Effect of Solvents on 1-Butyl-1,2,4-Triazolium Trifluoroacetate Triggered Synthesis of 2,3-Dihydroquinazolin

Page: [346 - 354] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Quinazolinones are a class of heterocyclic compounds that have a wide variety of applications. They are also used in agrochemicals. There are several methodologies reported for the synthesis of 2,3-dihydroquinazolines using various catalysts.

Methods: Here, by using 1-butyl-1,2,4-triazolium as cation and trifluoroacetate as anion, 2,3- dihydroquinazolin-4(1H)-one has been synthesized. For the synthesis of 2,3-dihydroquinazolin- 4(1H)-one, the condensation of anthranilamide with the corresponding aldehyde in the presence of organocatalyst and solvent was done. Using benzaldehyde as the parent aldehyde, to validate the outcome, the benzaldehydes were selected as follows: a) benzaldehyde; b) 4-methoxybenzaldehyde, an electron-releasing group; and c) 4-nitrobenzaldehyde, an electron-withdrawing group. A solvent study has been done with solvents varying from polar to apolar. Both polar protic and polar aprotic solvents have been used for the reactions. The polar protic solvents used were water, methanol, ethanol, isopropanol, butanol, hexane-1-ol, and glycerol. The polar aprotic solvents used were ethyl acetate, DMF, acetonitrile, and DMSO. The moderately apolar solvents used were DCM, carbon tetrachloride, 1,4 dioxane, and chloroform.

Results: The synthesized triazolium salts have been found to be soluble in polar aprotic and polar protic solvents, and a few moderately apolar solvents, such as DCM, chloroform, acetonitrile, water, methanol and ethanol, whereas insoluble in apolar solvents, like toluene, benzene, and hexane. The yield of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one was low for 1-butyl-1,2,4-triazolium trifluoroacetate- based organocatalyst. But for substituted benzaldehyde, the yield was comparatively high. Comparatively, the yield for 2-(4-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, where the aromatic benzaldehyde had an electron-donating group, was less than 2-(4-nitrophenyl)-2,3- dihydroquinazolin-4(1H)-one, where the aromatic benzaldehyde had an electron-withdrawing group.

Conclusion: Substituted benzaldehyde provided better yields than benzaldehyde. The nitro group, which is an electron-withdrawing group, when attached to benzaldehyde, enhanced the electrophilic nature at the carbonyl center, providing higher yields than the methoxy group, which is an electron-donating group; when it attaches to benzaldehyde, it deactivates the carbonyl carbon. The polar protic solvents, like water, ethanol and methanol, stabilize the ionic intermediates, providing a better yield. Even the moderately apolar solvents, like DCM and chloroform, resulted in good yields; green solvents, like water, ethanol and methanol, would be a better choice as solvents. The carbon chain on the solvent has an effect on the product yield. As the carbon chain increases in the solvent, the yield decreases due to the separation difficulty. The polar aprotic solvents provided better yields but not as good as polar protic solvents.

Keywords: Organocatalysts, Ionic liquids, Heterocyclic compounds, Quinazolinones, Dihydroquinazolin, Solvents

Graphical Abstract

[1]
Zhang, J.; Liu, J.; Ma, Y.; Ren, D.; Cheng, P.; Zhao, J.; Zhang, F.; Yao, Y. One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety. Bioorg. Med. Chem. Lett., 2016, 26(9), 2273-2277.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.052] [PMID: 27040656]
[2]
Reddy, M.M.; Sivaramakrishna, A. Remarkably flexible quinazolinones-synthesis and biological applications. J. Heterocycl. Chem., 2020, 57(3), 942-954.
[http://dx.doi.org/10.1002/jhet.3844]
[3]
Rakesh, K.P.; Darshini, N.; Shubhavathi, T.; Mallesha, N. Biological applications of quinazolinone analogues a review. Org. Med. Chem. Inter. J., 2017, 2(2), 41-45.
[4]
Rajput, R.; Mishra, A. A review on biological activity of quinazolinones. Int. J. Pharm. Sci., 2012, 4(2), 66-70.
[5]
Al-Amiery, A.A.; Kadhum, A.A.; Shamel, M.; Satar, M.; Khalid, Y.; Mohamad, A.B. Antioxidant and antimicrobial activities of novel quinazolinones. Med. Chem. Res., 2014, 23(1), 236-242.
[http://dx.doi.org/10.1007/s00044-013-0625-1]
[6]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[7]
Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem., 2015, 90, 124-169.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.084] [PMID: 25461317]
[8]
Mishra, S. Quinazolinone and quinazoline derivatives: Synthesis and biological application. Quinazolinone and Quinazoline Derivatives., 2020, 10.
[9]
Ravez, S.; Castillo-Aguilera, O.; Depreux, P.; Goossens, L. Quinazoline derivatives as anticancer drugs: a patent review (2011 - present). Expert Opin. Ther. Pat., 2015, 25(7), 789-804.
[http://dx.doi.org/10.1517/13543776.2015.1039512] [PMID: 25910402]
[10]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Inter. J. Med. Chem., 2014, 2014, 395637.
[http://dx.doi.org/10.1155/2014/395637]
[11]
Dongare, P.R.; Gore, A.H.; Kondekar, U.R.; Kolekar, G.B.; Ajalkar, B.D. A Quinazolinone based fluorescent chemosensor for selective detection of Fe (III) in aqueous media: Applications to pharmaceutical and environmental analysis. Inorg. Nano-Metal Chem., 2018, 48(1), 49-56.
[http://dx.doi.org/10.1080/24701556.2017.1357631]
[12]
Ajani, O.O.; Aderohunmu, D.V.; Umeokoro, E.N.; Olomieja, A.O. Quinazoline pharmacophore in therapeutic medicine. Bangladesh J. Pharmacol., 2016, 11(3), 716-733.
[http://dx.doi.org/10.3329/bjp.v11i3.25731]
[13]
Nagarajan, S.; Shaikh, T.M.; Kandasamy, E. An ionic liquid catalyzed reusable protocol for one-pot synthesis of 2, 3-dihydroquinazolin-4 (1 H)-one under mild conditions. New J. Chem., 2015, 39(12), 9693-9699.
[http://dx.doi.org/10.1039/C5NJ01545F]
[14]
Hemalatha, K.; Madhumitha, G. Synthetic strategy with representation on mechanistic pathway for the therapeutic applications of dihydro-quinazolinones. Eur. J. Med. Chem., 2016, 123, 596-630.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.001] [PMID: 27517807]
[15]
Uruno, Y.; Konishi, Y.; Suwa, A.; Takai, K.; Tojo, K.; Nakako, T.; Sakai, M.; Enomoto, T.; Matsuda, H.; Kitamura, A.; Sumiyoshi, T. Discovery of dihydroquinazolinone derivatives as potent, selective, and CNS-penetrant M(1) and M(4) muscarinic acetylcholine receptors agonists. Bioorg. Med. Chem. Lett., 2015, 25(22), 5357-5361.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.032] [PMID: 26428869]
[16]
Wang, D.; Gao, F. Quinazoline derivatives: Synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95.
[http://dx.doi.org/10.1186/1752-153X-7-95] [PMID: 23731671]
[17]
Qiao, J.; Jiang, H.; Liu, X.; Xu, C.; Sun, Z.; Chu, W. Ruthenium‐catalyzed synthesis of quinazolinones through hydrogen transfer and cyclization. Eur. J. Org. Chem., 2019, (13), 2428-2434.
[http://dx.doi.org/10.1002/ejoc.201900317]
[18]
Hajjami, M.; Gholamian, F. Tribromide ion immobilized on magnetic nanoparticle as a new, efficient and reusable nanocatalyst in multicomponent reactions. RSC Adv, 2016, 6(91), 87950-87960.
[http://dx.doi.org/10.1039/C6RA15474C]
[19]
Salehi, P.; Ayyari, M.; Bararjanian, M.; Ebrahimi, S.N.; Aliahmadi, A. Synthesis, antibacterial and antioxidant activity of novel 2, 3-dihydroquinazolin-4 (1 H)-one derivatives of dehydroabietylamine diterpene. J. Indian Chem. Soc., 2014, 11(3), 607-613.
[20]
Yashwantrao, G.; Jejurkar, V.P.; Kshatriya, R.; Saha, S. Solventfree, mechanochemically scalable synthesis of 2, 3-dihydroquinazolin-4 (1H)-one using Brønsted acid catalyst. ACS Sustain. Chem. Eng., 2019, 7(15), 13551-13558.
[http://dx.doi.org/10.1021/acssuschemeng.9b03199]
[21]
Shiri, L.; Ghorbani‐Choghamarani, A.; Kazemi, M. Synthesis and characterization of bromine source supported on magnetic Fe3O4 nanoparticles: A new, versatile and efficient magnetically separable catalyst for organic synthesis. Appl. Organomet. Chem., 2017, 31(7), e3634.
[http://dx.doi.org/10.1002/aoc.3634]
[22]
Su, G.; Thomson, C.J.; Yamazaki, K.; Rozsar, D.; Christensen, K.E.; Hamlin, T.A.; Dixon, D.J. A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines via intramolecular aza-Michael reaction to α,β-unsaturated esters. Chem. Sci. (Camb.), 2021, 12(17), 6064-6072.
[http://dx.doi.org/10.1039/D1SC00856K] [PMID: 33996002]
[23]
Sadeghzadeh, S.M. Spidery catalyst for the synthesis of quinazoline-2, 4 (1 H, 3 H)-diones. Catal. Sci. Technol., 2016, 6(5), 1435-1441.
[http://dx.doi.org/10.1039/C5CY01543J]
[24]
Pawar, S.A.; Chand, A.N.; Kumar, A.V. Polydopamine: an amine oxidase mimicking sustainable catalyst for the synthesis of nitrogen heterocycles under aqueous conditions. ACS Sustain. Chem. Eng., 2019, 7(9), 8274-8286.
[http://dx.doi.org/10.1021/acssuschemeng.8b06677]
[25]
To, T.A.; Vo, Y.H.; Nguyen, H.T.; Ha, P.T.; Doan, S.H.; Doan, T.L.; Li, S.; Le, H.V.; Tu, T.N.; Phan, N.T. Iron-catalyzed one-pot sequential transformations: synthesis of quinazolinones via oxidative Csp3H bond activation using a new metal-organic framework as catalyst. J. Catal., 2019, 370, 11-20.
[http://dx.doi.org/10.1016/j.jcat.2018.11.031]
[26]
Dutta, A.; Damarla, K.; Bordoloi, A.; Kumar, A.; Sarma, D. KOH/DMSO: A basic suspension for transition metal-free Tandem synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Tetrahedron Lett., 2019, 60(24), 1614-1619.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.030]
[27]
Wang, S.L.; Yang, K.; Yao, C.S.; Wang, X.S. Green synthesis of quinazolinone derivatives catalyzed by iodine in ionic liquid. Synth. Commun., 2012, 42(3), 341-349.
[http://dx.doi.org/10.1080/00397911.2010.524340]
[28]
Sahu, A.; Mishra, S.; Sahu, P.; Gajbhiye, A.; Agrawal, R.K. Indium (III) Chloride: An Efficient Catalyst for One-Pot Multicomponent Synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones. Curr. Organocatal., 2018, 5(2), 137-144.
[http://dx.doi.org/10.2174/2213337205666180614112318]
[29]
Fahimi, N.; Sardarian, A.R. Citric Acid: A green bioorganic catalyst for one-pot three-component synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones. Curr. Organocatal., 2016, 3(1), 39-44.
[http://dx.doi.org/10.2174/2213337202666150602221505]
[30]
Tashrifi, Z.; Mohammadi-Khanaposhtani, M.; Biglar, M.; Larijani, B.; Mahdavi, M. Isatoic Anhydride: A fascinating and basic molecule for the synthesis of substituted quinazolinones and benzo di/triazepines. Curr. Org. Chem., 2019, 23(10), 1090-1130.
[http://dx.doi.org/10.2174/1385272823666190701142930]
[31]
Chen, C.; Xuejiao, A.; Li, X.; Huang, G.; Liu, B. Phosphomolybdic acid (PMA)-catalyzed one-pot synthesis of 2, 3-dihydroquinazolines. Lett. Org. Chem., 2019, 16(8), 683-687.
[http://dx.doi.org/10.2174/1570178615666181108104155]
[32]
Kiyani, H.; Tazari, M.; Ghorbani, F. Expeditious and green synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones catalyzed by nano-MgO. Lett. Org. Chem., 2018, 15(6), 523-529.
[http://dx.doi.org/10.2174/1570178614666170710094547]
[33]
Abdel-Jalil, R.J.; Voelter, W.; Saeed, M. A novel method for the synthesis of 4 (3H)-quinazolinones. Tetrahedron Lett., 2004, 45(17), 3475-3476.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.003]
[34]
Bhat, B.A.; Sahu, D.P. One Pot Synthesis of 4 (3 H)‐. Quinazolinones. Synth. Commun., 2004, 34(12), 2169-2176.
[http://dx.doi.org/10.1081/SCC-120038496]
[35]
Jiang, X.; Tang, T.; Wang, J.M.; Chen, Z.; Zhu, Y.M.; Ji, S.J. Palladium-catalyzed one-pot synthesis of quinazolinones via tert-butyl isocyanide insertion. J. Org. Chem., 2014, 79(11), 5082-5087.
[http://dx.doi.org/10.1021/jo500636y] [PMID: 24810598]
[36]
Maity, A.; Mondal, S.; Paira, R.; Hazra, A.; Naskar, S.; Sahu, K.B.; Saha, P.; Banerjee, S.; Mondal, N.B. A novel approach for the one-pot synthesis of linear and angular fused quinazolinones. Tetrahedron Lett., 2011, 52(23), 3033-3037.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.019]
[37]
Karhale, S.; Survase, D.; Bhat, R.; Ubale, P.; Helavi, V. A practical and green protocol for the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones using oxalic acid as organocatalyst. Res. Chem. Intermed., 2017, 43(7), 3915-3924.
[http://dx.doi.org/10.1007/s11164-016-2855-6]
[38]
Maiden, T.M.; Harrity, J.P. Recent developments in transition metal catalysis for quinazolinone synthesis. Org. Biomol. Chem., 2016, 14(34), 8014-8025.
[http://dx.doi.org/10.1039/C6OB01402J] [PMID: 27477737]
[39]
Vo, Y.H.; Le, T.V.; Nguyen, H.D.; To, T.A.; Ha, H.Q.; Nguyen, A.T.; Phan, A.N.; Phan, N.T. Synthesis of quinazolinones and benzazoles utilizing recyclable sulfated metal-organic framework-808 catalyst in glycerol as green solvent. J. Ind. Eng. Chem., 2018, 64, 107-115.
[http://dx.doi.org/10.1016/j.jiec.2018.03.006]
[40]
Ma, Z.; Song, T.; Yuan, Y.; Yang, Y. Synergistic catalysis on Fe-N x sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones via oxidative coupling of amines and aldehydes. Chem. Sci. (Camb.), 2019, 10(44), 10283-10289.
[http://dx.doi.org/10.1039/C9SC04060A] [PMID: 32110314]
[41]
Wu, X.F.; He, L.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative synthesis of quinazolinones from 2-aminobenzamide and aryl bromides. Chemistry, 2013, 19(38), 12635-12638.
[http://dx.doi.org/10.1002/chem.201302182] [PMID: 24175339]
[42]
Zhou, J.; Fang, J. One-pot synthesis of quinazolinones via iridiumcatalyzed hydrogen transfers. J. Org. Chem., 2011, 76(19), 7730-7736.
[http://dx.doi.org/10.1021/jo201054k] [PMID: 21851120]
[43]
Abdou, I.M.; Al-Neyadi, S.S. Synthesis of quinazolines and quinazolinones via palladium-mediated approach. Heterocycl. Commun., 2015, 21(3), 115-132.
[http://dx.doi.org/10.1515/hc-2014-0181]
[44]
Watson, A.J.; Maxwell, A.C.; Williams, J.M. Ruthenium-catalysed oxidative synthesis of heterocycles from alcohols. Org. Biomol. Chem., 2012, 10(2), 240-243.
[http://dx.doi.org/10.1039/C1OB06516E] [PMID: 22038298]
[45]
Yoo, C.L.; Fettinger, J.C.; Kurth, M.J. Stannous chloride in alcohol: a one-pot conversion of 2-nitro-N-arylbenzamides to 2,3-dihydro-1H-quinazoline-4-ones. J. Org. Chem., 2005, 70(17), 6941-6943.
[http://dx.doi.org/10.1021/jo050450f] [PMID: 16095321]
[46]
Cai, G.; Xu, X.; Li, Z.; Lu, P.; Weber, W.P. A one‐pot synthesis of 2‐aryl‐2, 3‐dihydro‐4 (lH)‐quinazolinones by use of samarium iodide. J. Heterocycl. Chem., 2002, 39(6), 1271-1272.
[http://dx.doi.org/10.1002/jhet.5570390623]
[47]
Wang, M.; Gao, J.J.; Song, Z.G.; Wang, L. Cerium (IV) ammonium nitrate catalyzed green synthesis of 2-substituted 2, 3-dihydroquinazolin-4 (1 H)-ones using a grinding technique. Chem. Heterocycl. Compd., 2011, 47(7), 851-855.
[http://dx.doi.org/10.1007/s10593-011-0846-5]
[48]
Zhan, D.; Li, T.; Wei, H.; Weng, W.; Ghandi, K.; Zeng, Q. A recyclable CuO-catalyzed synthesis of 4 (3 H)-quinazolinones. RSC Advances, 2013, 3(24), 9325-9329.
[http://dx.doi.org/10.1039/c3ra41370e]
[49]
Shi, D; Rong, L; Wang, J; Zhuang, Q; Wang, X; Hu, H. Synthesis of quinazolin-4 (3H)-ones and 1, 2-dihydroquinazolin-4 (3H)-ones with the aid of a low-valent titanium reagent. Tetrahedr. Lett., 2003, 44(15), 3199-201.S.
[50]
Tang, J.H.; Shi, D.X.; Zhang, L.J.; Zhang, Q.; Li, J.R. Facile and one-pot synthesis of 1, 2-Dihydroquinazolin-4 (3 H)-ones via tandem intramolecular pinner/dimroth rearrangement. Synth. Commun., 2010, 40(5), 632-641.
[http://dx.doi.org/10.1080/00397910902908822]
[51]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Nanoindium oxide: an efficient catalyst for one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones with a greener prospect. Catal. Commun., 2014, 49, 52-57.
[http://dx.doi.org/10.1016/j.catcom.2014.01.032]
[52]
Radfar, I.; Miraki, M.K.; Ghandi, L.; Esfandiary, N.; Abbasi, S.; Karimi, M.; Heydari, A. BF3‐grafted Fe3O4@ Sucrose nanoparticles as a highly‐efficient acid catalyst for syntheses of Dihydroquinazolinones (DHQZs) and Bis 3‐Indolyl Methanes (BIMs). Appl. Organomet. Chem., 2018, 32(8), e4431.
[http://dx.doi.org/10.1002/aoc.4431]
[53]
Beyki, M.; Fallah-Mehrjardi, M. Silica sulfuric acid-coated Fe3O4 nanoparticles as a highly efficient and reusable solid acid catalyst for the green synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones under solvent-free conditions. Lett. Org. Chem., 2018, 15(1), 39-44.
[54]
Shiri, L.; Ghorbani‐Choghamarani, A.; Kazemi, M. Cu (II) immobilized on Fe3O4-diethylenetriamine: A new magnetically recoverable catalyst for the synthesis of 2, 3‐dihydroquinazolin‐4 (1H)‐ones and oxidative coupling of thiols. Appl. Organomet. Chem., 2017, 31(5), e3596.
[http://dx.doi.org/10.1002/aoc.3596]
[55]
Shiri, L.; Heidari, L.; Kazemi, M. Magnetic Fe3O4 nanoparticles supported imine/Thiophene‐nickel (II) complex: A new and highly active heterogeneous catalyst for the synthesis of polyhydroquinolines and 2, 3‐dihydroquinazoline‐4 (1H)‐ones. Appl. Organomet. Chem., 2018, 32(1), e3943.
[http://dx.doi.org/10.1002/aoc.3943]
[56]
Narasimhamurthy, K.H.; Girish, Y.R.; Thimmaraju, N.; Rangappa, K.S. Utility of ZrO2-Al2O3 in the synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Chemi. Data Collect., 2019, 21, 100230.
[http://dx.doi.org/10.1016/j.cdc.2019.100230]
[57]
Sikari, R.; Sinha, S.; Chakraborty, G.; Das, S.; van Leest, N.P.; Paul, N.D. C−N Cross‐coupling reactions under mild conditions using singlet Di‐Radical Nickel (II)‐Complexes as Catalyst: N‐Arylation and Quinazoline Synthesis. Adv. Synth. Catal., 2019, 361(18), 4342-4353.
[http://dx.doi.org/10.1002/adsc.201900545]
[58]
Iqbal, M.A.; Lu, L.; Mehmood, H.; Khan, D.M.; Hua, R. Quinazolinone synthesis through base-promoted SNAr reaction of orthofluorobenzamides with amides followed by cyclization. ACS Omega, 2019, 4(5), 8207-8213.
[http://dx.doi.org/10.1021/acsomega.9b00699] [PMID: 31459909]
[59]
Ghosh, P.; Ganguly, B.; Das, S. C-H functionalization of quinazolinones by transition metal catalysis. Org. Biomol. Chem., 2020, 18(24), 4497-4518.
[http://dx.doi.org/10.1039/D0OB00742K] [PMID: 32469346]
[60]
Devi, J.; Kalita, S.J.; Deka, D.C. Expeditious synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones in aqueous medium using thiamine hydrochloride (VB1) as a mild, efficient, and reusable organocatalyst. Synth. Commun., 2017, 47(17), 1601-1609.
[http://dx.doi.org/10.1080/00397911.2017.1337149]
[61]
Davoodnia, A.; Allameh, S.; Fakhari, A.R.; Tavakoli-Hoseini, N. Highly efficient solvent-free synthesis of quinazolin-4 (3H)-ones and 2, 3-dihydroquinazolin-4 (1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chin. Chem. Lett., 2010, 21(5), 550-553.
[http://dx.doi.org/10.1016/j.cclet.2010.01.032]
[62]
Phukan, P.; Sarma, D. Synthesis of medicinally relevant scaffoldstriazoles and pyrazoles in green solvent ionic liquids. Curr. Org. Chem., 2021, 25(13), 1523-1538.
[http://dx.doi.org/10.2174/1385272825666210412160142]
[63]
Aridoss, G. K.; Laali, K. Ionic liquids as novel media and catalysts for diels-alder chemistry. Curr. Org. Synth., 2017, 14(7), 952-971.
[http://dx.doi.org/10.2174/1570179414666170719164251]
[64]
Gautam, P.; Srivastava, V. Heck cross-coupling reactions in ionic liquid mediated pd nanocatalysts. Lett. Org. Chem., 2021, 18(5), 359-372.
[http://dx.doi.org/10.2174/1570178617999200723124636]
[65]
Mustaque, K.M.; Subramani, A.; Shabeer, T.K.; Thajudeen, H.; Ahamed, V.S. Amino acid catalyzed synthesis of 2, 3-dihydroquinazolin-4 (1H)-one derivatives. Lett. Org. Chem., 2018, 15(4), 246-250.
[http://dx.doi.org/10.2174/1570178614666171130154814]
[66]
Eze, C.C.; Ezeokonkwo, M.A.; Ezema, B.E.; Onoabedje, A.E.; Ibeanu, F.N.; Ugwu, D.I.; Onyeyilim, L.E.; Ezugwu, J.A. One-pot multicomponent synthesis of imidazole rings in acidic ionic liquids: A review. Mini Rev. Org. Chem., 2020, 17(8), 975-990.
[http://dx.doi.org/10.2174/1570193X17666200226110645]
[67]
Jazinizadeh, T.; Maghsoodlou, M.T.; Heydari, R. Synthesis of 2-Aryl-2, 3-Dihydroquinazolin-4 (1 H)-one derivatives using lactic acid as a green, natural and inexpensive catalyst in water. Iran. J. Sci. Technol. Transac. Sci., 2018, 42(4), 1929-1933.
[68]
Elango, K.; Srirambalaji, R.; Anantharaman, G. Synthesis of N-alkylimidazolium salts and their utility as solvents in the Beckmann rearrangement. Tetrahedron Lett., 2007, 48(51), 9059-9062.
[http://dx.doi.org/10.1016/j.tetlet.2007.10.051]
[69]
Kandasamy, E; Nagarajan, S; Shaikh, TM Knoevenagel reaction catalyzed by a reusable bronsted acid based on 1-Alkyl-1, 2, 4-triazolium tetrafluoroborate. Lett. Org. Chemi., 2018, 15(2), 133-8.
[70]
Athira, C.K.; Manikandan, P.; Kandasamy, E.; Ramani, P. Ionic liquid mediated synthesis of labelled peptide nucleic acid monomer. Mater. Today Proc., 2019, 18, 1735-1739.
[http://dx.doi.org/10.1016/j.matpr.2019.05.271]
[71]
Vafaeezadeh, M.; Alinezhad, H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq., 2016, 218, 95-105.
[http://dx.doi.org/10.1016/j.molliq.2016.02.017]
[72]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[73]
Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N. Ionic liquids: Green catalysts for alkene-isoalkane alkylation. J. Mol. Liq., 2019, 285, 299-313.
[http://dx.doi.org/10.1016/j.molliq.2019.03.145]
[74]
Liu, Y.; Xiao, W.; Xia, S.; Ma, P. SO3H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. Carbohydr. Polym., 2013, 92(1), 218-222.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.095] [PMID: 23218286]
[75]
Li, D.; Shi, F.; Guo, S.; Deng, Y. One-pot synthesis of silica gel confined functional ionic liquids: effective catalysts for deoximation under mild conditions. Tetrahedron Lett., 2004, 45(2), 265-268.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.175]
[76]
Kaur, R.; Kumar, B.; Dwivedi, A.R.; Kumar, V. Regioselective alkylation of 1, 2, 4-triazole using ionic liquids under microwave conditions. Green Proces. Synt., 2016, 5(3), 233-237.
[http://dx.doi.org/10.1515/gps-2015-0138]
[77]
Gayathri, K.M.; Paramparambath, S.; Satheesh, A.; Selvam, S.; Kandasamy, E. Reduction of aldehydes and ketones by NaBH4 in presence of 1-alkyl-1, 2, 4-triazolium salts. Mater. Today Proc., 2020, 33, 2381-2384.
[http://dx.doi.org/10.1016/j.matpr.2020.05.470]
[78]
Singh, D.; Gardas, R.L. Influence of cation size on the ionicity, fluidity, and physiochemical properties of 1, 2, 4-triazolium based ionic liquids. J. Phys. Chem. B, 2016, 120(21), 4834-4842.
[http://dx.doi.org/10.1021/acs.jpcb.6b03669] [PMID: 27158831]
[79]
Singh, D.; Sharma, G.; Gardas, R.L. Exploration of the solvation behaviour of ascorbic acid in aqueous solutions of 1, 2, 4-triazolium based ionic liquid. J. Mol. Liq., 2017, 244, 55-64.
[http://dx.doi.org/10.1016/j.molliq.2017.08.113]
[80]
Tian, T.; Hu, X.; Guan, P.; Wang, S.; Ding, X. Density and thermodynamic performance of energetic ionic liquids based on 1-alkyl/esteryl-4-amino-1, 2, 4-triazolium. J. Mol. Liq., 2017, 248, 70-80.
[http://dx.doi.org/10.1016/j.molliq.2017.09.024]
[81]
Carlson, R.O.; Lundstedt, T.; Albano, C.H. Screening of suitable solvents in organic synthesis. Strategies for solvent selection. Acta Chem. Scand. B, 1985, 39, 79-91.
[http://dx.doi.org/10.3891/acta.chem.scand.39b-0079]
[82]
Reslow, M.; Adlercreutz, P.; Mattiasson, B. Organic solvents for bioorganic synthesis. Appl. Microbiol. Biotechnol., 1987, 26(1), 1-8.
[http://dx.doi.org/10.1007/BF00282141]
[83]
Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H.J.C.O.C. Green solvents in organic synthesis: An overview. Curr. Org. Chem., 2013, 17(11), 1179-1187.
[http://dx.doi.org/10.2174/1385272811317110005]
[84]
Carlson, R; Carlson, JE Design and optimization in organic synthesis; Elsevier, 2005.
[85]
Sheldon, R.A. Green solvents for sustainable organic synthesis: state of the art. Green Chem., 2005, 7(5), 267-278.
[http://dx.doi.org/10.1039/b418069k]
[86]
Mitrofanov, I; Sansonetti, S; Abildskov, J; Sin, G; Gani, R The solvent selection framework: Solvents for organic synthesis, separation processes and ionic liquids solvents. In: Computer Aided Chemical Engineering; Elsevier., 2012; 30, pp. 762-766.