V.L.; Tyler, P.C. New antibiotic candidates against Helicobacter pylori. J. Am. Chem. Soc., 2015, 137(45), 14275-14280.
[http://dx.doi.org/10.1021/jacs.5b06110] [PMID: 26494017]
[69]
Harijan, R.K.; Hoff, O.; Ducati, R.G.; Firestone, R.S.; Hirsch, B.M.; Evans, G.B.; Schramm, V.L.; Tyler, P.C. Selective inhibitors of Helicobacter pylori methylthioadenosine nucleosidase and human methylthioadenosine phosphorylase. J. Med. Chem., 2019, 62(7), 3286-3296.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01642] [PMID: 30860833]
[70]
Haapalainen, A.M.; Thomas, K.; Tyler, P.C.; Evans, G.B.; Almo, S.C.; Schramm, V.L. Salmonella enterica MTAN at 1.36 Å resolution: A structure-based design of tailored transition state analogs. Structure, 2013, 21(6), 963-974.
[http://dx.doi.org/10.1016/j.str.2013.04.009] [PMID: 23685211]
[71]
Kang, X.; Zhao, Y.; Jiang, D.; Li, X.; Wang, X.; Wu, Y.; Chen, Z.; Zhang, X.C. Crystal structure and biochemical studies of Brucella melitensis 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Biochem. Biophys. Res. Commun., 2014, 446(4), 965-970.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.045] [PMID: 24657441]
[72]
Xu, Y.; Wang, L.; Chen, J.; Zhao, J.; Fan, S.; Dong, Y.; Ha, N.C.; Quan, C. Structural and functional analyses of Periplasmic 5′-Methylthioadenosine/S-Adenosylhomocysteine nucleosidase from Aeromonas hydrophila. Biochemistry, 2017, 56(40), 5347-5355.
[http://dx.doi.org/10.1021/acs.biochem.7b00691] [PMID: 28862845]
[73]
Ducati, R.G.; Harijan, R.K.; Cameron, S.A.; Tyler, P.C.; Evans, G.B.; Schramm, V.L. Transition-state analogues of Campylobacter jejuni 5′-methylthioadenosine nucleosidase. ACS Chem. Biol., 2018, 13(11), 3173-3183.
[http://dx.doi.org/10.1021/acschembio.8b00781] [PMID: 30339406]
[74]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[75]
Carugo, O.; Djinovic-Carugo, K. Half a century of Ramachandran plots. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 8), 1333-1341.
[http://dx.doi.org/10.1107/S090744491301158X] [PMID: 23897457]
[76]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server issue)(Suppl. 2), W407-10.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[77]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[78]
Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol., 1997, 277, 396-404.
[http://dx.doi.org/10.1016/S0076-6879(97)77022-8] [PMID: 9379925]
[79]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[80]
Hollingsworth, S.A.; Karplus, P.A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol. Concepts, 2010, 1(3-4), 271-283.
[http://dx.doi.org/10.1515/bmc.2010.022] [PMID: 21436958]