Nanoscale Treatment of Intervertebral Disc Degeneration: Mesenchymal Stem Cell Exosome Transplantation

Page: [163 - 173] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

A common surgical disease, intervertebral disc degeneration (IVDD), is increasing at an alarming rate in younger individuals. Repairing damaged intervertebral discs (IVDs) and promoting IVD tissue regeneration at the molecular level are important research goals. Exosomes are extracellular vesicles (EVs) secreted by cells and can be derived from most body fluids. Mesenchymal stem cell-derived exosomes (MSC-exos) have characteristics similar to those of the parental MSCs. These EVs can shuttle various macromolecular substances, such as proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs) and regulate the activity of recipient cells through intercellular communication. Reducing inflammation and apoptosis can significantly promote IVD regeneration to facilitate the repair of the IVD. Compared with MSCs, exosomes are more convenient to store and transport, and the use of exosomes can prevent the risk of rejection with cell transplantation. Furthermore, MSC-exo-mediated treatment may be safer and more effective than MSC transplantation. In this review, we summarize the use of bone marrow mesenchymal stem cells (BMSCs), adipose-derived mesenchymal stem cells (AMSCs), nucleus pulposus mesenchymal stem cells (NPMSCs), and stem cells from other sources for tissue engineering and use in IVDD. Here, we aim to describe the role of exosomes in inhibiting IVDD, their potential therapeutic effects, the results of the most recent research, and their clinical application prospects to provide an overview for researchers seeking to explore new treatment strategies and improve the efficacy of IVDD treatment.

Keywords: Intervertebral disc degeneration, mesenchymal stem cells, exosome, mechanism, challenge, surgical disease.

Graphical Abstract

[1]
Hartvigsen J, Hancock MJ, Kongsted A, et al. Lancet Low Back Pain Series Working Group. What low back pain is and why we need to pay attention. Lancet 2018; 391(10137): 2356-67.
[http://dx.doi.org/10.1016/S0140-6736(18)30480-X] [PMID: 29573870]
[2]
Vlaeyen JWS, Maher CG, Wiech K, et al. Low back pain. Nat Rev Dis Primers 2018; 4(1): 52.
[http://dx.doi.org/10.1038/s41572-018-0052-1] [PMID: 30546064]
[3]
Casiano VE, Dydyk AM, Varacallo M. Back Pain. Treasure Island, FL: StatPearls Publishing LLC 2021.
[4]
Kennon JC, Awad ME, Chutkan N, DeVine J, Fulzele S. Current insights on use of growth factors as therapy for Intervertebral Disc De-generation. Biomol Concepts 2018; 9(1): 43-52.
[http://dx.doi.org/10.1515/bmc-2018-0003] [PMID: 29779014]
[5]
Miguélez-Rivera L, Pérez-Castrillo S, González-Fernández ML, et al. Immunomodulation of mesenchymal stem cells in discogenic pain. Spine J 2018; 18(2): 330-42.
[http://dx.doi.org/10.1016/j.spinee.2017.09.002] [PMID: 28939169]
[6]
Kadow T, Sowa G, Vo N, Kang JD. Molecular basis of intervertebral disc degeneration and herniations: What are the important transla-tional questions? Clin Orthop Relat Res 2015; 473(6): 1903-12.
[http://dx.doi.org/10.1007/s11999-014-3774-8] [PMID: 25024024]
[7]
Sampara P, Banala RR, Vemuri SK, Av GR, Gpv S. Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: A review. Gene Ther 2018; 25(2): 67-82.
[http://dx.doi.org/10.1038/s41434-018-0004-0] [PMID: 29567950]
[8]
Vergroesen PP, Kingma I, Emanuel KS, et al. Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthritis Cartilage 2015; 23(7): 1057-70.
[http://dx.doi.org/10.1016/j.joca.2015.03.028] [PMID: 25827971]
[9]
Kos N, Gradisnik L, Velnar T. A brief review of the degenerative intervertebral disc disease. Med Arh 2019; 73(6): 421-4.
[http://dx.doi.org/10.5455/medarh.2019.73.421-424]
[10]
Chen BL, Guo JB, Zhang HW, et al. Surgical versus non-operative treatment for lumbar disc herniation: A systematic review and meta-analysis. Clin Rehabil 2018; 32(2): 146-60.
[http://dx.doi.org/10.1177/0269215517719952] [PMID: 28715939]
[11]
Docheva D, Popov C, Mutschler W, Schieker M. Human mesenchymal stem cells in contact with their environment: Surface characteristics and the integrin system. J Cell Mol Med 2007; 11(1): 21-38.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00001.x] [PMID: 17367499]
[12]
Jiang W, Ma A, Wang T, et al. Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocar-dial ischemia in female rats. Transpl Int 2006; 19(7): 570-80.
[http://dx.doi.org/10.1111/j.1432-2277.2006.00307.x] [PMID: 16764636]
[13]
Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 2008; 103(11): 1204-19.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.176826] [PMID: 19028920]
[14]
Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 2006; 24(2): 462-71.
[http://dx.doi.org/10.1634/stemcells.2004-0331] [PMID: 16109759]
[15]
Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 2019; 20(10): E2523.
[http://dx.doi.org/10.3390/ijms20102523] [PMID: 31121953]
[16]
Müller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myo-cardium. J Mol Cell Cardiol 2002; 34(2): 107-16.
[http://dx.doi.org/10.1006/jmcc.2001.1491] [PMID: 11851351]
[17]
Vadalà G, Sowa G, Hubert M, Gilbertson LG, Denaro V, Kang JD. Mesenchymal stem cells injection in degenerated intervertebral disc: Cell leakage may induce osteophyte formation. J Tissue Eng Regen Med 2012; 6(5): 348-55.
[http://dx.doi.org/10.1002/term.433] [PMID: 21671407]
[18]
Yang F, Leung VY, Luk KD, Chan D, Cheung KM. Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol Ther 2009; 17(11): 1959-66.
[http://dx.doi.org/10.1038/mt.2009.146] [PMID: 19584814]
[19]
Cheng X, Zhang G, Zhang L, et al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J Cell Mol Med 2018; 22(1): 261-76.
[http://dx.doi.org/10.1111/jcmm.13316] [PMID: 28805297]
[20]
He GH, Zhang W, Ma YX, et al. Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism. Int J Ophthalmol 2018; 11(4): 559-66.
[PMID: 29675371]
[21]
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): E1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[22]
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell 1983; 33(3): 967-78.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[23]
Johnstone RM, Bianchini A, Teng K. Reticulocyte maturation and exosome release: Transferrin receptor containing exosomes shows mul-tiple plasma membrane functions. Blood 1989; 74(5): 1844-51.
[http://dx.doi.org/10.1182/blood.V74.5.1844.1844] [PMID: 2790208]
[24]
Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005; 17(7): 879-87.
[http://dx.doi.org/10.1093/intimm/dxh267] [PMID: 15908444]
[25]
Admyre C, Johansson SM, Qazi KR, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007; 179(3): 1969-78.
[http://dx.doi.org/10.4049/jimmunol.179.3.1969] [PMID: 17641064]
[26]
Street JM, Koritzinsky EH, Glispie DM, Yuen PST. Urine exosome isolation and characterization. Methods Mol Biol 2017; 1641: 413-23.
[http://dx.doi.org/10.1007/978-1-4939-7172-5_23] [PMID: 28748478]
[27]
Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 2008; 31(6): 1059-62.
[http://dx.doi.org/10.1248/bpb.31.1059] [PMID: 18520029]
[28]
Pérez-Boza J, Lion M, Struman I. Exploring the RNA landscape of endothelial exosomes. RNA 2018; 24(3): 423-35.
[http://dx.doi.org/10.1261/rna.064352.117] [PMID: 29282313]
[29]
McAndrews KM, Kalluri R. Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer 2019; 18(1): 52.
[http://dx.doi.org/10.1186/s12943-019-0963-9] [PMID: 30925917]
[30]
Williams RL, Urbé S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 2007; 8(5): 355-68.
[http://dx.doi.org/10.1038/nrm2162] [PMID: 17450176]
[31]
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15(3): 4142-57.
[http://dx.doi.org/10.3390/ijms15034142] [PMID: 24608926]
[32]
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285(23): 17442-52.
[http://dx.doi.org/10.1074/jbc.M110.107821] [PMID: 20353945]
[33]
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem 2019; 88(1): 487-514.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111902] [PMID: 31220978]
[34]
Sun Z, Shi K, Yang S, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 2018; 17(1): 147.
[http://dx.doi.org/10.1186/s12943-018-0897-7] [PMID: 30309355]
[35]
Conigliaro A, Fontana S, Raimondo S, Alessandro R. Exosomes: Nanocarriers of biological messages. Adv Exp Med Biol 2017; 998: 23-43.
[http://dx.doi.org/10.1007/978-981-10-4397-0_2] [PMID: 28936730]
[36]
Simons M, Raposo G. Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol 2009; 21(4): 575-81.
[http://dx.doi.org/10.1016/j.ceb.2009.03.007] [PMID: 19442504]
[37]
Chen WK, Yu XH, Yang W, et al. lncRNAs: Novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif 2017; 50(1): e12313.
[http://dx.doi.org/10.1111/cpr.12313] [PMID: 27859817]
[38]
Yao ZY, Chen WB, Shao SS, et al. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disor-ders. J Zhejiang Univ Sci B 2018; 19(3): 183-98.
[http://dx.doi.org/10.1631/jzus.B1600490] [PMID: 29504312]
[39]
Bruno S, Chiabotto G, Favaro E, Deregibus MC, Camussi G. Role of extracellular vesicles in stem cell biology. Am J Physiol Cell Physiol 2019; 317(2): C303-13.
[http://dx.doi.org/10.1152/ajpcell.00129.2019] [PMID: 31091143]
[40]
Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018; 20(3): 332-43.
[http://dx.doi.org/10.1038/s41556-018-0040-4] [PMID: 29459780]
[41]
Xia C, Zeng Z, Fang B, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med 2019; 143: 1-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.07.026] [PMID: 31351174]
[42]
Álvarez-Viejo M. Mesenchymal stem cells from different sources and their derived exosomes: A pre-clinical perspective. World J Stem Cells 2020; 12(2): 100-9.
[http://dx.doi.org/10.4252/wjsc.v12.i2.100] [PMID: 32184935]
[43]
Charbord P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum Gene Ther 2010; 21(9): 1045-56.
[http://dx.doi.org/10.1089/hum.2010.115] [PMID: 20565251]
[44]
Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276(5309): 71-4.
[http://dx.doi.org/10.1126/science.276.5309.71] [PMID: 9082988]
[45]
Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature 2012; 481(7381): 314-20.
[http://dx.doi.org/10.1038/nature10763] [PMID: 22258610]
[46]
Chu DT, Phuong TNT, Tien NLB, et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci 2020; 21(3): E708.
[http://dx.doi.org/10.3390/ijms21030708] [PMID: 31973182]
[47]
Yuan X, Qin X, Wang D, et al. Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nat Commun 2019; 10(1): 2498.
[http://dx.doi.org/10.1038/s41467-019-10491-8] [PMID: 31175312]
[48]
Lu K, Li HY, Yang K, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: In-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 108.
[http://dx.doi.org/10.1186/s13287-017-0563-9] [PMID: 28486958]
[49]
Zhu L, Shi Y, Liu L, Wang H, Shen P, Yang H. Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: Therapeutic potential for intervertebral disc degenerative diseases. Cell Cycle 2020; 19(14): 1727-39.
[http://dx.doi.org/10.1080/15384101.2020.1769301] [PMID: 32635856]
[50]
Zhu G, Yang X, Peng C, Yu L, Hao Y. Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc de-generation by targeting RASSF5. Exp Cell Res 2020; 393(2): 112109.
[http://dx.doi.org/10.1016/j.yexcr.2020.112109] [PMID: 32464126]
[51]
Li M, Li R, Yang S, et al. Exosomes derived from bone marrow mesenchymal stem cells prevent acidic pH-induced damage in human nucleus pulposus cells. Med Sci Monit 2020; 26: e922928.
[http://dx.doi.org/10.12659/MSM.922928] [PMID: 32436493]
[52]
Hingert D, Ekström K, Aldridge J, Crescitelli R, Brisby H. Extracellular vesicles from human mesenchymal stem cells expedite chondro-genesis in 3D human degenerative disc cell cultures. Stem Cell Res Ther 2020; 11(1): 323.
[http://dx.doi.org/10.1186/s13287-020-01832-2] [PMID: 32727623]
[53]
Shi M, Zhao Y, Sun Y, Xin D, Xu W, Zhou B. Therapeutic effect of co-culture of rat bone marrow mesenchymal stem cells and degenerat-ed nucleus pulposus cells on intervertebral disc degeneration. Spine J 2021; 21(9): 1567-79.
[http://dx.doi.org/10.1016/j.spinee.2021.05.007] [PMID: 34000376]
[54]
Liao Z, Luo R, Li G, et al. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics 2019; 9(14): 4084-100.
[http://dx.doi.org/10.7150/thno.33638] [PMID: 31281533]
[55]
He D, Zhou M, Bai Z. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell pyroptosis via NLRP3-dependent pathway. Biochem Biophys Res Commun 2020; 526(3): 772-9.
[56]
Tang P, Gu JM, Xie ZA. Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 in-flammasome signal pathway. Free Radic Biol Med 2018; 120: 368-79.
[57]
Song Y, Wang Y, Zhang Y, et al. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells. J Cell Mol Med 2017; 21(7): 1373-87.
[http://dx.doi.org/10.1111/jcmm.13067] [PMID: 28224704]
[58]
Zhang J, Zhang J, Zhang Y, et al. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. J Cell Mol Med 2020; 24(20): 11742-54.
[http://dx.doi.org/10.1111/jcmm.15784] [PMID: 32860495]
[59]
Chen ZH, Jin SH, Wang MY, et al. Enhanced NLRP3, caspase-1, and IL- 1β levels in degenerate human intervertebral disc and their asso-ciation with the grades of disc degeneration. Anat Rec (Hoboken) 2015; 298(4): 720-6.
[http://dx.doi.org/10.1002/ar.23059] [PMID: 25284686]
[60]
Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 2005; 7(4): R732-45.
[http://dx.doi.org/10.1186/ar1732] [PMID: 15987475]
[61]
Li ZQ, Kong L, Liu C, Xu HG. Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1β-induced annulus fibrosus cell damage. Am J Med Sci 2020; 360(6): 693-700.
[http://dx.doi.org/10.1016/j.amjms.2020.07.025] [PMID: 32771218]
[62]
Zhao C, Chen JY, Peng WM, Yuan B, Bi Q, Xu YJ. Exosomes from adipose derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR-145 and miR-221. Mol Med Rep 2020; 21(4): 1881-9.
[http://dx.doi.org/10.3892/mmr.2020.10982] [PMID: 32319611]
[63]
Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Res Ther 2019; 10(1): 242.
[http://dx.doi.org/10.1186/s13287-019-1358-y] [PMID: 31391108]
[64]
Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, Wright NA. The new stem cell biology: Something for everyone. Mol Pathol 2003; 56(2): 86-96.
[http://dx.doi.org/10.1136/mp.56.2.86] [PMID: 12665626]
[65]
Ishiguro H, Kaito T, Yarimitsu S, et al. Intervertebral disc regeneration with an adipose mesenchymal stem cell-derived tissue-engineered construct in a rat nucleotomy model. Acta Biomater 2019; 87: 118-29.
[http://dx.doi.org/10.1016/j.actbio.2019.01.050] [PMID: 30690206]
[66]
Urban JP. The role of the physicochemical environment in determining disc cell behaviour. Biochem Soc Trans 2002; 30(Pt 6): 858-64.
[http://dx.doi.org/10.1042/bst0300858] [PMID: 12440933]
[67]
Li H, Tao Y, Liang C, et al. Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose- and nucleus pulpo-sus-derived mesenchymal stem cells. Cells Tissues Organs 2013; 198(4): 266-77.
[http://dx.doi.org/10.1159/000356505] [PMID: 24356285]
[68]
Liang C, Li H, Tao Y, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the interver-tebral disc. J Transl Med 2012; 10(1): 49.
[http://dx.doi.org/10.1186/1479-5876-10-49] [PMID: 22424131]
[69]
Han YD, Bai Y, Yan XL, et al. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 2018; 497(1): 305-12.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.076] [PMID: 29428734]
[70]
Si Z, Wang X, Sun C, et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 2019; 114: 108765.
[http://dx.doi.org/10.1016/j.biopha.2019.108765] [PMID: 30921703]
[71]
Cao Z, Chen L. Inhibition of miR-27a suppresses the inflammatory response via the p38/MAPK pathway in intervertebral disc cells. Exp Ther Med 2017; 14(5): 4572-8.
[http://dx.doi.org/10.3892/etm.2017.5053] [PMID: 29067127]
[72]
Zhang QC, Hu SQ, Hu AN, Zhang TW, Jiang LB, Li XL. Autophagy-activated nucleus pulposus cells deliver exosomal miR-27a to prevent extracellular matrix degradation by targeting MMP-13. J Orthop Res 2021; 39(9): 1921-32.
[http://dx.doi.org/10.1002/jor.24880] [PMID: 33038032]
[73]
Yu T, Ma P, Wu D, Shu Y, Gao W. Functions and mechanisms of microRNA-31 in human cancers. Biomed Pharmacother 2018; 108: 1162-9.
[http://dx.doi.org/10.1016/j.biopha.2018.09.132]
[74]
Sun Z, Liu B, Liu ZH, et al. Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/β-catenin axis. Mol Ther Nucleic Acids 2020; 22: 1092-106.
[http://dx.doi.org/10.1016/j.omtn.2020.10.021] [PMID: 33294295]
[75]
Xie L, Chen Z, Liu M, et al. MSC-Derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 axis. Mol Ther Nucleic Acids 2020; 22: 601-14.
[http://dx.doi.org/10.1016/j.omtn.2020.09.026] [PMID: 33230460]
[76]
Marcus ME, Leonard JN. FedExosomes: Engineering therapeutic biological nanoparticles that truly deliver. Pharmaceuticals (Basel) 2013; 6(5): 659-80.
[http://dx.doi.org/10.3390/ph6050659] [PMID: 23894228]
[77]
Yuan Q, Wang X, Liu L, et al. Exosomes derived from human placental mesenchymal stromal cells carrying antagomiR-4450 alleviate intervertebral disc degeneration through upregulation of ZNF121. Stem Cells Dev 2020; 29(16): 1038-58.
[http://dx.doi.org/10.1089/scd.2020.0083] [PMID: 32620067]
[78]
Song J, Chen ZH, Zheng CJ, et al. Exosome-transported circRNA_0000253 competitively adsorbs MicroRNA-141-5p and increases IDD. Mol Ther Nucleic Acids 2020; 21: 1087-99.
[http://dx.doi.org/10.1016/j.omtn.2020.07.039] [PMID: 32858458]
[79]
Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 2013; 383(1-2): 13-20.
[http://dx.doi.org/10.1007/s11010-013-1746-z] [PMID: 23812844]
[80]
Chen S, Tang Y, Liu Y, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 2019; 52(5): e12669.
[http://dx.doi.org/10.1111/cpr.12669] [PMID: 31380594]
[81]
Cho BS, Kim JO, Ha DH, Yi YW. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermati-tis. Stem Cell Res Ther 2018; 9(1): 187.
[http://dx.doi.org/10.1186/s13287-018-0939-5] [PMID: 29996938]
[82]
Qi L, Wang R, Shi Q, Yuan M, Jin M, Li D. Umbilical cord mesenchymal stem cell conditioned medium restored the expression of colla-gen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose. J Bone Miner Metab 2019; 37(3): 455-66.
[http://dx.doi.org/10.1007/s00774-018-0953-9] [PMID: 30187277]
[83]
Yao Y, Deng Q, Song W, et al. MIF plays a key role in regulating tissue-specific chondro-osteogenic differentiation fate of human cartilage endplate stem cells under hypoxia. Stem Cell Reports 2016; 7(2): 249-62.
[http://dx.doi.org/10.1016/j.stemcr.2016.07.003] [PMID: 27509135]
[84]
Zhu C, Li J, Liu C, Zhou P, Yang H, Li B. Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity. Acta Biomater 2016; 29: 228-38.
[http://dx.doi.org/10.1016/j.actbio.2015.09.039] [PMID: 26432437]
[85]
Liu J, Tao H, Wang H, et al. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev 2017; 26(12): 901-11.
[http://dx.doi.org/10.1089/scd.2016.0314] [PMID: 28298159]
[86]
Lazzarini R, Guarnieri S, Fulgenzi G, et al. Mesenchymal stem cells from nucleus pulposus and neural differentiation potential: A contin-uous challenge. J Mol Neurosci 2019; 67(1): 111-24.
[http://dx.doi.org/10.1007/s12031-018-1216-x] [PMID: 30467823]
[87]
Chen S, Emery SE, Pei M. Coculture of synovium-derived stem cells and nucleus pulposus cells in serum-free defined medium with sup-plementation of transforming growth factor-beta1: A potential application of tissue-specific stem cells in disc regeneration. Spine 2009; 34(12): 1272-80.
[http://dx.doi.org/10.1097/BRS.0b013e3181a2b347] [PMID: 19455002]
[88]
Han B, Wang HC, Li H, et al. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs 2014; 199(5-6): 342-52.
[http://dx.doi.org/10.1159/000369452] [PMID: 25661884]
[89]
Erwin WM, Islam D, Eftekarpour E, Inman RD, Karim MZ, Fehlings MG. Intervertebral disc-derived stem cells: Implications for regen-erative medicine and neural repair. Spine 2013; 38(3): 211-6.
[http://dx.doi.org/10.1097/BRS.0b013e318266a80d] [PMID: 22772571]
[90]
Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Barreto Henriksson H. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: A descriptive study in humans. Stem Cells Dev 2013; 22(5): 804-14.
[http://dx.doi.org/10.1089/scd.2012.0179] [PMID: 23025667]
[91]
Lan WR, Pan S, Li HY, et al. Inhibition of the notch1 pathway promotes the effects of nucleus pulposus cell-derived exosomes on the differentiation of mesenchymal stem cells into nucleus pulposus-like cells in rats. Stem Cells Int 2019; 2019: 8404168.
[http://dx.doi.org/10.1155/2019/8404168] [PMID: 31249601]
[92]
Wang H, Zhou Y, Huang B, et al. Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng Part A 2014; 20(5-6): 908-20.
[http://dx.doi.org/10.1089/ten.tea.2012.0703] [PMID: 24102374]
[93]
Chen S, Zhao L, Deng X, et al. Mesenchymal stem cells protect nucleus pulposus cells from compression-induced apoptosis by inhibiting the mitochondrial pathway. Stem Cells Int 2017; 2017: 9843120.
[http://dx.doi.org/10.1155/2017/9843120] [PMID: 29387092]
[94]
Wang W, Wang Y, Deng G, et al. Transplantation of hypoxic-preconditioned bone mesenchymal stem cells retards intervertebral disc degeneration via enhancing implanted cell survival and migration in rats. Stem Cells Int 2018; 2018: 7564159.
[http://dx.doi.org/10.1155/2018/7564159] [PMID: 29535780]
[95]
Luo L, Jian X, Sun H, et al. Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulpo-sus cells to activate Akt/autophagy. Stem Cells 2021; 39(4): 467-81.
[http://dx.doi.org/10.1002/stem.3322] [PMID: 33459443]
[96]
Luo L, Gong J, Zhang H, et al. Cartilage endplate stem cells transdifferentiate into nucleus pulposus cells via autocrine exosomes. Front Cell Dev Biol 2021; 9: 648201.
[http://dx.doi.org/10.3389/fcell.2021.648201] [PMID: 33748142]
[97]
Zhou X, Chen L, Grad S, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration. J Tissue Eng Regen Med 2017; 11(12): 3481-7.
[http://dx.doi.org/10.1002/term.2261] [PMID: 28256798]
[98]
Salvianti F, Gelmini S, Costanza F, et al. The pre-analytical phase of the liquid biopsy. N Biotechnol 2020; 55: 19-29.
[http://dx.doi.org/10.1016/j.nbt.2019.09.006] [PMID: 31580920]
[99]
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treat-ment for severe COVID-19. Stem Cells Dev 2020; 29(12): 747-54.
[http://dx.doi.org/10.1089/scd.2020.0080] [PMID: 32380908]
[100]
Akbari A, Jabbari N, Sharifi R, et al. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sci 2020; 249: 117447.
[http://dx.doi.org/10.1016/j.lfs.2020.117447] [PMID: 32087234]