Elucidating the Focal Immunomodulatory Clues Influencing Mesenchymal Stem Cells in the Milieu of Intervertebral Disc Degeneration

Page: [62 - 75] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The intervertebral discs (IVDs) are a relatively mobile joint that interconnects vertebrae of the spine. Intervertebral disc degeneration (IVDD) is one of the leading causes of low back pain, which is most often related to patient morbidity as well as high medical costs. Patients with chronic IVDD often need surgery that may sometimes lead to biomechanical complications as well as augmented degeneration of the adjacent segments. Moreover, treatment modalities like rigid intervertebral fusion, dynamic instrumentation, as well as other surgical interventions are still controversial. Mesenchymal stem cells (MSCs) have exhibited to have immunomodulatory functions and the ability to differentiate into cartilage, making these cells possibly an epitome for IVD regeneration. Transplanted MSCs were able to repair IVDD back to the normal disc milieu via the activation of the generation of extracellular matrix (ECM) proteins such as aggrecan, proteoglycans and collagen types I and II. IVD milieu clues like, periostin, cluster of differentiation, tumor necrosis factor alpha, interleukins, chemokines, transforming growth factor beta, reactive oxygen species, toll-like receptors, tyrosine protein kinase receptor and disialoganglioside, exosomes are capable of influencing the MSCs during treatment of IVDD.

ECM microenvironment clues above have potentials as biomarkers as well as accurate molecular targets for therapeutic intervention in IVDD.

Keywords: : IVDs, IVDD, MSCs, Pain, Regeneration, Spine

[1]
Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S. Diversity of intervertebral disc cells: Phenotype and function. J Anat 2012; 221(6): 480-96.
[http://dx.doi.org/10.1111/j.1469-7580.2012.01521.x] [PMID: 22686699]
[2]
Tsai TT, Lai PL, Liao JC, et al. Increased periostin gene expression in degenerative intervertebral disc cells. Spine J 2013; 13(3): 289-98.
[http://dx.doi.org/10.1016/j.spinee.2013.01.040] [PMID: 23453657]
[3]
Freemont AJ. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford) 2009; 48(1): 5-10.
[http://dx.doi.org/10.1093/rheumatology/ken396] [PMID: 18854342]
[4]
Chen X, Zhu L, Wu G, Liang Z, Yang L, Du Z. A comparison between nucleus pulposus-derived stem cell transplantation and nucleus pulposus cell transplantation for the treatment of intervertebral disc degeneration in a rabbit model. Int J Surg 2016; 28: 77-82.
[http://dx.doi.org/10.1016/j.ijsu.2016.02.045] [PMID: 26898133]
[5]
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2021; 250(3): 302-17.
[http://dx.doi.org/10.1002/dvdy.217] [PMID: 32564440]
[6]
Bruehlmann SB, Rattner JB, Matyas JR, Duncan NA. Regional variations in the cellular matrix of the annulus fibrosus of the intervertebral disc. J Anat 2002; 201(2): 159-71.
[http://dx.doi.org/10.1046/j.1469-7580.2002.00080.x] [PMID: 12220124]
[7]
Fields AJ, Ballatori A, Liebenberg EC, Lotz JC. Contribution of the endplates to disc degeneration. Curr Mol Biol Rep 2018; 4(4): 151-60.
[http://dx.doi.org/10.1007/s40610-018-0105-y] [PMID: 30546999]
[8]
Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet 2017; 389(10070): 736-47.
[http://dx.doi.org/10.1016/S0140-6736(16)30970-9] [PMID: 27745712]
[9]
Kumar MN, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J 2001; 10(4): 314-9.
[http://dx.doi.org/10.1007/s005860000239] [PMID: 11563617]
[10]
Meisel HJ, Agarwal N, Hsieh PC, et al. Cell therapy for treatment of intervertebral disc degeneration: A systematic review. Global Spine J 2019; 9(1) (Suppl.): 39S-52S.
[http://dx.doi.org/10.1177/2192568219829024] [PMID: 31157145]
[11]
Sakai D, Mochida J, Iwashina T, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: Potential and limitations for stem cell therapy in disc regeneration. Spine 2005; 30(21): 2379-87.
[http://dx.doi.org/10.1097/01.brs.0000184365.28481.e3] [PMID: 16261113]
[12]
Risbud MV, Albert TJ, Guttapalli A, et al. Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro: Implications for cell-based transplantation therapy. Spine 2004; 29(23): 2627-32.
[http://dx.doi.org/10.1097/01.brs.0000146462.92171.7f] [PMID: 15564911]
[13]
Vadalà G, Studer RK, Sowa G, et al. Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion. Spine 2008; 33(8): 870-6.
[http://dx.doi.org/10.1097/BRS.0b013e31816b4619] [PMID: 18404106]
[14]
Hohaus C, Ganey TM, Minkus Y, Meisel HJ. Cell transplantation in lumbar spine disc degeneration disease. Eur Spine J 2008; 17 Suppl 4(Suppl 4): 492-503.
[http://dx.doi.org/10.1007/s00586-008-0750-6]
[15]
Henriksson HB, Svanvik T, Jonsson M, et al. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model. Spine 2009; 34(2): 141-8.
[http://dx.doi.org/10.1097/BRS.0b013e31818f8c20] [PMID: 19112334]
[16]
Wuertz K, Godburn K, Neidlinger-Wilke C, Urban J, Iatridis JC. Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine 2008; 33(17): 1843-9.
[http://dx.doi.org/10.1097/BRS.0b013e31817b8f53] [PMID: 18670337]
[17]
Raj PP. Intervertebral disc: Anatomy-physiology-pathophysiology-treatment. Pain Pract 2008; 8(1): 18-44.
[http://dx.doi.org/10.1111/j.1533-2500.2007.00171.x] [PMID: 18211591]
[18]
Sztrolovics R, Alini M, Roughley PJ, Mort JS. Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 1997; 326(Pt 1): 235-41.
[http://dx.doi.org/10.1042/bj3260235]
[19]
Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM. Matrix metalloproteinases and aggrecanase: Their role in disorders of the human intervertebral disc. Spine 2000; 25(23): 3005-13.
[http://dx.doi.org/10.1097/00007632-200012010-00007] [PMID: 11145811]
[20]
Vo NV, Hartman RA, Yurube T, Jacobs LJ, Sowa GA, Kang JD. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration. Spine J 2013; 13(3): 331-41.
[http://dx.doi.org/10.1016/j.spinee.2012.02.027] [PMID: 23369495]
[21]
Yan Z, Pan Y, Wang S, et al. Static compression induces ecm remodeling and integrin α2β1 expression and signaling in a rat tail caudal intervertebral disc degeneration model. Spine 2017; 42(8): E448-58.
[http://dx.doi.org/10.1097/BRS.0000000000001856] [PMID: 27548579]
[22]
Bedore J, Leask A, Séguin CA. Targeting the extracellular matrix: Matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol 2014; 37: 124-30.
[http://dx.doi.org/10.1016/j.matbio.2014.05.005] [PMID: 24874179]
[23]
Neidlinger-Wilke C, Galbusera F, Pratsinis H, et al. Mechanical loading of the intervertebral disc: From the macroscopic to the cellular level. Eur Spine J 2014; 23(S3) (Suppl. 3): S333-43.
[http://dx.doi.org/10.1007/s00586-013-2855-9] [PMID: 23793454]
[24]
Gruber HE, Hoelscher GL, Hanley EN Jr. Annulus cells from more degenerated human discs show modified gene expression in 3D culture compared with expression in cells from healthier discs. Spine J 2010; 10(8): 721-7.
[http://dx.doi.org/10.1016/j.spinee.2010.05.014] [PMID: 20650410]
[25]
Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM. Senescence in human intervertebral discs. Eur Spine J 2006; 15 Suppl 3(Suppl 3): S312-6.
[http://dx.doi.org/10.1007/s00586-006-0126-8]
[26]
Le Maitre CL, Freemont AJ, Hoyland JA. Accelerated cellular senescence in degenerate intervertebral discs: A possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 2007; 9(3): R45.
[http://dx.doi.org/10.1186/ar2198] [PMID: 17498290]
[27]
Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr. Senescence in cells of the aging and degenerating intervertebral disc: Immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine 2007; 32(3): 321-7.
[http://dx.doi.org/10.1097/01.brs.0000253960.57051.de] [PMID: 17268263]
[28]
Richardson SM, Doyle P, Minogue BM, Gnanalingham K, Hoyland JA. Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc. Arthritis Res Ther 2009; 11(4): R126.
[http://dx.doi.org/10.1186/ar2793] [PMID: 19695094]
[29]
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral disk degeneration: The microenvironment and tissue engineering strategies. Front Bioeng Biotechnol 2021; 9: 592118.
[http://dx.doi.org/10.3389/fbioe.2021.592118] [PMID: 34354983]
[30]
Purmessur D, Walter BA, Roughley PJ, Laudier DM, Hecht AC, Iatridis J. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift. Biochem Biophys Res Commun 2013; 433(1): 151-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.02.034] [PMID: 23438440]
[31]
Binch AL, Cole AA, Breakwell LM, et al. Expression and regulation of neurotrophic and angiogenic factors during human intervertebral disc degeneration. Arthritis Res Ther 2014; 16(5): 416.
[http://dx.doi.org/10.1186/s13075-014-0416-1] [PMID: 25209447]
[32]
Vergroesen PP, Kingma I, Emanuel KS, et al. Mechanics and biology in intervertebral disc degeneration: A vicious circle. Osteoarthritis Cartilage 2015; 23(7): 1057-70.
[http://dx.doi.org/10.1016/j.joca.2015.03.028] [PMID: 25827971]
[33]
Roughley PJ, Geng Y, Mort JS. The non-aggregated aggrecan in the human intervertebral disc can arise by a non-proteolytic mechanism. Eur Cell Mater 2014; 28: 129-36.
[http://dx.doi.org/10.22203/eCM.v028a10] [PMID: 25214019]
[34]
Roughley PJ, Melching LI, Heathfield TF, Pearce RH, Mort JS. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 2006; 15 Suppl 3(Suppl 3): S326-32.
[http://dx.doi.org/10.1007/s00586-006-0127-7]
[35]
Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: Evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996; 98(4): 996-1003.
[http://dx.doi.org/10.1172/JCI118884] [PMID: 8770872]
[36]
Weiler C, Schietzsch M, Kirchner T, Nerlich AG, Boos N, Wuertz K. Age-related changes in human cervical, thoracal and lumbar intervertebral disc exhibit a strong intra-individual correlation. Eur Spine J 2012; 21 Suppl 6(Suppl 6): S810-8.
[http://dx.doi.org/10.1007/s00586-011-1922-3]
[37]
Imber JC, Roccuzzo A, Stähli A, et al. Immunohistochemical evaluation of periodontal regeneration using a porous collagen scaffold. Int J Mol Sci 2021; 22(20): 10915.
[http://dx.doi.org/10.3390/ijms222010915] [PMID: 34681574]
[38]
Ishihara H, Warensjo K, Roberts S, Urban JP. Proteoglycan synthesis in the intervertebral disk nucleus: The role of extracellular osmolality. Am J Physiol 1997; 272(5 Pt 1): C1499-506.
[http://dx.doi.org/10.1152/ajpcell.1997.272.5.C1499] [PMID: 9176140]
[39]
latridis JC, Godburn K, Wuertz K, Alini M, Roughley PJ. Region-dependent aggrecan degradation patterns in the rat intervertebral disc are affected by mechanical loading in vivo. Spine 2011; 36(3): 203-9.
[http://dx.doi.org/10.1097/BRS.0b013e3181cec247] [PMID: 20714280]
[40]
Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta 2014; 1840(10): 3181-9.
[http://dx.doi.org/10.1016/j.bbagen.2014.07.013] [PMID: 25065289]
[41]
Jim B, Steffen T, Moir J, Roughley P, Haglund L. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. Eur Spine J 2011; 20(8): 1244-54.
[http://dx.doi.org/10.1007/s00586-011-1721-x] [PMID: 21336509]
[42]
Lee HY, Han L, Roughley PJ, Grodzinsky AJ, Ortiz C. Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains. J Struct Biol 2013; 181(3): 264-73.
[http://dx.doi.org/10.1016/j.jsb.2012.12.008] [PMID: 23270863]
[43]
Vergroesen PP, van der Veen AJ, van Royen BJ, Kingma I, Smit TH. Intradiscal pressure depends on recent loading and correlates with disc height and compressive stiffness. Eur Spine J 2014; 23(11): 2359-68.
[http://dx.doi.org/10.1007/s00586-014-3450-4] [PMID: 25031105]
[44]
Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999; 24(23): 2468-74.
[http://dx.doi.org/10.1097/00007632-199912010-00008] [PMID: 10626309]
[45]
Zhu D, Zhou W, Wang Z, et al. Periostin: An emerging molecule with a potential role in spinal degenerative diseases. Front Med (Lausanne) 2021; 8: 694800.
[http://dx.doi.org/10.3389/fmed.2021.694800] [PMID: 34513869]
[46]
Bornstein P, Sage EH. Matricellular proteins: Extracellular modulators of cell function. Curr Opin Cell Biol 2002; 14(5): 608-16.
[http://dx.doi.org/10.1016/S0955-0674(02)00361-7] [PMID: 12231357]
[47]
Norris RA, Damon B, Mironov V, et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 2007; 101(3): 695-711.
[http://dx.doi.org/10.1002/jcb.21224] [PMID: 17226767]
[48]
Gruber HE, Norris RA, Kern MJ, et al. Periostin is expressed by cells of the human and sand rat intervertebral discs. Biotech Histochem 2011; 86(3): 199-206.
[http://dx.doi.org/10.3109/10520291003722774] [PMID: 20370359]
[49]
Han T, Mignatti P, Abramson SB, Attur M. Periostin interaction with discoidin domain receptor-1 (DDR1) promotes cartilage degeneration. PLoS One 2020; 15(4): e0231501.
[http://dx.doi.org/10.1371/journal.pone.0231501] [PMID: 32330138]
[50]
Cai L, Brophy RH, Tycksen ED, Duan X, Nunley RM, Rai MF. Distinct expression pattern of periostin splice variants in chondrocytes and ligament progenitor cells. FASEB J 2019; 33(7): 8386-405.
[http://dx.doi.org/10.1096/fj.201802281R] [PMID: 30991832]
[51]
Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD, Galipeau J. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem 2008; 283(26): 17991-8001.
[http://dx.doi.org/10.1074/jbc.M708029200] [PMID: 18450759]
[52]
Wang Y, Jin S, Luo D, et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat Commun 2021; 12(1): 1293.
[http://dx.doi.org/10.1038/s41467-021-21545-1] [PMID: 33637721]
[53]
Noack S, Seiffart V, Willbold E, et al. Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model. Stem Cells Dev 2014; 23(16): 1844-57.
[http://dx.doi.org/10.1089/scd.2014.0124] [PMID: 24809660]
[54]
Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporos Int 2012; 23(4): 1199-212.
[http://dx.doi.org/10.1007/s00198-011-1892-7] [PMID: 22310955]
[55]
Zhang F, Zhang Z, Sun D, Dong S, Xu J, Dai F. Periostin: A downstream mediator of ephb4-induced osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Stem Cells Int 2016; 2016: 7241829.
[http://dx.doi.org/10.1155/2016/7241829] [PMID: 26788070]
[56]
Zhang F, Zhang Z, Sun D, Dong S, Xu J, Dai F. EphB4 promotes osteogenesis of CTLA4-modified bone marrow-derived mesenchymal stem cells through cross talk with wnt pathway in xenotransplantation. Tissue Eng Part A 2015; 21(17-18): 2404-16.
[http://dx.doi.org/10.1089/ten.tea.2015.0012] [PMID: 26132739]
[57]
Zhang F, Rong Z, Wang Z, et al. Periostin promotes ectopic osteogenesis of CTLA4-modified bone marrow mesenchymal stem cells. Cell Tissue Res 2017; 370(1): 143-51.
[http://dx.doi.org/10.1007/s00441-017-2655-3] [PMID: 28687929]
[58]
Suresh A, Biswas A, Perumal S, Khurana S. Periostin and integrin signaling in stem cell regulation. Adv Exp Med Biol 2019; 1132: 163-76.
[http://dx.doi.org/10.1007/978-981-13-6657-4_16] [PMID: 31037634]
[59]
Tang Y, Liu L, Wang P, Chen D, Wu Z, Tang C. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions. Cell Prolif 2017; 50(6): e12369.
[http://dx.doi.org/10.1111/cpr.12369] [PMID: 28833827]
[60]
Panchamanon P, Pavasant P, Leethanakul C. Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells. Cell Biol Int 2019; 43(5): 506-15.
[http://dx.doi.org/10.1002/cbin.11116] [PMID: 30761669]
[61]
Brisby H, Papadimitriou N, Brantsing C, Bergh P, Lindahl A, Barreto Henriksson H. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: A descriptive study in humans. Stem Cells Dev 2013; 22(5): 804-14.
[http://dx.doi.org/10.1089/scd.2012.0179] [PMID: 23025667]
[62]
Vadalà G, Ambrosio L, Russo F, Papalia R, Denaro V. Interaction between Mesenchymal Stem Cells and Intervertebral Disc Microenvironment: From Cell Therapy to Tissue Engineering. Stem Cells Int 2019; 2019: 2376172.
[http://dx.doi.org/10.1155/2019/2376172] [PMID: 32587618]
[63]
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146: 306-24.
[http://dx.doi.org/10.1016/j.addr.2018.04.017] [PMID: 29705378]
[64]
Lykov AP, Bondarenko NA, Poveshchenko OV, et al. Treatment of intervertebral disc degeneration in wistar rats with mesenchymal stem cells. Bull Exp Biol Med 2020; 168(4): 578-82.
[http://dx.doi.org/10.1007/s10517-020-04756-2] [PMID: 32152846]
[65]
Sakai D, Andersson GB. Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat Rev Rheumatol 2015; 11(4): 243-56.
[http://dx.doi.org/10.1038/nrrheum.2015.13] [PMID: 25708497]
[66]
Ruiz M, Cosenza S, Maumus M, Jorgensen C, Noël D. Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opin Biol Ther 2016; 16(1): 33-42.
[http://dx.doi.org/10.1517/14712598.2016.1093108] [PMID: 26413975]
[67]
Adesida AB, Mulet-Sierra A, Jomha NM. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther 2012; 3(2): 9.
[http://dx.doi.org/10.1186/scrt100] [PMID: 22385573]
[68]
Giovannini S, Diaz-Romero J, Aigner T, Mainil-Varlet P, Nesic D. Population doublings and percentage of S100-positive cells as predictors of in vitro chondrogenicity of expanded human articular chondrocytes. J Cell Physiol 2010; 222(2): 411-20.
[http://dx.doi.org/10.1002/jcp.21965] [PMID: 19890919]
[69]
Stolzing A, Bauer E, Scutt A. Suspension cultures of bone-marrow-derived mesenchymal stem cells: Effects of donor age and glucose level. Stem Cells Dev 2012; 21(14): 2718-23.
[http://dx.doi.org/10.1089/scd.2011.0406] [PMID: 22462498]
[70]
Kaiser S, Hackanson B, Follo M, et al. BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy 2007; 9(5): 439-50.
[http://dx.doi.org/10.1080/14653240701358445] [PMID: 17786605]
[71]
Kim J, Piao Y, Pak YK, et al. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 2015; 24(5): 575-86.
[http://dx.doi.org/10.1089/scd.2014.0349] [PMID: 25437179]
[72]
Al-Qarakhli AMA, Yusop N, Waddington RJ, Moseley R. Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. BMC Mol Cell Biol 2019; 20(1): 51.
[http://dx.doi.org/10.1186/s12860-019-0235-y] [PMID: 31752674]
[73]
Yin M, Zhang Y, Yu H, Li X. Role of hyperglycemia in the senescence of mesenchymal stem cells. Front Cell Dev Biol 2021; 9: 665412.
[http://dx.doi.org/10.3389/fcell.2021.665412] [PMID: 33968939]
[74]
Majumdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 2001; 189(3): 275-84.
[http://dx.doi.org/10.1002/jcp.10025] [PMID: 11748585]
[75]
Richard SA. Exploring the pivotal immunomodulatory and anti-inflammatory potentials of glycyrrhizic and glycyrrhetinic acids. Mediators Inflamm 2021; 2021: 6699560.
[http://dx.doi.org/10.1155/2021/6699560] [PMID: 33505216]
[76]
Urits I, Capuco A, Sharma M, et al. Stem cell therapies for treatment of discogenic low back pain: A comprehensive review. Curr Pain Headache Rep 2019; 23(9): 65.
[http://dx.doi.org/10.1007/s11916-019-0804-y] [PMID: 31359164]
[77]
Richardson SM, Kalamegam G, Pushparaj PN, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods 2016; 99: 69-80.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.015] [PMID: 26384579]
[78]
Wehling N, Palmer GD, Pilapil C, et al. Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum 2009; 60(3): 801-12.
[http://dx.doi.org/10.1002/art.24352] [PMID: 19248089]
[79]
Sitcheran R, Cogswell PC, Baldwin AS Jr. NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev 2003; 17(19): 2368-73.
[http://dx.doi.org/10.1101/gad.1114503] [PMID: 14522944]
[80]
Baugé C, Legendre F, Leclercq S, et al. Interleukin-1beta impairment of transforming growth factor beta1 signaling by down-regulation of transforming growth factor beta receptor type II and up-regulation of Smad7 in human articular chondrocytes. Arthritis Rheum 2007; 56(9): 3020-32.
[http://dx.doi.org/10.1002/art.22840] [PMID: 17763417]
[81]
Roman-Blas JA, Stokes DG, Jimenez SA. Modulation of TGF-beta signaling by proinflammatory cytokines in articular chondrocytes. Osteoarthritis Cartilage 2007; 15(12): 1367-77.
[http://dx.doi.org/10.1016/j.joca.2007.04.011] [PMID: 17604656]
[82]
Baugé C, Attia J, Leclercq S, Pujol JP, Galéra P, Boumédiene K. Interleukin-1beta up-regulation of Smad7 via NF-kappaB activation in human chondrocytes. Arthritis Rheum 2008; 58(1): 221-6.
[http://dx.doi.org/10.1002/art.23154] [PMID: 18163503]
[83]
Lissoni P, Messina G, Pelizzoni F, et al. The fascination of cytokine immunological science. Journal of Infectiology 2020; 3(1): 18-28.
[http://dx.doi.org/10.29245/2689-9981/2020/1.1155]
[84]
Richard SA, Kampo S, Hechavarria ME, et al. Elucidating the pivotal immunomodulatory and anti-inflammatory potentials of chloroquine and hydroxychloroquine. J Immunol Res 2020; 2020: 4582612.
[http://dx.doi.org/10.1155/2020/4582612] [PMID: 33062720]
[85]
Richard SA, Kampo S, Sackey M, et al. Elucidating the pivotal role of immune players in the management of COVID-19: Focus on mesenchymal stem cells and inflammation. Curr Stem Cell Res Ther 2021; 16(2): 189-98.
[http://dx.doi.org/10.2174/1574888X15666200705213751] [PMID: 32628591]
[86]
Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 2005; 7(4): R732-45.
[http://dx.doi.org/10.1186/ar1732] [PMID: 15987475]
[87]
Lyu FJ, Cheung KM, Zheng Z, Wang H, Sakai D, Leung VY. IVD progenitor cells: A new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol 2019; 15(2): 102-12.
[http://dx.doi.org/10.1038/s41584-018-0154-x] [PMID: 30643232]
[88]
Gorth DJ, Shapiro IM, Risbud MV. A new understanding of the role of IL-1 in age-related intervertebral disc degeneration in a murine model. J Bone Miner Res 2019; 34(8): 1531-42.
[http://dx.doi.org/10.1002/jbmr.3714] [PMID: 30875127]
[89]
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol 2014; 10(1): 44-56.
[http://dx.doi.org/10.1038/nrrheum.2013.160] [PMID: 24166242]
[90]
Xia C, Zeng Z, Fang B, et al. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects. Free Radic Biol Med 2019; 143: 1-15.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.07.026] [PMID: 31351174]
[91]
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell 2014; 157(5): 1013-22.
[http://dx.doi.org/10.1016/j.cell.2014.04.007] [PMID: 24855941]
[92]
Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013; 13(6): 397-411.
[http://dx.doi.org/10.1038/nri3452] [PMID: 23702978]
[93]
Le Maitre CL, Hoyland JA, Freemont AJ. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: An in situ zymographic and gene therapy study. Arthritis Res Ther 2007; 9(4): R83.
[http://dx.doi.org/10.1186/ar2282] [PMID: 17760968]
[94]
Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176(1): 57-66.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199807)176:1<57:AID-JCP7>3.0.CO;2-7] [PMID: 9618145]
[95]
Le Maitre CL, Freemont AJ, Hoyland JA. A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration. Int J Exp Pathol 2006; 87(1): 17-28.
[http://dx.doi.org/10.1111/j.0959-9673.2006.00449.x] [PMID: 16436110]
[96]
Park J, Choi K, Jeong E, Kwon D, Benveniste EN, Choi C. Reactive oxygen species mediate chloroquine-induced expression of chemokines by human astroglial cells. Glia 2004; 47(1): 9-20.
[http://dx.doi.org/10.1002/glia.20017] [PMID: 15139008]
[97]
Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer’s disease. Neurobiol Aging 2001; 22(6): 909-13.
[http://dx.doi.org/10.1016/S0197-4580(01)00290-1] [PMID: 11754998]
[98]
Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol 2001; 22(3): 147-84.
[http://dx.doi.org/10.1006/frne.2001.0214] [PMID: 11456467]
[99]
Pattappa G, Peroglio M, Sakai D, et al. CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur Cell Mater 2014; 27: 124-36.
[http://dx.doi.org/10.22203/eCM.v027a10] [PMID: 24500793]
[100]
Phillips KL, Chiverton N, Michael AL, et al. The cytokine and chemokine expression profile of nucleus pulposus cells: Implications for degeneration and regeneration of the intervertebral disc. Arthritis Res Ther 2013; 15(6): R213.
[http://dx.doi.org/10.1186/ar4408] [PMID: 24325988]
[101]
Pereira CL, Gonçalves RM, Peroglio M, et al. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials 2014; 35(28): 8144-53.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.017] [PMID: 24969636]
[102]
Zhang H, Zhang L, Chen L, Li W, Li F, Chen Q. Stromal cell-derived factor-1 and its receptor CXCR4 are upregulated expression in degenerated intervertebral discs. Int J Med Sci 2014; 11(3): 240-5.
[http://dx.doi.org/10.7150/ijms.7489] [PMID: 24516346]
[103]
Kepler CK, Markova DZ, Dibra F, et al. Expression and relationship of proinflammatory chemokine RANTES/CCL5 and cytokine IL-1β in painful human intervertebral discs. Spine 2013; 38(11): 873-80.
[http://dx.doi.org/10.1097/BRS.0b013e318285ae08] [PMID: 23660804]
[104]
Kiritsi D, Nyström A. The role of TGFβ in wound healing pathologies. Mech Ageing Dev 2018; 172: 51-8.
[http://dx.doi.org/10.1016/j.mad.2017.11.004] [PMID: 29132871]
[105]
Barakat AH, Elwell VA, Lam KS. Stem cell therapy in discogenic back pain. J Spine Surg 2019; 5(4): 561-83.
[http://dx.doi.org/10.21037/jss.2019.09.22] [PMID: 32043007]
[106]
Jin H, Shen J, Wang B, Wang M, Shu B, Chen D. TGF-β signaling plays an essential role in the growth and maintenance of intervertebral disc tissue. FEBS Lett 2011; 585(8): 1209-15.
[http://dx.doi.org/10.1016/j.febslet.2011.03.034] [PMID: 21420963]
[107]
Lehmann TP, Jakub G, Harasymczuk J. Jagodziński PP. Transforming growth factor β mediates communication of co-cultured human nucleus pulposus cells and mesenchymal stem cells. J Orthop Res 2018; 36(11): 3023-32.
[http://dx.doi.org/10.1002/jor.24106] [PMID: 29999195]
[108]
Yang H, Cao C, Wu C, et al. TGF-βl suppresses inflammation in cell therapy for intervertebral disc degeneration. Sci Rep 2015; 5(1): 13254.
[http://dx.doi.org/10.1038/srep13254] [PMID: 26289964]
[109]
Wang F, Cai F, Shi R, Wang XH, Wu XT. Aging and age related stresses: A senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage 2016; 24(3): 398-408.
[http://dx.doi.org/10.1016/j.joca.2015.09.019] [PMID: 26455958]
[110]
Yang H, Wu J, Liu J, et al. Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-beta1 decrease rabbit intervertebral disc degeneration. Spine J 2010; 10(9): 802-10.
[http://dx.doi.org/10.1016/j.spinee.2010.06.019] [PMID: 20655810]
[111]
Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 2005; 23(3): 403-11.
[http://dx.doi.org/10.1634/stemcells.2004-0107] [PMID: 15749935]
[112]
Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng Part A 2009; 15(7): 1729-37.
[http://dx.doi.org/10.1089/ten.tea.2008.0247] [PMID: 19115827]
[113]
Clouet J, Grimandi G, Pot-Vaucel M, et al. Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology (Oxford) 2009; 48(11): 1447-50.
[http://dx.doi.org/10.1093/rheumatology/kep262] [PMID: 19748963]
[114]
Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014; 16(2): R67.
[http://dx.doi.org/10.1186/ar4505] [PMID: 24618041]
[115]
Li X, Leo BM, Beck G, Balian G, Anderson GD. Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine 2004; 29(20): 2229-34.
[http://dx.doi.org/10.1097/01.brs.0000142427.82605.fb] [PMID: 15480133]
[116]
Chujo T, An HS, Akeda K, et al. Effects of growth differentiation factor-5 on the intervertebral disc--in vitro bovine study and in vivo rabbit disc degeneration model study. Spine 2006; 31(25): 2909-17.
[http://dx.doi.org/10.1097/01.brs.0000248428.22823.86] [PMID: 17139221]
[117]
Stoyanov JV, Gantenbein-Ritter B, Bertolo A, et al. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cell Mater 2011; 21: 533-47.
[http://dx.doi.org/10.22203/eCM.v021a40] [PMID: 21710444]
[118]
Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2(4): 389-406.
[http://dx.doi.org/10.1016/S1534-5807(02)00157-0] [PMID: 11970890]
[119]
Settle SH Jr, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 2003; 254(1): 116-30.
[http://dx.doi.org/10.1016/S0012-1606(02)00022-2] [PMID: 12606286]
[120]
Le Maitre CL, Freemont AJ, Hoyland JA. Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Res Ther 2009; 11(5): R137.
[http://dx.doi.org/10.1186/ar2808] [PMID: 19754961]
[121]
Gantenbein-Ritter B, Benneker LM, Alini M, Grad S. Differential response of human bone marrow stromal cells to either TGF-β(1) or rhGDF-5. Eur Spine J 2011; 20(6): 962-71.
[http://dx.doi.org/10.1007/s00586-010-1619-z] [PMID: 21086000]
[122]
Tassabehji M, Fang ZM, Hilton EN, et al. Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome. Hum Mutat 2008; 29(8): 1017-27.
[http://dx.doi.org/10.1002/humu.20741] [PMID: 18425797]
[123]
Wei A, Williams LA, Bhargav D, et al. BMP13 prevents the effects of annular injury in an ovine model. Int J Biol Sci 2009; 5(5): 388-96.
[http://dx.doi.org/10.7150/ijbs.5.388] [PMID: 19521550]
[124]
Qu X, Sheng J, Shen L, et al. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS. PLoS One 2017; 12(3): e0173712.
[http://dx.doi.org/10.1371/journal.pone.0173712] [PMID: 28301876]
[125]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[126]
Song Y, Wang Y, Zhang Y, et al. Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells. J Cell Mol Med 2017; 21(7): 1373-87.
[http://dx.doi.org/10.1111/jcmm.13067] [PMID: 28224704]
[127]
Zhang D, Keilty D, Zhang ZF, Chian RC. Mitochondria in oocyte aging: Current understanding. Facts Views Vis ObGyn 2017; 9(1): 29-38.
[PMID: 28721182]
[128]
Zhang B, Xu L, Zhuo N, Shen J. Resveratrol protects against mitochondrial dysfunction through autophagy activation in human nucleus pulposus cells. Biochem Biophys Res Commun 2017; 493(1): 373-81.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.015] [PMID: 28887038]
[129]
Feng C, Yang M, Lan M, et al. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid Med Cell Longev 2017; 2017: 5601593.
[http://dx.doi.org/10.1155/2017/5601593] [PMID: 28392887]
[130]
Khan NM, Haseeb A, Ansari MY, Devarapalli P, Haynie S, Haqqi TM. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human Osteoarthritis chondrocytes. Free Radic Biol Med 2017; 106: 288-301.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.02.041] [PMID: 28237856]
[131]
Liebel F, Kaur S, Ruvolo E, Kollias N, Southall MD. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol 2012; 132(7): 1901-7.
[http://dx.doi.org/10.1038/jid.2011.476] [PMID: 22318388]
[132]
Ma KG, Shao ZW, Yang SH, et al. Autophagy is activated in compression-induced cell degeneration and is mediated by reactive oxygen species in nucleus pulposus cells exposed to compression. Osteoarthritis Cartilage 2013; 21(12): 2030-8.
[http://dx.doi.org/10.1016/j.joca.2013.10.002] [PMID: 24120490]
[133]
Krock E, Rosenzweig DH, Haglund L. The inflammatory milieu of the degenerate disc: Is mesenchymal stem cell-based therapy for intervertebral disc repair a feasible approach? Curr Stem Cell Res Ther 2015; 10(4): 317-28.
[http://dx.doi.org/10.2174/1574888X10666150211161956] [PMID: 25670061]
[134]
Schaefer L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J Biol Chem 2014; 289(51): 35237-45.
[http://dx.doi.org/10.1074/jbc.R114.619304] [PMID: 25391648]
[135]
Kay E, Scotland RS, Whiteford JR. Toll-like receptors: Role in inflammation and therapeutic potential. Biofactors 2014; 40(3): 284-94.
[http://dx.doi.org/10.1002/biof.1156] [PMID: 24375529]
[136]
Klawitter M, Hakozaki M, Kobayashi H, et al. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. Eur Spine J 2014; 23(9): 1878-91.
[http://dx.doi.org/10.1007/s00586-014-3442-4] [PMID: 24997157]
[137]
Pevsner-Fischer M, Morad V, Cohen-Sfady M, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 2007; 109(4): 1422-32.
[http://dx.doi.org/10.1182/blood-2006-06-028704] [PMID: 17038530]
[138]
Shamji MF, Setton LA, Jarvis W, et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 2010; 62(7): 1974-82.
[PMID: 20222111]
[139]
Raicevic G, Rouas R, Najar M, et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum Immunol 2010; 71(3): 235-44.
[http://dx.doi.org/10.1016/j.humimm.2009.12.005] [PMID: 20034529]
[140]
Hwa Cho H, Bae YC, Jung JS. Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells 2006; 24(12): 2744-52.
[http://dx.doi.org/10.1634/stemcells.2006-0189] [PMID: 16902195]
[141]
Cho HH, Shin KK, Kim YJ, et al. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol 2010; 223(1): 168-77.
[PMID: 20049872]
[142]
Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 2018; 17(1): 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[143]
Hubbard SR. Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol 1999; 71(3-4): 343-58.
[http://dx.doi.org/10.1016/S0079-6107(98)00047-9] [PMID: 10354703]
[144]
Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front Oncol 2020; 10: 1000.
[http://dx.doi.org/10.3389/fonc.2020.01000] [PMID: 32733795]
[145]
Furukawa K, Aixinjueluo W, Kasama T, et al. Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis21. J Neurochem 2008; 105(3): 1057-66.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05232.x] [PMID: 18194438]
[146]
Zhang Y, Hu Y, Wang W, et al. Current progress in the endogenous repair of intervertebral disk degeneration based on progenitor cells. Front Bioeng Biotechnol 2021; 8: 629088.
[http://dx.doi.org/10.3389/fbioe.2020.629088] [PMID: 33553131]
[147]
Sakai D, Nakamura Y, Nakai T, et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 2012; 3(1): 1264.
[http://dx.doi.org/10.1038/ncomms2226] [PMID: 23232394]
[148]
Wangler S, Peroglio M, Menzel U, et al. Mesenchymal stem cell homing into intervertebral discs enhances the tie2-positive progenitor cell population, prevents cell death, and induces a proliferative response. Spine 2019; 44(23): 1613-22.
[http://dx.doi.org/10.1097/BRS.0000000000003150] [PMID: 31730570]
[149]
Erwin WM, Islam D, Eftekarpour E, Inman RD, Karim MZ, Fehlings MG. Intervertebral disc-derived stem cells: Implications for regenerative medicine and neural repair. Spine 2013; 38(3): 211-6.
[http://dx.doi.org/10.1097/BRS.0b013e318266a80d] [PMID: 22772571]
[150]
Tekari A, Chan SCW, Sakai D, Grad S, Gantenbein B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther 2016; 7(1): 75.
[http://dx.doi.org/10.1186/s13287-016-0337-9] [PMID: 27216150]
[151]
Sakai D, Schol J, Bach FC, et al. Successful fishing for nucleus pulposus progenitor cells of the intervertebral disc across species. JOR Spine 2018; 1(2): e1018.
[http://dx.doi.org/10.1002/jsp2.1018] [PMID: 31463445]
[152]
Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118(2): 149-61.
[http://dx.doi.org/10.1016/j.cell.2004.07.004] [PMID: 15260986]
[153]
Zhang J, Zhang J, Zhang Y, et al. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. J Cell Mol Med 2020; 24(20): 11742-54.
[http://dx.doi.org/10.1111/jcmm.15784] [PMID: 32860495]
[154]
Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569-79.
[http://dx.doi.org/10.1038/nri855] [PMID: 12154376]
[155]
Lu K, Li HY, Yang K, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: In-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 108.
[http://dx.doi.org/10.1186/s13287-017-0563-9] [PMID: 28486958]