Therapeutic Potential of a Bioactive Flavonoids Glycitin from Glycine max: A Review on Medicinal Importance, Pharmacological Activities and Analytical Aspects

Article ID: e130522204766 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Soybean (Glycine max (L.) Merr.) is an important industrial crop and the fourth major crop in the world which is a rich source of isofavones, including glycitein in the human diet. Soybean has been associated with beneficial effects in the prevention of cancer, osteoporosis, cardiovascular diseases and menopausal symptoms. Isoflavones class phytochemicals have been extensively studied in the scientific fields due to their estrogenic potential.

Methods: Scientific information on glycitin for its biological potential and therapeutic effects has been collected and analyzed in the present work. Scientific data on glycitin has been collected from the databases such as Google, Google Scholar, PubMed, Science Direct, and Scopus in the present work and analyzed for their therapeutic potential using terms such as flavonoid and glycitin.

Results: Scientific data analysis revealed the biological importance and therapeutic benefit of glycitin in medicine. Glycitin also called 4′-hydroxy-6-methoxyisoflavone-7-D-glucoside has been found to be present in the Soy products. Glycitin exhibits chemo-preventive, cardio-protective and anti-osteoporosis effects. Glycitin revealed beneficial effects on diabetes, acute lung injury, bone, cognitive performance, breast cancer, skin, immune system, enzymes, prostaglandin and taste receptors. However, its ligand binding assay, cytoprotective effect and pharmacokinetic parameters were also studied in the present work. Analytical data signified the importance of analytical tools for qualitative and quantitative analysis of glycitin in medicine.

Conclusion: Scientific data analysis revealed the therapeutic effectiveness of glycitin in medicine.

Keywords: Glycitin, diabetes, acute lung injury, bone, cognitive performance, breast cancer, skin, immune system, enzymes, prostaglandin, taste receptors

Graphical Abstract

[1]
Patel K, Jain A, Patel DK. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J Acute Dis 2013; 2(3): 169-78.
[http://dx.doi.org/10.1016/S2221-6189(13)60123-7]
[2]
Patel K, Gadewar M, Tahilyani V, Patel DK. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin J Integr Med 2013; 19(10): 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[3]
Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of aloin: A concise report. J Acute Dis 2013; 2(4): 262-9.
[http://dx.doi.org/10.1016/S2221-6189(13)60141-9]
[4]
Patel DK, Patel K, Dhanabal S. Phytochemical standardization of Aloe vera extract by HPTLC techniques. J Acute Dis 2012; 1(1): 47-50.
[http://dx.doi.org/10.1016/S2221-6189(13)60011-6]
[5]
Patel DK, Patel K, Duraiswamy B, Dhanabal SP. Phytochemical analysis and standardization of Strychnos nux-vomica extract through HPTLC techniques. Asian Pac J Trop Dis 2012; 2: S56-60.
[http://dx.doi.org/10.1016/S2222-1808(12)60124-8]
[6]
Patel DK, Patel K, Dhanabal SP. Development of bioanalytical parameters for standardization of Terminalia arjuna. J Acute Dis 2013; 2(4): 287-91.
[http://dx.doi.org/10.1016/S2221-6189(13)60145-6]
[7]
Ferreira PG, Frungillo L, Rosso VV, et al. Soybean extracts enriched with free isol avones promote nitric oxide synthesis and affect the proliferation of breast adenocarcinoma cells. Rev Bras Farmacogn 2013; 23(1): 86-93.
[http://dx.doi.org/10.1590/S0102-695X2012005000101]
[8]
Aguiar CL, Haddad R, Eberlin MN, Carrão-Panizzi MC, Tsai SM, Park YK. Thermal behavior of malonylglucoside isoflavones in soybean flour analyzed by RPHPLC/DAD and eletrospray ionization mass spectrometry. Lebensm Wiss Technol 2012; 48(1): 114-9.
[http://dx.doi.org/10.1016/j.lwt.2012.02.017]
[9]
Mudrikatin S. The in silico study of phytoestrogenic activity of soy in substitution of estrogen function. J Complement Med Res 2018; 9(2): 11.
[http://dx.doi.org/10.5455/jcmr.20170611101442]
[10]
Luthria D, Biswas R, Natarajan S. Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chem 2007; 105(1): 325-33.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.047]
[11]
Patel DK. Medicinal importance of flavonoid “eupatorin” in the health sectors: Therapeutic benefit and pharmacological activities through scientific data analysis. Curr Chinese Sci 2021; 1(6): 629-38.
[http://dx.doi.org/10.2174/2210298101666210804141644]
[12]
Patel DK, Patel K, Gadewar M, Tahilyani V. Pharmacological and bioanalytical aspects of galangin-a concise report. Asian Pac J Trop Biomed 2012; 2(1): S449-55.
[http://dx.doi.org/10.1016/S2221-1691(12)60205-6]
[13]
de Oliveira SR, Taveira SF, Marreto RN, Valadares MC, Diniz DGA, Lima EM. Preparation and characterization of solid oral dosage forms containing soy isoflavones. Rev Bras Farmacogn 2013; 23(1): 175-81.
[http://dx.doi.org/10.1590/S0102-695X2013005000007]
[14]
Patel DK. Medicinal importance, pharmacological activities and analytical aspects of canadine in the medicine: An important phytochemical of Hydrastis canadensis. Curr Chinese Chem 2021; p. 01.
[15]
Patel K, Patel DK. The beneficial role of rutin, A naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. Bioact Food as Diet Interv Arthritis Relat Inflamm Dis 2019; pp. 457-79.
[16]
Seo GY, Lim Y, Koh D, et al. TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med 2017; 49(3): e302-2.
[http://dx.doi.org/10.1038/emm.2016.167] [PMID: 28303029]
[17]
Zhang L, Chen J, Chai W, Ni M, Sun X, Tian D. Glycitin regulates osteoblasts through TGF-β or AKT signaling pathways in bone marrow stem cells. Exp Ther Med 2016; 12(5): 3063-7.
[http://dx.doi.org/10.3892/etm.2016.3696] [PMID: 27882117]
[18]
Zhang B, Su J-P, Bai Y, Li J, Liu Y-H. Inhibitory effects of O-methylated isoflavone glycitein on human breast cancer SKBR-3 cells. Int J Clin Exp Pathol 2015; 8(7): 7809-17.
[PMID: 26339345]
[19]
Seo GY, Park S, Huh J-S, Cho M. The protective effect of glycitin on UV-induced skin photoaging in human primary dermal fibroblast. J Korean Soc Appl Biol Chem 2014; 57(4): 463-8.
[http://dx.doi.org/10.1007/s13765-014-4155-4]
[20]
Zang Y, Igarashi K, Yu C. Anti-obese and anti-diabetic effects of a mixture of daidzin and glycitin on C57BL/6J mice fed with a high-fat diet. Biosci Biotechnol Biochem 2015; 79(1): 117-23.
[http://dx.doi.org/10.1080/09168451.2014.955453] [PMID: 25209298]
[21]
Chen Y, Guo S, Jiang K, Wang Y, Yang M, Guo M. Glycitin alleviates lipopolysaccharide-induced acute lung injury via inhibiting NF-κB and MAPKs pathway activation in mice. Int Immunopharmacol 2019; 75: 105749.
[http://dx.doi.org/10.1016/j.intimp.2019.105749] [PMID: 31306981]
[22]
Li XH, Zhang JC, Sui SF, Yang MS. Effect of daidzin, genistin, and glycitin on osteogenic and adipogenic differentiation of bone marrow stromal cells and adipocytic transdifferentiation of osteoblasts. Acta Pharmacol Sin 2005; 26(9): 1081-6.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00161.x] [PMID: 16115375]
[23]
Uesugi T, Toda T, Tsuji K, Ishida H. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. Biol Pharm Bull 2001; 24(4): 368-72.
[http://dx.doi.org/10.1248/bpb.24.368] [PMID: 11305597]
[24]
Wang W, Yang R, Zhang M, et al. Glycitin suppresses cartilage destruction of osteoarthritis in mice. Inflammation 2020; 43(4): 1312-22.
[http://dx.doi.org/10.1007/s10753-020-01210-3] [PMID: 32222871]
[25]
Thorp AA, Sinn N, Buckley JD, Coates AM, Howe PRC. Soya isoflavone supplementation enhances spatial working memory in men. Br J Nutr 2009; 102(9): 1348-54.
[http://dx.doi.org/10.1017/S0007114509990201] [PMID: 19480732]
[26]
Valachovicova T, Slivova V, Bergman H, Shuherk J, Sliva D. Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. Int J Oncol 2004; 25(5): 1389-95.
[PMID: 15492830]
[27]
Kim YM, Huh JS, Lim Y, Cho M. Soy isoflavone glycitin (4′-Hydroxy-6-Methoxyisoflavone-7-D-Glucoside) promotes human dermal fibroblast cell proliferation and migration via TGF-β signaling. Phytother Res 2015; 29(5): 757-69.
[http://dx.doi.org/10.1002/ptr.5313] [PMID: 25758427]
[28]
Choi J-H, Chung MJ, Jeong D-Y, Oh D-H. Immunostimulatory activity of isoflavone-glycosides and ethanol extract from a fermented soybean product in human primary immune cells. J Med Food 2014; 17(10): 1113-21.
[http://dx.doi.org/10.1089/jmf.2013.3040] [PMID: 25230138]
[29]
Kopečná-Zapletalová M, Krasulová K, Anzenbacher P, Hodek P, Anzenbacherová E. Interaction of isoflavonoids with human liver microsomal cytochromes P450: Inhibition of CYP enzyme activities. Xenobiotica 2017; 47(4): 324-31.
[http://dx.doi.org/10.1080/00498254.2016.1195028] [PMID: 27312150]
[30]
Kim B-N, Yeom S-J, Kim Y-S, Oh D-K. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol Lett 2012; 34(1): 125-9.
[http://dx.doi.org/10.1007/s10529-011-0739-9] [PMID: 21898127]
[31]
Mizushina Y, Shiomi K, Kuriyama I, Takahashi Y, Yoshida H. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase II activity and cancer cell proliferation. Int J Oncol 2013; 43(4): 1117-24.
[http://dx.doi.org/10.3892/ijo.2013.2032] [PMID: 23900272]
[32]
Tang Y, Li S, Li S, et al. Screening and isolation of potential lactate dehydrogenase inhibitors from five Chinese medicinal herbs: Soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. J Sep Sci 2016; 39(11): 2043-9.
[http://dx.doi.org/10.1002/jssc.201600050] [PMID: 27059876]
[33]
Yamaki K, Kim D-H, Ryu N, Kim YP, Shin KH, Ohuchi K. Effects of naturally occurring isoflavones on prostaglandin E2 production. Planta Med 2002; 68(2): 97-100.
[http://dx.doi.org/10.1055/s-2002-20263] [PMID: 11859455]
[34]
Roland WSU, Vincken J-P, Gouka RJ, van Buren L, Gruppen H, Smit G. Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. J Agric Food Chem 2011; 59(21): 11764-71.
[http://dx.doi.org/10.1021/jf202816u] [PMID: 21942422]
[35]
Muñoz Y, Garrido A, Valladares L. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A(2) receptor in human platelets. Thromb Res 2009; 123(5): 740-4.
[http://dx.doi.org/10.1016/j.thromres.2008.07.011] [PMID: 18786699]
[36]
Robb EL, Stuart JA. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression. Phytother Res 2014; 28(1): 120-31.
[http://dx.doi.org/10.1002/ptr.4970] [PMID: 23526725]
[37]
Baranowska I, Magiera S. Analysis of isoflavones and flavonoids in human urine by UHPLC. Anal Bioanal Chem 2011; 399(9): 3211-9.
[http://dx.doi.org/10.1007/s00216-010-4206-6] [PMID: 20936271]
[38]
Yao Y, Ma X, Li T, et al. Quantification of isoflavone glycosides and aglycones in rat plasma by LC-MS/MS: Troubleshooting of interference from food and its application to pharmacokinetic study of Semen Sojae Praeparatum extract. J Pharm Biomed Anal 2018; 161: 444-54.
[http://dx.doi.org/10.1016/j.jpba.2018.09.011] [PMID: 30216793]
[39]
Sepehr E, Cooke GM, Robertson P, Gilani GS. Effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged male rats. Mol Nutr Food Res 2009; 53 (Suppl. 1): S16-26.
[http://dx.doi.org/10.1002/mnfr.200800170] [PMID: 19437481]
[40]
Lee SH, Kim YH, Yu HJ, et al. Enhanced bioavailability of soy isoflavones by complexation with β-cyclodextrin in rats. Biosci Biotechnol Biochem 2007; 71(12): 2927-33.
[http://dx.doi.org/10.1271/bbb.70296] [PMID: 18071265]
[41]
Baranowska I, Magiera S, Baranowski J. UHPLC method for the simultaneous determination of β-blockers, isoflavones and their metabolites in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879(9-10): 615-26.
[http://dx.doi.org/10.1016/j.jchromb.2011.01.026] [PMID: 21345747]
[42]
Sepehr E, Robertson P, Gilani GS, Cooke G, Lau BP. An accurate and reproducible method for the quantitative analysis of isoflavones and their metabolites in rat plasma using liquid chromatography/mass spectrometry combined with photodiode array detection. J AOAC Int 2006; 89(4): 1158-67.
[http://dx.doi.org/10.1093/jaoac/89.4.1158] [PMID: 16915859]
[43]
Yasuda S, Wu PS, Hattori E, Tachibana H, Yamada K. Simultaneous determination of isoflavones and bisphenol A in rat serum by high-performance liquid chromatography coupled with coulometric array detection. Biosci Biotechnol Biochem 2004; 68(1): 51-8.
[http://dx.doi.org/10.1271/bbb.68.51] [PMID: 14745163]
[44]
Xu HY, Zheng H-C, Zhang H-W, Zhang J-Y, Ma C-M. Comparison of antioxidant constituents of Agriophyllum squarrosum seed with conventional crop seeds. J Food Sci 2018; 83(7): 1823-31.
[http://dx.doi.org/10.1111/1750-3841.14159] [PMID: 29870059]
[45]
Kasparovska J, Krizova L, Lochman J, Dadakova K, Kasparovsky T. Soybean-derived isoflavone determination in rumen fluid and milk by LC-MS-(TOF). J Chromatogr Sci 2016; 54(6): 997-1003.
[http://dx.doi.org/10.1093/chromsci/bmw033] [PMID: 27021208]
[46]
Puri A, Panda BP. Simultaneous estimation of glycosidic isoflavones in fermented and unfermented soybeans by TLC-densitometric method. J Chromatogr Sci 2015; 53(2): 338-44.
[http://dx.doi.org/10.1093/chromsci/bmu045] [PMID: 24872524]
[47]
Shawky E, Sallam SM. Simultaneous determination of soyasaponins and isoflavones in soy (Glycine max L.) products by HPTLC-densitometry-multiple detection. J Chromatogr Sci 2017; 55(10): 1059-65.
[http://dx.doi.org/10.1093/chromsci/bmx062] [PMID: 28977409]
[48]
Magiera S, Baranowska I, Lautenszleger A. UHPLC-UV method for the determination of flavonoids in dietary supplements and for evaluation of their antioxidant activities. J Pharm Biomed Anal 2015; 102: 468-75.
[http://dx.doi.org/10.1016/j.jpba.2014.10.004] [PMID: 25459947]
[49]
Zhang LX, Burdette CQ, Phillips MM, Rimmer CA, Marcus RK. Determination of isoflavone content in SRM 3238 using liquid chromatography-particle beam/electron ionization mass spectrometry. J AOAC Int 2015; 98(6): 1483-90.
[http://dx.doi.org/10.5740/jaoacint.15-112] [PMID: 26651559]
[50]
Rostagno MA, Palma M, Barroso CG. Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 2003; 1012(2): 119-28.
[http://dx.doi.org/10.1016/S0021-9673(03)01184-1] [PMID: 14521308]
[51]
Mulsow K, Eidenschink J, Melzig MF. FT-IR Method for the quantification of isoflavonol glycosides in nutritional supplements of soy (Glycine max (L.) MERR.). Sci Pharm 2015; 83(2): 377-86.
[http://dx.doi.org/10.3797/scipharm.1410-02] [PMID: 26839824]
[52]
Toro-Funes N, Odriozola-Serrano I, Bosch-Fusté J, et al. Fast simultaneous determination of free and conjugated isoflavones in soy milk by UHPLC-UV. Food Chem 2012; 135(4): 2832-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.011] [PMID: 22980879]
[53]
Klejdus B, Vacek J, Lojková L, Benesová L, Kubán V. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases. J Chromatogr A 2008; 1195(1-2): 52-9.
[http://dx.doi.org/10.1016/j.chroma.2008.04.069] [PMID: 18501366]
[54]
Kim EY, Hong KB, Suh HJ, Choi HS. Protective effects of germinated and fermented soybean extract against tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 cells and in rats. Food Funct 2015; 6(11): 3512-21.
[http://dx.doi.org/10.1039/C5FO00785B] [PMID: 26299642]
[55]
Qing L-S, Xue Y, Liu Y-M, Liang J, Xie J, Liao X. Rapid magnetic solid-phase extraction for the selective determination of isoflavones in soymilk using baicalin-functionalized magnetic nanoparticles. J Agric Food Chem 2013; 61(34): 8072-8.
[http://dx.doi.org/10.1021/jf402097y] [PMID: 23898976]
[56]
Chen LJ, Zhao X, Plummer S, Tang J, Games DE. Quantitative determination and structural characterization of isoflavones in nutrition supplements by liquid chromatography-mass spectrometry. J Chromatogr A 2005; 1082(1): 60-70.
[http://dx.doi.org/10.1016/j.chroma.2005.03.066] [PMID: 16038195]
[57]
Lapcík O, Klejdus B, Davidová M, Kokoška L, Kubán V, Moravcová J. Isoflavonoids in the Rutaceae family: 1. Fortunella obovata, Murraya paniculata and four Citrus species. Phytochem Anal 2004; 15(5): 293-9.
[http://dx.doi.org/10.1002/pca.781] [PMID: 15508833]
[58]
Klejdus B, Lojková L, Lapcík O, Koblovská R, Moravcová J, Kubán V. Supercritical fluid extraction of isoflavones from biological samples with ultra-fast high-performance liquid chromatography/mass spectrometry. J Sep Sci 2005; 28(12): 1334-46.
[http://dx.doi.org/10.1002/jssc.200500102] [PMID: 16138685]
[59]
Klejdus B, Vacek J, Benesová L, Kopecký J, Lapcík O, Kubán V. Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts. Anal Bioanal Chem 2007; 389(7-8): 2277-85.
[http://dx.doi.org/10.1007/s00216-007-1606-3] [PMID: 17899029]
[60]
Yang X, Deng Z, Wang J, Ding M. Preparation of soybean isoflavone glucosides by reversed-phase high performance liquid chromatography. Se Pu 2006; 24(4): 363-6.
[PMID: 17017161]
[61]
López-Gutiérrez N, Romero-González R, Garrido Frenich A, Martínez Vidal JL. Identification and quantification of the main isoflavones and other phytochemicals in soy based nutraceutical products by liquid chromatography-orbitrap high resolution mass spectrometry. J Chromatogr A 2014; 1348: 125-36.
[http://dx.doi.org/10.1016/j.chroma.2014.04.090] [PMID: 24835762]
[62]
Yang F, Ma Y, Ito Y. Separation and purification of isoflavones from a crude soybean extract by high-speed counter-current chromatography. J Chromatogr A 2001; 928(2): 163-70.
[http://dx.doi.org/10.1016/S0021-9673(01)01144-X] [PMID: 11587334]
[63]
Klump SP, Allred MC, MacDonald JL, et al. Determination of isoflavones in soy and selected foods containing soy by extraction, saponification, and liquid chromatography: Collaborative study. J AOAC Int 2001; 84(6): 1865-83.
[http://dx.doi.org/10.1093/jaoac/84.6.1865] [PMID: 11767157]
[64]
Ablajan K. A study of characteristic fragmentation of isoflavonoids by using negative ion ESI-MSn. J Mass Spectrom 2011; 46(1): 77-84.
[http://dx.doi.org/10.1002/jms.1867] [PMID: 21182215]
[65]
Park K-Y, Jung G-O, Choi J, Lee K-T, Park H-J. Potent antimutagenic and their anti-lipid peroxidative effect of kaikasaponin III and tectorigenin from the flower of Pueraria thunbergiana. Arch Pharm Res 2002; 25(3): 320-4.
[http://dx.doi.org/10.1007/BF02976633] [PMID: 12135104]
[66]
Nakamura Y, Tsuji S, Tonogai Y. Determination of the levels of isoflavonoids in soybeans and soy-derived foods and estimation of isoflavonoids in the Japanese daily intake. J AOAC Int 2000; 83(3): 635-50.
[http://dx.doi.org/10.1093/jaoac/83.3.635] [PMID: 10868587]
[67]
Delgado-Zamarreño MM, Pérez-Martín L, Bustamante-Rangel M, Carabias-Martínez R. A modified QuEChERS method as sample treatment before the determination of isoflavones in foods by ultra-performance liquid chromatography-triple quadrupole mass spectrometry. Talanta 2012; 100: 320-8.
[http://dx.doi.org/10.1016/j.talanta.2012.07.070] [PMID: 23141344]
[68]
Johns P, Dowlati L, Wargo W. Determination of isoflavones in ready-to-feed soy-based infant formula. J AOAC Int 2003; 86(1): 72-8.
[http://dx.doi.org/10.1093/jaoac/86.1.72] [PMID: 12607743]
[69]
Tsai H-S, Huang L-J, Lai Y-H, Chang J-C, Lee R-S, Chiou RYY. Solvent effects on extraction and HPLC analysis of soybean isoflavones and variations of isoflavone compositions as affected by crop season. J Agric Food Chem 2007; 55(19): 7712-5.
[http://dx.doi.org/10.1021/jf071010n] [PMID: 17708647]
[70]
Klejdus B, Mikelová R, Petrlová J, et al. Determination of isoflavones in soy bits by fast column high-performance liquid chromatography coupled with UV-visible diode-array detection. J Chromatogr A 2005; 1084(1-2): 71-9.
[http://dx.doi.org/10.1016/j.chroma.2005.05.070] [PMID: 16114238]
[71]
Micke GA, Fujiya NM, Tonin FG, de Oliveira Costa AC, Tavares MFM. Method development and validation for isoflavones in soy germ pharmaceutical capsules using micellar electrokinetic chromatography. J Pharm Biomed Anal 2006; 41(5): 1625-32.
[http://dx.doi.org/10.1016/j.jpba.2006.03.012] [PMID: 16631335]
[72]
Bhatt PC, Pathak S, Kumar V, Panda BP. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer’s disease by fermented soybean nanonutraceutical. Inflammopharmacology 2018; 26(1): 105-18.
[http://dx.doi.org/10.1007/s10787-017-0381-9] [PMID: 28791538]
[73]
Xu Z, Wu Q, Godber JS. Stabilities of daidzin, glycitin, genistin, and generation of derivatives during heating. J Agric Food Chem 2002; 50(25): 7402-6.
[http://dx.doi.org/10.1021/jf025626i] [PMID: 12452666]
[74]
Montero G, Günther G, Valdés K, Arriagada F, Morales J. An HPLC method for the determination of isoflavones and the evaluation of their antioxidant capacity in both homogeneous and microheterogeneous systems. J AOAC Int 2018; 101(1): 235-41.
[http://dx.doi.org/10.5740/jaoacint.17-0104] [PMID: 28766479]
[75]
Watanabe S, Yamada R, Kanetake H, Kaga A, Anai T. Identification and characterization of a major QTL underlying soybean isoflavone malonylglycitin content. Breed Sci 2019; 69(4): 564-72.
[http://dx.doi.org/10.1270/jsbbs.19027] [PMID: 31988620]
[76]
S Freitas C, Alves da Silva G, Perrone D, et al. Recovery of antimicrobials and bioaccessible isoflavones and phenolics from soybean (Glycine max) meal by aqueous extraction. Molecules 2018; 24(1): 74.
[http://dx.doi.org/10.3390/molecules24010074] [PMID: 30587803]
[77]
Choi I, Kim Y, Park Y, Seog H, Choi H. Anti-obesity activities of fermented soygerm isoflavones by Bifidobacterium breve. Biofactors 2007; 29(2-3): 105-12.
[http://dx.doi.org/10.1002/biof.552029201] [PMID: 17673827]
[78]
Li X, Li JF, Wang D, Wang WN, Cui Z. Isoflavone glycosides from the bark of Maackia amurensis. Yao Xue Xue Bao 2009; 44(1): 63-8.
[PMID: 19350824]
[79]
Qu LP, Fan GR, Peng JY, Mi HM. Isolation of six isoflavones from Semen sojae praeparatum by preparative HPLC. Fitoterapia 2007; 78(3): 200-4.
[http://dx.doi.org/10.1016/j.fitote.2006.11.002] [PMID: 17343991]
[80]
Carrara VS, Amato AA, Neves FAR, et al. Effects of a methanolic fraction of soybean seeds on the transcriptional activity of Peroxisome Proliferator-Activated Receptors (PPAR). Braz J Med Biol Res 2009; 42(6): 545-50.
[http://dx.doi.org/10.1590/S0100-879X2009000600011] [PMID: 19448904]
[81]
Liu L, Ma Y, Chen X, Xiong X, Shi S. Screening and identification of BSA bound ligands from Puerariae lobata flower by BSA functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 887-888: 55-60.
[http://dx.doi.org/10.1016/j.jchromb.2012.01.008] [PMID: 22305973]
[82]
Miladinović J, Đorđević V, Balešević-Tubić S, et al. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Sci Rep 2019; 9(1): 10341.
[http://dx.doi.org/10.1038/s41598-019-46817-1] [PMID: 31316115]
[83]
Yatsu FKJ, Koester LS, Bassani VL. Isoflavone-aglycone fraction from Glycine max: A promising raw material for isoflavone-based pharmaceutical or nutraceutical products. Rev Bras Farmacogn 2016; 26(2): 259-67.
[http://dx.doi.org/10.1016/j.bjp.2015.12.004]
[84]
Balisteiro DM, Rombaldi CV, Genovese MI. Protein, isoflavones, trypsin inhibitory and in vitro antioxidant capacities: Comparison among conventionally and organically grown soybeans. Food Res Int 2013; 51(1): 8-14.
[http://dx.doi.org/10.1016/j.foodres.2012.11.015]