2-Mercaptobenzimidazole Based Hydrazone Derivatives as Potential Antioxidant and α-Glucosidase Inhibitors

Article ID: e190422203781 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Schiff bases are organic compounds and play a vital role in making biologically active compounds in various fields of chemistry. It shows antioxidant, antidepressant, antimalarial, anti-inflammatory, antiglycation, and antimicrobial activity.

Objective: Our current study is focused on synthesizing thirty-four 2-mercaptobenzimidazole (MBI) based novel hydrazone derivatives (9-42) which were examined for antioxidant free radical scavenging activity via both 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) assay and explored their alpha-glucosidase inhibitory potential at various concentrations.

Methods: Multistep reactions were involved in the synthesis of 2-mercaptobenzimidazole-based hydrazone derivatives. All steps of the reaction were carried out under different conditions through a reflux condenser to get the final target products, and the reaction was monitored regularly in each step through thin layer chromatography (TLC). The antioxidant and α-glucosidase inhibition assay was performed.

Results: Obtained results of antioxidants confirmed that compounds 42 (IC50 = 27.21μg/mL), 36 (IC50 = 27.90μg/mL), 23 (IC50 = 28.10μg/mL) and 35 (IC50 = 45.60μg/mL) possess excellent potential activity compared to standard ascorbic acid having (IC50 = 60.15 μg/mL) in DPPH assay. While in the case of H2O2 three compounds 38 (IC50 = 51.45 μg/mL), 15 (IC50 = 53.50 μg/mL), and 42 (IC50 = 60.42 μg/mL) showed excellent activity as compared to standard Gallic acid having (IC50= 60.67 μg/mL). In the screened compounds against alpha-glucosidase, compound 14 (IC50 = 162 μg/mL) was found to be the most active in the whole series. Another active compound 42 (IC50 = 237μg/mL) possessed moderate inhibitory potency against α-glucosidase enzyme.

Conclusion: The different biological activities of these novel compounds may be due to different groups in the main skeleton of 2-mercaptobenzimidazole. Further experimental analysis and assessment of these compounds are important because they may lead to better antioxidants used in foods, cosmetics, and health-related products and act as antidiabetic drug development.

Keywords: 2-Mercaptobenzimidazole; hydrazone; α-glucosidase inhibitors; antioxidant; DPPH; H2O2.

Graphical Abstract

[1]
Cimerman, Z.; Miljanić, S.; Galić, N.J.C.C.A. Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents. Croatica Chemica Acta, 2000, 73, 81-95.
[2]
Schiff, H. Mittheilungen aus dem Universitäts laboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Ann. Chem., 1864, 131(1), 118-119.
[http://dx.doi.org/10.1002/jlac.18641310113]
[3]
Al-Rasheed, H.H.; Al Alshaikh, M.; Khaled, J.M.; Alharbi, N.S.; El-Faham, A. Ultrasonic irradiation: Synthesis, characterization, and preliminary antimicrobial activity of novel series of 4, 6-disubstituted-1, 3, 5-triazine containing hydrazone derivatives. J. Chem., 2016, 2016, 3464758.
[4]
Sathe, B.S.; Jaychandran, E.; Jagtap, V.A.; Sreenivasa, G. Synthesis characterization and anti-inflammatory evaluation of new fluorobenzothiazole schiff’s bases. Int. J. Pharm. Res. Dev., 2011, 3, 164-169.
[5]
Sondhi, S.M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem., 2006, 14(11), 3758-3765.
[http://dx.doi.org/10.1016/j.bmc.2006.01.054] [PMID: 16480879]
[6]
Pandey, A.; Rajavel, R.; Chandraker, S.; Dash, D. Synthesis of Schiff bases of 2-amino-5-aryl-1, 3, 4-thiadiazole and its analgesic, anti-inflammatory and anti-bacterial activity. J. Chem., 2012, 9, 2524-2531.
[7]
Udupi, R. Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J. Chem. Pharm. Res., 2012, 4, 1151-1159.
[8]
Chinnasamy, R.P.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[9]
Mounika, K.; Pragathi, A.; Gyanakumari, C. Synthesis characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Scientific Res., 2010, 2(3), 513.
[http://dx.doi.org/10.3329/jsr.v2i3.4899]
[10]
Venugopala, K.; Jayashree, B. Synthesis of carboxamides of 2′-amino-4′-(6-bromo-3-coumarinyl) thiazole as analgesic and antiinflammatory agents. Indian J. Heterocycl. Chem., 2003, 12, 307-310.
[11]
Vashi, K.; Naik, H. Synthesis of novel Schiff base and azetidinone derivatives and their antibacterial activity. E-J. Chem., 2004, 1(5), 1.
[http://dx.doi.org/10.1155/2004/158924]
[12]
Yousaf, M.; Hassan, A.; Ahmad, S.; Idrees, M.; Adil, M.; Zia, H.M.; Haq, M.; Faisal, S. Kainat. 2,4-dinitrophenyl hydrazone derivatives as potent of alpha amylase inhibitors. Biointerface Res. Appl. Chem., 2020, 10, 5217-5223.
[http://dx.doi.org/10.33263/briac102.217223]
[13]
Ershad, S.; Sagathforoush, L.; Karim-Nezhad, G.; Kangari, S. Electrochemical behavior of N2SO Schiff-base Co (II) complexes in non-aqueous media at the surface of solid electrodes. J. Electrochem. Sci., 2009, 4, 846-854.
[14]
Tisato, F.; Refosco, F.; Bandoli, G. Structural survey of technetium complexes. Coord. Chem. Rev., 1994, 135, 325-397.
[http://dx.doi.org/10.1016/0010-8545(94)80072-3]
[15]
Jarrahpour, A.; Khalili, D.; De Clercq, E.; Salmi, C.; Brunel, J.M. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 2007, 12(8), 1720-1730.
[http://dx.doi.org/10.3390/12081720] [PMID: 17960083]
[16]
Bhattacharya, A.; Purohit, V.C.; Rinaldi, F. Environmentally friendly solvent-free processes: Novel dual catalyst system in Henry reaction. Org. Process Res., 2003, 7, 254-258.
[17]
Dubey, P.; Naidu, A.; Reddy, P.; Kumar, N.; Vineel, B.G. Studies on synthesis of unsymmetrical 2, 2′-bisbenzimidazole sulphides of pharmacol. int. 2008. Available from: http://nopr.niscair.res.in/handle/123456789/2007
[18]
Dawood, K.M.; Elwan, N.M.; Abdel-Wahab, E.F. Recent advances on the synthesis of azoles, azines and azepines fused to benzimidazole. Arkivoc., 2011, 1, 111-195.
[19]
Kumar, N.; Dubey, P. An expeditious microwave-assisted synthesis of mercapto benzazoles, quinazolinone and oxadiazoles. NISCAIR-CSIR , 2012; pp. 1619-162.
[20]
Obot, I.; Gasem, Z.; Umoren, S. Understanding the mechanism of 2-mercaptobenzimidazole adsorption on Fe (110), Cu (111) and Al (111) surfaces: DFT and molecular dynamics simulations approaches. Int. J. Electrochem. Sci., 2014, 9, 2367-2378.
[21]
Hosseini, M.; Shahrabi, T.; Nichols, R. Characterization of mercaptobenzimidazole adsorption on an Au (111) electrode. Iran. J. Sci. Technol. Trans. Sci., 2005, 29, 49-63.
[22]
Zainab, A. Synthesis of some new 1, 2, 4-triazoles derived from 2-mercaptobenzimidazole. Baghdad Sci. J., 2009, 6(1), 200-208.
[http://dx.doi.org/10.21123/bsj.6.1.200-208]
[23]
Rebstock, T.L.; Ball, C.D.; Hamner, C.L.; Sell, H.M. Inhibition of plant growth by 2-mercaptobenzimidazole analogs. Plant Physiol., 1955, 30(4), 382-384.
[http://dx.doi.org/10.1104/pp.30.4.382] [PMID: 16654792]
[24]
Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The zutphen elderly study. Lancet, 1993, 342(8878), 1007-1011.
[http://dx.doi.org/10.1016/0140-6736(93)92876-U] [PMID: 8105262]
[25]
Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; José Núñez, M.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem., 2001, 72(2), 145-171.
[http://dx.doi.org/10.1016/S0308-8146(00)00223-5]
[26]
Holiman, P.C.; Hertog, M.G.; Katan, M.B. Analysis and health effects of flavonoids. Food Chem., 1996, 57(1), 43-46.
[http://dx.doi.org/10.1016/0308-8146(96)00065-9]
[27]
Hassan, A.; Ullah, H. Antibacterial and antifungal activities of the medicinal plant Veronica biloba. J. Chem., 2019, 2019, 5264943.
[http://dx.doi.org/10.1155/2019/5264943]
[28]
de Melo, E.B.; da Silveira Gomes, A.; Carvalho, I. α-and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron, 2006, 62(44), 10277-10302.
[http://dx.doi.org/10.1016/j.tet.2006.08.055]
[29]
Asano, N. Glycosidase inhibitors: Update and perspectives on practical use. Glycobiology, 2003, 13(10), 93R-104R.
[http://dx.doi.org/10.1093/glycob/cwg090] [PMID: 12851286]
[30]
Mollica, A.; Zengin, G.; Durdagi, S.; Ekhteiari Salmas, R.; Macedonio, G.; Stefanucci, A.; Dimmito, M.P.; Novellino, E. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. J. Biomol. Struct. Dyn., 2019, 37(3), 726-740.
[http://dx.doi.org/10.1080/07391102.2018.1439403] [PMID: 29421954]
[31]
Zengin, G.; Stefanucci, A.; Rodrigues, M.J.; Mollica, A.; Custodio, L.; Aumeeruddy, M.Z.; Mahomoodally, M.F. Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. J. Pharm. Biomed. Anal., 2019, 162, 225-233.
[http://dx.doi.org/10.1016/j.jpba.2018.09.035] [PMID: 30268023]
[32]
Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Novellino, E.; Mirzaie, S.; Dvorácskó, S.; Carradori, S.; Brunetti, L.; Orlando, G.; Menghini, L.; Ferrante, C.; Recinella, L.; Chiavaroli, A.; Leporini, L.; Mollica, A. chemical characterization, antioxidant properties, anti-inflammatory activity, and enzyme inhibition of Ipomoea batatas L. leaf extracts. Int. J. Food Prop., 2017, 20, 1907-1919.
[http://dx.doi.org/10.1080/10942912.2017.1357127]
[33]
Manaf, A.; Khan, M.; Zaman, K.; Ali, M.; Alam, F.; Khan, K.M. Synthesis, characterization and antioxidant activities of Semicarbazide and Thiosemicarbazide Derivatives. J. Chem. Soc. Pak., 2021, 43.
[34]
Ahad, G.; Khan, M.; Khan, A.; Ibrahim, M.; Salar, U.; Khan, K.M. Synthesis, structural characterization, and antioxidant activities of 2, 4-dinitrophenyl-hydrazone derivatives. J. Chem. Soc. Pak., 2018, 40, 961.
[35]
Khan, M.; Khan, S.; Ul Mulk, A.; Ur Rahman, A.; Wadood, A.; Shams, S.; Ashraf, M.; Rahman, J.; Khan, I.; Hameed, A.; Hussain, Z.; Khan, A.; Zaman, K.; Khan, K.M.; Perveen, S. Synthesis, molecular modeling and biological evaluation of 5-arylidene-N,N-diethylthiobarbiturates as potential α-glucosidase inhibitors. Med. Chem., 2019, 15(2), 175-185.
[http://dx.doi.org/10.2174/1573406414666180912114814] [PMID: 30207240]
[36]
Khan, M.; Yousaf, M.; Wadood, A.; Junaid, M.; Ashraf, M.; Alam, U.; Ali, M.; Arshad, M.; Hussain, Z.; Khan, K.M. Discovery of novel oxindole derivatives as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2014, 22(13), 3441-3448.
[http://dx.doi.org/10.1016/j.bmc.2014.04.033] [PMID: 24825482]
[37]
Yousaf, M.; Khan, M.; Ali, M.; Wadood, A.; Rehman, A.U.; Jan, M.S. 2-Mercaptobenzimidazole derivatives as novel butyrylcholinesterase inhibitors: Biology-oriented drug synthesis (BIODS), in-vitro and in-silico evaluation. J. Chem. Soc. Pak., 2020, 42(2), 263-273.
[http://dx.doi.org/10.52568/000627/JCSP/42.02.2020]
[38]
Hossain, M.A.; Shah, M.D.; Gnanaraj, C.; Iqbal, M. In vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah. Asian Pac. J. Trop. Med., 2011, 4(9), 717-721.
[http://dx.doi.org/10.1016/S1995-7645(11)60180-6] [PMID: 21967695]
[39]
Jacinto, S.D.; Ramos, E.F.; Siguan, A.P.T.; Canoy, R.J.C. Determining the antioxidant property of plant extracts: A laboratory exercise. Asian J Biol Edu, 2011, 5, 22-25.
[40]
Marinova, G.; Batchvarov, V. Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg. J. Agric. Sci., 2011, 17, 11-24.
[41]
Rehman, G.; Hamayun, M.; Iqbal, A.; Ul Islam, S.; Arshad, S.; Zaman, K. In vitro antidiabetic effects and antioxidant potential of Cassia nemophila Pods. BioMed Res. Int., 2018, 2018, 1824790.
[42]
Khan, A.; Jan, G.; Khan, A.; Gul Jan, F.; Bahadur, A.; Danish, M. In vitro antioxidant and antimicrobial activities of Ephedra gerardiana (root and stem) crude extract and fractions. Evid. Based Complement. Alternat. Med., 2017, 2017, 4040254.
[43]
Ngonda, F. In-vitro anti-oxidant activity and free radical scavenging potential of roots of Malawian Trichodesma zeylanicumm (burm. f.). Asian J. Biomed. Pharm. Sci., 2013, 3, 21.
[44]
Priyanka, B.; Anitha, K.; Shirisha, K.; Sk, J.; Dipankar, B.; Rajesh, K. Evaluation of anti oxidant activity of ethanolic root extract of Albizia lebbeck (L.) benth. Int. Res. J. Pharm. Appl. Sci., 2013, 3, 93-101.
[45]
Mccue, P.; Kwon, Y.I.; Shetty, K. Anti-amylase, anti-glucosidase and anti-angiotensin i-converting enzyme potential of selected foods. J. Food Biochem., 2005, 29(3), 278-294.
[http://dx.doi.org/10.1111/j.1745-4514.2005.00020.x]
[46]
Rahim, F.; Malik, F.; Ullah, H.; Wadood, A.; Khan, F.; Javid, M.T.; Taha, M.; Rehman, W.; Ur Rehman, A.; Khan, K.M. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorg. Chem., 2015, 60, 42-48.
[http://dx.doi.org/10.1016/j.bioorg.2015.03.005] [PMID: 25955493]