Histological Manifestations of Diabetic Kidney Disease and its Relationship with Insulin Resistance

Article ID: e280322202705 Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Histological manifestations of diabetic kidney disease (DKD) include mesangiolysis, mesangial matrix expansion, mesangial cell proliferation, thickening of the glomerular basement membrane, podocyte loss, foot process effacement, and hyalinosis of the glomerular arterioles, interstitial fibrosis, and tubular atrophy. Glomerulomegaly is a typical finding. Histological features of DKD may occur in the absence of clinical manifestations, having been documented in patients with normal urinary albumin excretion and normal glomerular filtration rate. Furthermore, the histological picture progresses over time, while clinical data may remain normal. Conversely, histological lesions of DKD improve with metabolic normalization following effective pancreas transplantation. Insulin resistance has been associated with the clinical manifestations of DKD (nephromegaly, glomerular hyperfiltration, albuminuria, and kidney failure). Likewise, insulin resistance may underlie the histological manifestations of DKD. Morphological changes of DKD are absent in newly diagnosed type 1 diabetes patients (with no insulin resistance) but appear afterward when insulin resistance develops. In contrast, structural lesions of DKD are typically present before the clinical diagnosis of type 2 diabetes. Several heterogeneous conditions that share the occurrence of insulin resistance, such as aging, obesity, acromegaly, lipodystrophy, cystic fibrosis, insulin receptor dysfunction, and Alström syndrome, also share both clinical and structural manifestations of kidney disease, including glomerulomegaly and other features of DKD, focal segmental glomerulosclerosis, and C3 glomerulopathy, which might be ascribed to the reduction in the synthesis of factor H binding sites (such as heparan sulfate) that leads to uncontrolled complement activation. Alström syndrome patients show systemic interstitial fibrosis markedly similar to that present in diabetes.

Keywords: Diabetes, focal glomerulosclerosis, C3 glomerulopathy, herparan sulfate, factor H, aging, obesity, lipodystrophy, HIV, cystic fibrosis, insulin receptor, Alström syndrome.

[1]
Kimmelstiel P, Osawa G, Beres J. Glomerular basement membrane in diabetics. Am J Clin Pathol 1966; 45(1): 21-31.
[http://dx.doi.org/10.1093/ajcp/45.1.21] [PMID: 5904201]
[2]
Osterby R. Morphometric studies of the peripheral glomerular basement membrane in early juvenile diabetes. I. Development of initial basement membrane thickening. Diabetologia 1972; 8(2): 84-92.
[http://dx.doi.org/10.1007/BF01235631] [PMID: 5031267]
[3]
Osterby R. A quantitative electron microscopic study of mesangial regions in glomeruli from patients with short term juvenile diabetes mellitus. Lab Invest 1973; 29(1): 99-110.
[PMID: 4728359]
[4]
Mac-Moune Lai F, Szeto CC, Choi PC, et al. Isolate diffuse thickening of glomerular capillary basement membrane: A renal lesion in prediabetes? Mod Pathol 2004; 17(12): 1506-12.
[http://dx.doi.org/10.1038/modpathol.3800219] [PMID: 15254555]
[5]
Sanai T, Okuda S, Yoshimitsu T, et al. Nodular glomerulosclerosis in patients without any manifestation of diabetes mellitus. Nephrology (Carlton) 2007; 12(1): 69-73.
[http://dx.doi.org/10.1111/j.1440-1797.2006.00743.x] [PMID: 17295664]
[6]
Nyumura I, Honda K, Tanabe K, Teraoka S, Iwamoto Y. Early histologic lesions and risk factors for recurrence of diabetic kidney disease after kidney transplantation. Transplantation 2012; 94(6): 612-9.
[http://dx.doi.org/10.1097/TP.0b013e31825e4a5f] [PMID: 23001327]
[7]
Rovin BH, Adler SG, Barratt J, et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int 2021; 100(4): 753-79.
[http://dx.doi.org/10.1016/j.kint.2021.05.015] [PMID: 34556300]
[8]
Edwards N, Rice SJ, Raman S, et al. A novel LMX1B mutation in a family with end-stage renal disease of ‘unknown cause’. Clin Kidney J 2015; 8(1): 113-9.
[http://dx.doi.org/10.1093/ckj/sfu129] [PMID: 25713721]
[9]
Saito Y, Kida H, Takeda S, et al. Mesangiolysis in diabetic glomeruli: Its role in the formation of nodular lesions. Kidney Int 1988; 34(3): 389-96.
[http://dx.doi.org/10.1038/ki.1988.193] [PMID: 3172647]
[10]
Stout LC, Kumar S, Whorton EB. Focal mesangiolysis and the pathogenesis of the Kimmelstiel-Wilson nodule. Hum Pathol 1993; 24(1): 77-89.
[http://dx.doi.org/10.1016/0046-8177(93)90066-P] [PMID: 8418016]
[11]
Conti S, Perico N, Novelli R, Carrara C, Benigni A, Remuzzi G. Early and late scanning electron microscopy findings in diabetic kidney disease. Sci Rep 2018; 8(1): 4909.
[http://dx.doi.org/10.1038/s41598-018-23244-2] [PMID: 29559657]
[12]
Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 1936; 12(1): 83-98.
[13]
Bell ET. Renal vascular disease in diabetes mellitus. Diabetes 1953; 2(5): 376-89.
[http://dx.doi.org/10.2337/diab.2.5.376] [PMID: 13107537]
[14]
Gellman DD, Pirani CL, Soothill JF, Muehrcke RC, Kark RM. Diabetic nephropathy: A clinical and pathologic study based on renal biopsies. Medicine (Baltimore) 1959; 38(4): 321-67.
[http://dx.doi.org/10.1097/00005792-195912000-00001] [PMID: 13827229]
[15]
Kimmelstiel P, Kim OJ, Beres J. Studies on renal biopsy specimens, with the aid of the electron microscope. I. Glomeruli in diabetes. Am J Clin Pathol 1962; 38(3): 270-9.
[http://dx.doi.org/10.1093/ajcp/38.3.270] [PMID: 14456010]
[16]
Beisswenger PG, Spiro RG. Human glomerular basement membrane: Chemical alteration in diabetes mellitus. Science 1970; 168(3931): 596-8.
[http://dx.doi.org/10.1126/science.168.3931.596] [PMID: 5436594]
[17]
Westberg NG, Michael AF. Human glomerular basement membrane: Chemical composition in diabetes mellitus. Acta Med Scand 1973; 1-2(1): 39-47.
[http://dx.doi.org/10.1111/j.0954-6820.1973.tb19411.x] [PMID: 4727247]
[18]
Kefalides NA. Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys. J Clin Invest 1974; 53(2): 403-7.
[http://dx.doi.org/10.1172/JCI107573] [PMID: 11344553]
[19]
Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes 1992; 41(6): 679-84.
[http://dx.doi.org/10.2337/diab.41.6.679] [PMID: 1587395]
[20]
Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997; 99(2): 342-8.
[http://dx.doi.org/10.1172/JCI119163] [PMID: 9006003]
[21]
Berg UB, Torbjörnsdotter TB, Jaremko G, Thalme B. Kidney morphological changes in relation to long-term renal function and metabolic control in adolescents with IDDM. Diabetologia 1998; 41(9): 1047-56.
[http://dx.doi.org/10.1007/s001250051029] [PMID: 9754823]
[22]
Drummond K, Mauer M. International Diabetic Nephropathy Study Group. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 2002; 51(5): 1580-7.
[http://dx.doi.org/10.2337/diabetes.51.5.1580] [PMID: 11978659]
[23]
Mazzucco G, Bertani T, Fortunato M, et al. Different patterns of renal damage in type 2 diabetes mellitus: A multicentric study on 393 biopsies. Am J Kidney Dis 2002; 39(4): 713-20.
[http://dx.doi.org/10.1053/ajkd.2002.31988] [PMID: 11920336]
[24]
Caramori ML, Kim Y, Huang C, et al. Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes 2002; 51(2): 506-13.
[http://dx.doi.org/10.2337/diabetes.51.2.506] [PMID: 11812762]
[25]
Perrin NE, Torbjörnsdotter TB, Jaremko GA, Berg UB. Follow-up of kidney biopsies in normoalbuminuric patients with type 1 diabetes. Pediatr Nephrol 2004; 19(9): 1004-13.
[http://dx.doi.org/10.1007/s00467-004-1509-x] [PMID: 15221426]
[26]
Torbjörnsdotter TB, Perrin NE, Jaremko GA, Berg UB. Widening of foot processes in normoalbuminuric adolescents with type 1 diabetes. Pediatr Nephrol 2005; 20(6): 750-8.
[http://dx.doi.org/10.1007/s00467-005-1829-5] [PMID: 15827743]
[27]
Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K. Transcriptome analysis of human diabetic kidney disease. Diabetes 2011; 60(9): 2354-69.
[http://dx.doi.org/10.2337/db10-1181] [PMID: 21752957]
[28]
Okada T, Nagao T, Matsumoto H, Nagaoka Y, Wada T, Nakao T. Histological predictors for renal prognosis in diabetic nephropathy in diabetes mellitus type 2 patients with overt proteinuria. Nephrology (Carlton) 2012; 17(1): 68-75.
[http://dx.doi.org/10.1111/j.1440-1797.2011.01525.x] [PMID: 21933307]
[29]
Budhiraja P, Thajudeen B, Popovtzer M. Absence of albuminuria in type 2 diabetics with classical diabetic nephropathy. Clinical pathological study. J Biomed Sci Eng 2013; 6(5): 20-5.
[http://dx.doi.org/10.4236/jbise.2013.65A005]
[30]
Klessens CQ, Woutman TD, Veraar KA, et al. An autopsy study suggests that diabetic nephropathy is underdiagnosed. Kidney Int 2016; 90(1): 149-56.
[http://dx.doi.org/10.1016/j.kint.2016.01.023] [PMID: 27165826]
[31]
Mise K, Ueno T, Hoshino J, et al. Nodular lesions in diabetic nephropathy: Collagen staining and renal prognosis. Diabetes Res Clin Pract 2017; 127: 187-97.
[http://dx.doi.org/10.1016/j.diabres.2017.03.006] [PMID: 28388509]
[32]
Furuichi K, Shimizu M, Yuzawa Y, et al. Research Group of diabetic nephropathy, ministry of health, labour and welfare of Japan, and Japan agency for medical research and development. Clinicopathological analysis of biopsy-proven diabetic nephropathy based on the Japanese classification of diabetic nephropathy. Clin Exp Nephrol 2018; 22(3): 570-82.
[http://dx.doi.org/10.1007/s10157-017-1485-7] [PMID: 29080120]
[33]
Yasuda F, Mii A, Morita M, et al. Importance of frequency and morphological characteristics of nodular diabetic glomerulosclerosis in diabetic nephropathy. Hum Pathol 2018; 75: 95-103.
[http://dx.doi.org/10.1016/j.humpath.2018.01.019] [PMID: 29408640]
[34]
Hoshino J, Furuichi K, Yamanouchi M, et al. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy. PLoS One 2018; 13(2): e0190923.
[http://dx.doi.org/10.1371/journal.pone.0190923] [PMID: 29408865]
[35]
White KE, Bilous RW, Marshall SM, et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes 2002; 51(10): 3083-9.
[http://dx.doi.org/10.2337/diabetes.51.10.3083] [PMID: 12351451]
[36]
Kurtz SM, McManus JF. A reconsideration of the development, structure, and disease of the human renal glomerulus. Am Heart J 1959; 58(3): 357-71.
[http://dx.doi.org/10.1016/0002-8703(59)90152-8] [PMID: 14412913]
[37]
Siperstein MD. Capillary basement membranes and diabetic microangiopathy. Adv Intern Med 1972; 18: 325-44.
[PMID: 4197108]
[38]
Steffes MW, Barbosa J, Basgen JM, Sutherland DE, Najarian JS, Mauer SM. Quantitative glomerular morphology of the normal human kidney. Lab Invest 1983; 49(1): 82-6.
[PMID: 6865334]
[39]
Dische FE. Measurement of glomerular basement membrane thickness and its application to the diagnosis of thin-membrane nephropathy. Arch Pathol Lab Med 1992; 116(1): 43-9.
[PMID: 1734832]
[40]
Brun C, Gormsen H, Hilden T, Iversen P, Raaschou F. Diabetic nephropathy; kidney biopsy and renal function tests. Am J Med 1953; 15(2): 187-97.
[http://dx.doi.org/10.1016/0002-9343(53)90070-9] [PMID: 13065318]
[41]
Lemley KV, Abdullah I, Myers BD, et al. Evolution of incipient nephropathy in type 2 diabetes mellitus. Kidney Int 2000; 58(3): 1228-37.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00223.x] [PMID: 10972685]
[42]
Tervaert TW, Mooyaart AL, Amann K, et al. Renal Pathology Society. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010; 21(4): 556-63.
[http://dx.doi.org/10.1681/ASN.2010010010] [PMID: 20167701]
[43]
Saleem MA, O’Hare MJ, Reiser J, et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 2002; 13(3): 630-8.
[http://dx.doi.org/10.1681/ASN.V133630] [PMID: 11856766]
[44]
Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: Regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol 2007; 17(9): 428-37.
[http://dx.doi.org/10.1016/j.tcb.2007.06.006] [PMID: 17804239]
[45]
Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014; 21(5): 422-5.
[http://dx.doi.org/10.1053/j.ackd.2014.06.001] [PMID: 25168831]
[46]
Kliewe F, Kaling S, Lötzsch H, et al. Fibronectin is up-regulated in podocytes by mechanical stress. FASEB J 2019; 33(12): 14450-60.
[http://dx.doi.org/10.1096/fj.201900978RR] [PMID: 31675484]
[47]
Bjørn SF, Bangstad HJ, Hanssen KF, et al. Glomerular epithelial foot processes and filtration slits in IDDM patients. Diabetologia 1995; 38(10): 1197-204.
[http://dx.doi.org/10.1007/BF00422369] [PMID: 8690172]
[48]
Lemley KV, Blouch K, Abdullah I, et al. Glomerular permselectivity at the onset of nephropathy in type 2 diabetes mellitus. J Am Soc Nephrol 2000; 11(11): 2095-105.
[http://dx.doi.org/10.1681/ASN.V11112095] [PMID: 11053486]
[49]
Steffes MW, Schmidt D, McCrery R, Basgen JM. International Diabetic Nephropathy Study Group. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 2001; 59(6): 2104-13.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00725.x] [PMID: 11380812]
[50]
Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 2003; 52(4): 1031-5.
[http://dx.doi.org/10.2337/diabetes.52.4.1031] [PMID: 12663476]
[51]
White KE, Bilous RW. Diabiopsies Study Group. Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant 2004; 19(6): 1437-40.
[http://dx.doi.org/10.1093/ndt/gfh129] [PMID: 14993494]
[52]
Su J, Li SJ, Chen ZH, et al. Evaluation of podocyte lesion in patients with diabetic nephropathy: Wilms’ tumor-1 protein used as a podocyte marker. Diabetes Res Clin Pract 2010; 87(2): 167-75.
[http://dx.doi.org/10.1016/j.diabres.2009.10.022] [PMID: 19969384]
[53]
Nakamura T, Ushiyama C, Suzuki S, et al. Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant 2000; 15(9): 1379-83.
[http://dx.doi.org/10.1093/ndt/15.9.1379] [PMID: 10978394]
[54]
Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 2007; 56(8): 2155-60.
[http://dx.doi.org/10.2337/db07-0019] [PMID: 17536064]
[55]
Weil EJ, Lemley KV, Mason CC, et al. Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney Int 2012; 82(9): 1010-7.
[http://dx.doi.org/10.1038/ki.2012.234] [PMID: 22718189]
[56]
Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 1999; 42(11): 1341-4.
[http://dx.doi.org/10.1007/s001250051447] [PMID: 10550418]
[57]
Salvatore SP, Reddi AS, Chandran CB, Chevalier JM, Okechukwu CN, Seshan SV. Collapsing glomerulopathy superimposed on diabetic nephropathy: Insights into etiology of an under-recognized, severe pattern of glomerular injury. Nephrol Dial Transplant 2014; 29(2): 392-9.
[http://dx.doi.org/10.1093/ndt/gft408] [PMID: 24081860]
[58]
Ainsworth SK, Hirsch HZ, Brackett NC Jr, Brissie RM, Williams AV Jr, Hennigar GR. Diabetic glomerulonephropathy: Histopathologic, immunofluorescent, and ultrastructural studies of 16 cases. Hum Pathol 1982; 13(5): 470-8.
[http://dx.doi.org/10.1016/S0046-8177(82)80030-0] [PMID: 7042531]
[59]
Tomino Y, Inoue W, Watanabe S, et al. Detection of glomerular sialic acids in patients with diabetic nephropathy. Am J Nephrol 1988; 8(1): 21-6.
[http://dx.doi.org/10.1159/000167548] [PMID: 3285677]
[60]
Takazakura E, Nakamoto Y, Hayakawa H, et al. Onset and progression of diabetic glomerulosclerosis; a prospective study based on serial renal biopsies. Diabetes 1975; 24(1): 1-9.
[http://dx.doi.org/10.2337/diab.24.1.1] [PMID: 1120540]
[61]
Harris RD, Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int 1991; 40(1): 107-14.
[http://dx.doi.org/10.1038/ki.1991.187] [PMID: 1921145]
[62]
Moriya T, Omura K, Matsubara M, Yoshida Y, Hayama K, Ouchi M. Arteriolar Hyalinosis Predicts Increase in Albuminuria and GFR Decline in Normo- and Microalbuminuric Japanese Patients With Type 2 Diabetes. Diabetes Care 2017; 40(10): 1373-8.
[http://dx.doi.org/10.2337/dc17-0209] [PMID: 28774945]
[63]
Min W, Yamanaka N. Three-dimensional analysis of increased vasculature around the glomerular vascular pole in diabetic nephropathy. Virchows Arch A Pathol Anat Histopathol 1993; 423(3): 201-7.
[http://dx.doi.org/10.1007/BF01614771] [PMID: 8236814]
[64]
Osterby R, Asplund J, Bangstad HJ, et al. Neovascularization at the vascular pole region in diabetic glomerulopathy. Nephrol Dial Transplant 1999; 14(2): 348-52.
[http://dx.doi.org/10.1093/ndt/14.2.348] [PMID: 10069187]
[65]
Ekinci EI, Jerums G, Skene A, et al. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 2013; 36(11): 3620-6.
[http://dx.doi.org/10.2337/dc12-2572] [PMID: 23835690]
[66]
Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury? Kidney Int 1999; 56(5): 1627-37.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00721.x] [PMID: 10571771]
[67]
Makino H, Ikeda S, Haramoto T, Ota Z. Heparan sulfate proteoglycans are lost in patients with diabetic nephropathy. Nephron J 1992; 61(4): 415-21.
[http://dx.doi.org/10.1159/000186959] [PMID: 1501738]
[68]
Bohle A, Wehrmann M, Bogenschütz O, Batz C, Müller CA, Müller GA. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract 1991; 187(2-3): 251-9.
[http://dx.doi.org/10.1016/S0344-0338(11)80780-6] [PMID: 2068008]
[69]
Haneda M, Utsunomiya K, Koya D, et al. A new classification of diabetic nephropathy 2014: A report from joint committee on diabetic nephropathy. Clin Exp Nephrol 2015; 19(1): 1-5.
[http://dx.doi.org/10.1007/s10157-014-1057-z] [PMID: 25527479]
[70]
Furuichi K, Yuzawa Y, Shimizu M, et al. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant 2018; 33(1): 138-48.
[http://dx.doi.org/10.1093/ndt/gfw417] [PMID: 28340221]
[71]
Shimizu M, Furuichi K, Toyama T, et al. Kanazawa Study Group for Renal Diseases and Hypertension. Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care 2013; 36(11): 3655-62.
[http://dx.doi.org/10.2337/dc13-0298] [PMID: 24089538]
[72]
Mise K, Hoshino J, Ubara Y, et al. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant 2014; 29(1): 109-18.
[http://dx.doi.org/10.1093/ndt/gft349] [PMID: 24151019]
[73]
Mauer M, Caramori ML, Fioretto P, Najafian B. Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients. Nephrol Dial Transplant 2015; 30(6): 918-23.
[http://dx.doi.org/10.1093/ndt/gfu279] [PMID: 25183630]
[74]
An Y, Xu F, Le W, et al. Renal histologic changes and the outcome in patients with diabetic nephropathy. Nephrol Dial Transplant 2015; 30(2): 257-66.
[http://dx.doi.org/10.1093/ndt/gfu250] [PMID: 25063425]
[75]
Furuichi K, Shimizu M, Yamanouchi M, et al. Clinicopathological features of fast eGFR decliners among patients with diabetic nephropathy. BMJ Open Diabetes Res Care 2020; 8(1): e001157.
[http://dx.doi.org/10.1136/bmjdrc-2019-001157] [PMID: 32503809]
[76]
Fioretto P, Steffes MW, Sutherland DE, Mauer M. Sequential renal biopsies in insulin-dependent diabetic patients: Structural factors associated with clinical progression. Kidney Int 1995; 48(6): 1929-35.
[http://dx.doi.org/10.1038/ki.1995.493] [PMID: 8587254]
[77]
Steinke JM, Sinaiko AR, Kramer MS, Suissa S, Chavers BM, Mauer M. International Diabetic Nephopathy Study Group. The early natural history of nephropathy in Type 1 Diabetes: III. Predictors of 5-year urinary albumin excretion rate patterns in initially normoalbuminuric patients. Diabetes 2005; 54(7): 2164-71.
[http://dx.doi.org/10.2337/diabetes.54.7.2164] [PMID: 15983218]
[78]
Fufaa GD, Weil EJ, Lemley KV, et al. Structural Predictors of Loss of Renal Function in American Indians with Type 2 Diabetes. Clin J Am Soc Nephrol 2016; 11(2): 254-61.
[http://dx.doi.org/10.2215/CJN.05760515] [PMID: 26792530]
[79]
Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol 2013; 24(7): 1175-81.
[http://dx.doi.org/10.1681/ASN.2012070739] [PMID: 23687360]
[80]
Stefan G, Stancu S, Zugravu A, Petre N, Mandache E, Mircescu G. Histologic predictors of renal outcome in diabetic nephropathy: Beyond renal pathology society classification. Medicine (Baltimore) 2019; 98(27): e16333.
[http://dx.doi.org/10.1097/MD.0000000000016333] [PMID: 31277183]
[81]
Yamakawa T, Kawaguchi T, Kitamura H, et al. Glomerular basement membrane duplication is a predictor of the prognosis of diabetic nephropathy in patients with type 2 diabetes. Clin Exp Nephrol 2019; 23(4): 521-9.
[http://dx.doi.org/10.1007/s10157-018-1674-z] [PMID: 30467801]
[82]
Taft JL, Nolan CJ, Yeung SP, Hewitson TD, Martin FI. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 1994; 43(8): 1046-51.
[http://dx.doi.org/10.2337/diab.43.8.1046] [PMID: 8039599]
[83]
Yamanouchi M, Furuichi K, Hoshino J, et al. Nonproteinuric versus proteinuric phenotypes in diabetic kidney disease: A propensity score-matched analysis of a nationwide, biopsy-based cohort study. Diabetes Care 2019; 42(5): 891-902.
[http://dx.doi.org/10.2337/dc18-1320] [PMID: 30833372]
[84]
Fioretto P, Steffes MW, Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes 1994; 43(11): 1358-64.
[http://dx.doi.org/10.2337/diab.43.11.1358] [PMID: 7926312]
[85]
Fioretto P, Mauer M, Brocco E, et al. Patterns of renal injury in NIDDM patients with microalbuminuria. Diabetologia 1996; 39(12): 1569-76.
[http://dx.doi.org/10.1007/s001250050616] [PMID: 8960844]
[86]
Perrin NE, Torbjörnsdotter TB, Jaremko GA, Berg UB. The course of diabetic glomerulopathy in patients with type I diabetes: A 6-year follow-up with serial biopsies. Kidney Int 2006; 69(4): 699-705.
[http://dx.doi.org/10.1038/sj.ki.5000146] [PMID: 16518327]
[87]
Bohman SO, Tydén G, Wilczek H, et al. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes 1985; 34(3): 306-8.
[http://dx.doi.org/10.2337/diab.34.3.306] [PMID: 3918902]
[88]
Bilous RW, Mauer SM, Sutherland DE, Najarian JS, Goetz FC, Steffes MW. The effects of pancreas transplantation on the glomerular structure of renal allografts in patients with insulin-dependent diabetes. N Engl J Med 1989; 321(2): 80-5.
[http://dx.doi.org/10.1056/NEJM198907133210204] [PMID: 2659996]
[89]
Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998; 339(2): 69-75.
[http://dx.doi.org/10.1056/NEJM199807093390202] [PMID: 9654536]
[90]
Abouna GM, Al-Adnani MS, Kremer GD, Kumar SA, Daddah SK, Kusma G. Reversal of diabetic nephropathy in human cadaveric kidneys after transplantation into non-diabetic recipients. Lancet 1983; 2(8362): 1274-6.
[http://dx.doi.org/10.1016/S0140-6736(83)91151-0] [PMID: 6139620]
[91]
Innes A, Furness PN, Cotton RE, Burden RP, Morgan AG. Diabetic glomerulosclerosis without diabetes mellitus--two case reports and a review of the literature. Nephrol Dial Transplant 1992; 7(7): 642-6.
[http://dx.doi.org/10.1093/ndt/7.7.642] [PMID: 1323076]
[92]
Grcevska L, Polenakovic M, Dzikova S, Petrusevska G. Small vessel vasculitis with crescentic glomerulo-nephritis associated with IgA-lambda monoclonal gammapathy. Clin Nephrol 2001; 56(1): 82-5.
[PMID: 11499665]
[93]
Markowitz GS, Lin J, Valeri AM, Avila C, Nasr SH, D’Agati VD. Idiopathic nodular glomerulosclerosis is a distinct clinicopathologic entity linked to hypertension and smoking. Hum Pathol 2002; 33(8): 826-35.
[http://dx.doi.org/10.1053/hupa.2002.126189] [PMID: 12203216]
[94]
Kinoshita C, Inoue Y, Kanda Y, Kanda C. A case of idiopathic nodular glomerulosclerosis with fibrin caps. Clin Exp Nephrol 2011; 15(6): 937-41.
[http://dx.doi.org/10.1007/s10157-011-0513-2] [PMID: 21847522]
[95]
Hamrahian M, Mollaee M, Anand M, Fülöp T. Impaired glucose metabolism - A potential risk factor for idiopathic nodular glomerulosclerosis: A single center study. Med Hypotheses 2018; 121: 95-8.
[http://dx.doi.org/10.1016/j.mehy.2018.09.036] [PMID: 30396504]
[96]
Nasr SH, D’Agati VD. Nodular glomerulosclerosis in the nondiabetic smoker. J Am Soc Nephrol 2007; 18(7): 2032-6.
[http://dx.doi.org/10.1681/ASN.2006121328] [PMID: 17568019]
[97]
Li W, Verani RR. Idiopathic nodular glomerulosclerosis: A clinicopathologic study of 15 cases. Hum Pathol 2008; 39(12): 1771-6.
[http://dx.doi.org/10.1016/j.humpath.2008.05.004] [PMID: 18701135]
[98]
Kasiske BL, Crosson JT. Renal disease in patients with massive obesity. Arch Intern Med 1986; 146(6): 1105-9.
[http://dx.doi.org/10.1001/archinte.1986.00360180095016] [PMID: 3718096]
[99]
Goumenos DS, Kawar B, El Nahas M, et al. Early histological changes in the kidney of people with morbid obesity. Nephrol Dial Transplant 2009; 24(12): 3732-8.
[http://dx.doi.org/10.1093/ndt/gfp329] [PMID: 19596742]
[100]
Westall GP, Binder J, Kotsimbos T, et al. Nodular glomerulosclerosis in cystic fibrosis mimics diabetic nephropathy. Nephron Clin Pract 2004; 96(3): c70-5.
[http://dx.doi.org/10.1159/000076743] [PMID: 15056988]
[101]
Yahiaoui Y, Jablonski M, Hubert D, et al. Renal involvement in cystic fibrosis: Diseases spectrum and clinical relevance. Clin J Am Soc Nephrol 2009; 4(5): 921-8.
[http://dx.doi.org/10.2215/CJN.00750209] [PMID: 19406970]
[102]
Lalayiannis AD, Thompson C, Malcomson R, Milford DV. Nodular glomerulosclerosis in a patient with cystic fibrosis, but not diabetes mellitus: A paediatric case. Respir Med Case Rep 2016; 19: 58-60.
[http://dx.doi.org/10.1016/j.rmcr.2016.07.005] [PMID: 27489763]
[103]
Hodgin JB, Bitzer M, Wickman L, et al. Glomerular aging and focal global glomerulosclerosis: A podometric perspective. J Am Soc Nephrol 2015; 26(12): 3162-78.
[http://dx.doi.org/10.1681/ASN.2014080752] [PMID: 26038526]
[104]
Puelles VG, Cullen-McEwen LA, Taylor GE, et al. Human podocyte depletion in association with older age and hypertension. Am J Physiol Renal Physiol 2016; 310(7): F656-68.
[http://dx.doi.org/10.1152/ajprenal.00497.2015] [PMID: 26792066]
[105]
Kimmelstiel P. Glomerular changes in arteriosclerotic contraction of the kidney. Am J Pathol 1935; 11(3): 483-963.
[106]
Candiello J, Cole GJ, Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol 2010; 29(5): 402-10.
[http://dx.doi.org/10.1016/j.matbio.2010.03.004] [PMID: 20362054]
[107]
Kasiske BL, Napier J. Glomerular sclerosis in patients with massive obesity. Am J Nephrol 1985; 5(1): 45-50.
[http://dx.doi.org/10.1159/000166902] [PMID: 3970078]
[108]
Kremers WK, Denic A, Lieske JC, et al. Distinguishing age-related from disease-related glomerulosclerosis on kidney biopsy: The Aging Kidney Anatomy study. Nephrol Dial Transplant 2015; 30(12): 2034-9.
[http://dx.doi.org/10.1093/ndt/gfv072] [PMID: 25888387]
[109]
Hughson MD, Hoy WE, Mott SA, et al. APOL1 Risk alleles are associated with more severe arteriosclerosis in renal resistance vessels with aging and hypertension. Kidney Int Rep 2016; 1(1): 10-23.
[http://dx.doi.org/10.1016/j.ekir.2016.03.002] [PMID: 27610422]
[110]
Matsumoto H, Nakao T, Okada T, et al. Insulin resistance contributes to obesity-related proteinuria. Intern Med 2005; 44(6): 548-53.
[http://dx.doi.org/10.2169/internalmedicine.44.548] [PMID: 16020878]
[111]
Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: An emerging epidemic. Kidney Int 2001; 59(4): 1498-509.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590041498.x] [PMID: 11260414]
[112]
Adelman RD, Restaino IG, Alon US, Blowey DL. Proteinuria and focal segmental glomerulosclerosis in severely obese adolescents. J Pediatr 2001; 138(4): 481-5.
[http://dx.doi.org/10.1067/mpd.2001.113006] [PMID: 11295709]
[113]
Chen HM, Liu ZH, Zeng CH, Li SJ, Wang QW, Li LS. Podocyte lesions in patients with obesity-related glomerulopathy. Am J Kidney Dis 2006; 48(5): 772-9.
[http://dx.doi.org/10.1053/j.ajkd.2006.07.025] [PMID: 17059996]
[114]
Puelles VG, Zimanyi MA, Samuel T, et al. Estimating individual glomerular volume in the human kidney: Clinical perspectives. Nephrol Dial Transplant 2012; 27(5): 1880-8.
[http://dx.doi.org/10.1093/ndt/gfr539] [PMID: 21984554]
[115]
Yoshida H, Akikusa B, Saeki N, et al. Effect of pituitary microsurgery on acromegaly complicated nephrotic syndrome with focal segmental glomerulosclerosis: Report of a rare clinical case. Am J Kidney Dis 1999; 33(6): 1158-63.
[http://dx.doi.org/10.1016/S0272-6386(99)70156-3] [PMID: 10352207]
[116]
Takai M, Izumino K, Oda Y, Terada Y, Inoue H, Takata M. Focal segmental glomerulosclerosis associated with acromegaly. Clin Nephrol 2001; 56(1): 75-7.
[PMID: 11499662]
[117]
Libório AB, Figueiredo PR, Montenegro Jr RM, et al. Urinary calcium excretion and insulin resistance in patients with acromegaly. Int Urol Nephrol 2012; 44(5): 1473-7.
[http://dx.doi.org/10.1007/s11255-011-0116-6] [PMID: 22234795]
[118]
Yamasaki A, Bito D, Eto E, et al. Focal segmental glomerulosclerosis in which urinary protein improved after surgical treatment for acromegaly: A case report. J Med Case Reports 2019; 13(1): 298.
[http://dx.doi.org/10.1186/s13256-019-2228-z] [PMID: 31540583]
[119]
Zheng J, Cui Z, Lv JC, et al. Delayed diagnosis of acromegaly in a patient with focal segmental Glomerulosclerosis: A rare case report and literature review. BMC Nephrol 2019; 20(1): 435.
[http://dx.doi.org/10.1186/s12882-019-1626-1] [PMID: 31771524]
[120]
Tran TY, Flynn M, O’Bell J, Pareek G. Calculated insulin resistance correlates with stone-forming urinary metabolic changes and greater stone burden in high-risk stone patients. Clin Nephrol 2016; 85(6): 316-20.
[http://dx.doi.org/10.5414/CN108832] [PMID: 27125629]
[121]
Karoli R, Fatima J, Karoli Y, et al. Study of association of metabolic syndrome and risk factors of nephrolithiasis. J Assoc Physicians India 2021; 69(1): 32-5.
[PMID: 34227773]
[122]
Ireland JT, Patnaik BK, Duncan LJ. The role of the anterior pituitary in the pathogenesis of diabetic glomerulosclerosis. Proc R Soc Med 1967; 60(2): 145-8.
[http://dx.doi.org/10.1177/003591576706000219] [PMID: 6018837]
[123]
Greenwood RH, Ireland JT, Jones DH, Mahler RF. Diabetic complications in a patient with coexisting anterior hypopituitarism. Diabetes 1975; 24(11): 1027-31.
[http://dx.doi.org/10.2337/diab.24.11.1027] [PMID: 810380]
[124]
Eisinger AJ, Shortland JR, Moorhead PJ. Renal disease in partial lipodystrophy. Q J Med 1972; 41(163): 343-54.
[PMID: 4561162]
[125]
Williams DG, Scopes JW, Peters DK. Hypocomplementaemic membranoproliferative glomerulonephritis and nephrotic syndrome associated with partial lipodystrophy of the face and trunk. Proc R Soc Med 1972; 65(7): 591.
[http://dx.doi.org/10.1177/003591577206500708] [PMID: 5085931]
[126]
Reichel W, Köbberling J, Fischbach H, Scheler F. Membranoproliferative glomerulonephritis with partial lipodystrophy: Discordant occurrence in identical twins. Klin Wochenschr 1976; 54(2): 75-81.
[http://dx.doi.org/10.1007/BF01468772] [PMID: 129586]
[127]
Saito I, Saruta T, Iyori S, Sakaguchi H. The renal lesion associated with total lipodystrophy. J Am Geriatr Soc 1977; 25(4): 175-8.
[http://dx.doi.org/10.1111/j.1532-5415.1977.tb00288.x] [PMID: 845358]
[128]
Pollock J, Wood B, Kelly JP. Membranoproliferative glomerulonephritis, type II and partial lipodystrophy in an adult. Am J Kidney Dis 1986; 8(4): 274-6.
[http://dx.doi.org/10.1016/S0272-6386(86)80041-5] [PMID: 3766535]
[129]
Chartier S, Buzzanga JB, Paquin F. Partial lipodystrophy associated with a type 3 form of membranoproliferative glomerulonephritis. J Am Acad Dermatol 1987; 16(1 Pt 2): 201-5.
[http://dx.doi.org/10.1016/S0190-9622(87)80062-2] [PMID: 3819052]
[130]
Javor ED, Moran SA, Young JR, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: Baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab 2004; 89(7): 3199-207.
[http://dx.doi.org/10.1210/jc.2003-032140] [PMID: 15240593]
[131]
Thong KM, Xu Y, Cook J, et al. Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA. Nephron Clin Pract 2013; 124(1-2): 31-7.
[http://dx.doi.org/10.1159/000354716] [PMID: 24080738]
[132]
Akinci B, Koseoglu FD, Onay H, et al. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities. Metabolism 2015; 64(9): 1086-95.
[http://dx.doi.org/10.1016/j.metabol.2015.06.004] [PMID: 26139569]
[133]
Akinci B, Unlu SM, Celik A, et al. Renal complications of lipodystrophy: A closer look at the natural history of kidney disease. Clin Endocrinol (Oxf) 2018; 89(1): 65-75.
[http://dx.doi.org/10.1111/cen.13732] [PMID: 29722904]
[134]
Chen RX, Zhang L, Ye W, et al. The renal manifestations of type 4 familial partial lipodystrophy: A case report and review of literature. BMC Nephrol 2018; 19(1): 111.
[http://dx.doi.org/10.1186/s12882-018-0913-6] [PMID: 29747582]
[135]
Oral EA, Gorden P, Cochran E, et al. Long-term effectiveness and safety of metreleptin in the treatment of patients with partial lipodystrophy. Endocrine 2019; 64(3): 500-11.
[http://dx.doi.org/10.1007/s12020-019-01862-8] [PMID: 30805888]
[136]
Sharma A, Bourey RE, Edwards JC, Brink DS, Albert SG. Nephrotic range proteinuria associated with focal segmental glomerulosclerosis reversed with pioglitazone therapy in a patient with Dunnigan type lipodystrophy. Diabetes Res Clin Pract 2021; 172: 108620.
[http://dx.doi.org/10.1016/j.diabres.2020.108620] [PMID: 33316307]
[137]
Ljunghall S, Fjellström KE, Wibell L. Partial lipodystrophy and chronic hypocomplementemic glomerulonephritis. Acta Med Scand 1974; 195(6): 493-7.
[PMID: 4600512]
[138]
Savage DB, Semple RK, Clatworthy MR, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab 2009; 94(1): 10-6.
[http://dx.doi.org/10.1210/jc.2008-1703] [PMID: 18854390]
[139]
Sissons JG, West RJ, Fallows J, et al. The complement abnormalities of lipodystrophy. N Engl J Med 1976; 294(9): 461-5.
[http://dx.doi.org/10.1056/NEJM197602262940902] [PMID: 1246331]
[140]
Bennett WM, Bardana EJ, Wuepper K, et al. Partial lipodystrophy, C3 nephritic factor and clinically inapparent mesangiocapillary glomerulonephritis. Am J Med 1977; 62(5): 757-60.
[http://dx.doi.org/10.1016/0002-9343(77)90879-8] [PMID: 860726]
[141]
Demetriou K, Kallikas I, Zouvani I, Kyriacou K, Pierides A. The pregnant patient with partial lipodystrophy developing acute renal failure--onset of de novo membranoproliferative glomerulonephritis. Nephrol Dial Transplant 1998; 13(8): 2121-4.
[http://dx.doi.org/10.1093/ndt/13.8.2121] [PMID: 9719180]
[142]
Cahill J, Waldron S, O’Neill G, Duffy BS. Partial lipodystrophy and renal disease. Ir J Med Sci 1983; 152(12): 451-3.
[http://dx.doi.org/10.1007/BF02958708] [PMID: 6668171]
[143]
Lüdtke A, Roos GM, van Hettinga M, Horst BA, Worman HJ, Schmidt HH. Post-mortem findings in Dunnigan-type familial partial lipodystrophy. Diabet Med 2010; 245-6.
[http://dx.doi.org/10.1111/j.1464-5491.2009.02909.x]
[144]
Natarajan G, Thanigachalam D, Jeyachandran D, Kurien AA, Ramanathan S. Partial lipoatrophy in dense deposit disease. Kidney Int 2020; 98(5): 1355.
[http://dx.doi.org/10.1016/j.kint.2020.04.034] [PMID: 33126987]
[145]
Fountas A, Giotaki Z, Dounousi E, et al. Familial partial lipodystrophy and proteinuric renal disease due to a missense c.1045C > T LMNA mutation. Endocrinol Diabetes Metab Case Rep 2017; 2017: 17-0049.
[146]
Rankin J, Auer-Grumbach M, Bagg W, et al. Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. Am J Med Genet A 2008; 146A(12): 1530-42.
[http://dx.doi.org/10.1002/ajmg.a.32331] [PMID: 18478590]
[147]
Agarwal AK, Zhou XJ, Hall RK, et al. Focal segmental glomerulosclerosis in patients with mandibuloacral dysplasia owing to ZMPSTE24 deficiency. J Investig Med 2006; 54(4): 208-13.
[http://dx.doi.org/10.2310/6650.2006.05068] [PMID: 17152860]
[148]
Tanner A, Chan HW, Stears A, Moosajee M. Bilateral macular drusen in acquired partial lipodystrophy with type 2 membranoproliferative glomerulonephritis. BMJ Case Rep 2021; 14(6): e241666.
[http://dx.doi.org/10.1136/bcr-2021-241666] [PMID: 34155011]
[149]
Owen KR, Donohoe M, Ellard S, et al. Mesangiocapillary glomerulonephritis type 2 associated with familial partial lipodystrophy (Dunnigan-Kobberling syndrome). Nephron Clin Pract 2004; 96(2): c35-8.
[http://dx.doi.org/10.1159/000076396] [PMID: 14988595]
[150]
Fearon DT. Regulation by membrane sialic acid of beta1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci USA 1978; 75(4): 1971-5.
[http://dx.doi.org/10.1073/pnas.75.4.1971] [PMID: 273923]
[151]
Pangburn MK, Müller-Eberhard HJ. Complement C3 convertase: Cell surface restriction of beta1H control and generation of restriction on neuraminidase-treated cells. Proc Natl Acad Sci USA 1978; 75(5): 2416-20.
[http://dx.doi.org/10.1073/pnas.75.5.2416] [PMID: 276881]
[152]
Meri S, Pangburn MK. Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 1990; 87(10): 3982-6.
[http://dx.doi.org/10.1073/pnas.87.10.3982] [PMID: 1692629]
[153]
Blackmore TK, Hellwage J, Sadlon TA, et al. Identification of the second heparin-binding domain in human complement factor H. J Immunol 1998; 160(7): 3342-8.
[PMID: 9531293]
[154]
Ram S, Sharma AK, Simpson SD, et al. A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J Exp Med 1998; 187(5): 743-52.
[http://dx.doi.org/10.1084/jem.187.5.743] [PMID: 9480984]
[155]
Hellwage J, Jokiranta TS, Friese MA, et al. Complement C3b/C3d and cell surface polyanions are recognized by overlapping binding sites on the most carboxyl-terminal domain of complement factor H. J Immunol 2002; 169(12): 6935-44.
[http://dx.doi.org/10.4049/jimmunol.169.12.6935] [PMID: 12471127]
[156]
Loeven MA, Rops AL, Berden JH, Daha MR, Rabelink TJ, van der Vlag J. The role of heparan sulfate as determining pathogenic factor in complement factor H-associated diseases. Mol Immunol 2015; 63(2): 203-8.
[http://dx.doi.org/10.1016/j.molimm.2014.08.005] [PMID: 25246018]
[157]
Jokiranta TS, Cheng ZZ, Seeberger H, et al. Binding of complement factor H to endothelial cells is mediated by the carboxy-terminal glycosaminoglycan binding site. Am J Pathol 2005; 167(4): 1173-81.
[http://dx.doi.org/10.1016/S0002-9440(10)61205-9] [PMID: 16192651]
[158]
Clark SJ, Perveen R, Hakobyan S, et al. Impaired binding of the age-related macular degeneration-associated complement factor H 402H allotype to Bruch’s membrane in human retina. J Biol Chem 2010; 285(39): 30192-202.
[http://dx.doi.org/10.1074/jbc.M110.103986] [PMID: 20660596]
[159]
Gyapon-Quast F, Goicoechea de Jorge E, Malik T, et al. Defining the glycosaminoglycan interactions of complement factor H-related protein 5. J Immunol 2021; 207(2): 534-41.
[http://dx.doi.org/10.4049/jimmunol.2000072] [PMID: 34193601]
[160]
Blackmore TK, Sadlon TA, Ward HM, Lublin DM, Gordon DL. Identification of a heparin binding domain in the seventh short consensus repeat of complement factor H. J Immunol 1996; 157(12): 5422-7.
[PMID: 8955190]
[161]
Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 2005; 102(20): 7227-32.
[http://dx.doi.org/10.1073/pnas.0501536102] [PMID: 15870199]
[162]
D’souza YB, Jones CJ, Short CD, Roberts IS, Bonshek RE. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II. Kidney Int 2009; 75(8): 824-7.
[http://dx.doi.org/10.1038/ki.2008.658] [PMID: 19177159]
[163]
McAvoy CE, Silvestri G. Retinal changes associated with type 2 glomerulonephritis. Eye (Lond) 2005; 19(9): 985-9.
[http://dx.doi.org/10.1038/sj.eye.6701697] [PMID: 15375355]
[164]
Clark SJ, Higman VA, Mulloy B, et al. His-384 allotypic variant of factor H associated with age-related macular degeneration has different heparin binding properties from the non-disease-associated form. J Biol Chem 2006; 281(34): 24713-20.
[http://dx.doi.org/10.1074/jbc.M605083200] [PMID: 16787919]
[165]
Abrera-Abeleda MA, Nishimura C, Smith JL, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet 2006; 43(7): 582-9.
[http://dx.doi.org/10.1136/jmg.2005.038315] [PMID: 16299065]
[166]
Zhao L, Zhang Y, Liu F, et al. Urinary complement proteins and risk of end-stage renal disease: Quantitative urinary proteomics in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. J Endocrinol Invest 2021; 44(12): 2709-23.
[http://dx.doi.org/10.1007/s40618-021-01596-3] [PMID: 34043214]
[167]
Winston J, Klotman PE. HIV-associated nephropathy. Mt Sinai J Med 1998; 65(1): 27-32.
[PMID: 9458681]
[168]
Pullinger CR, Aouizerat BE, Gay C, et al. Metabolic abnormalities and coronary heart disease risk in human immunodeficiency virus-infected adults. Metab Syndr Relat Disord 2010; 8(3): 279-86.
[http://dx.doi.org/10.1089/met.2009.0094] [PMID: 20235745]
[169]
Wyatt CM, Morgello S, Katz-Malamed R, et al. The spectrum of kidney disease in patients with AIDS in the era of antiretroviral therapy. Kidney Int 2009; 75(4): 428-34.
[http://dx.doi.org/10.1038/ki.2008.604] [PMID: 19052538]
[170]
Swanepoel CR, Atta MG, D’Agati VD, et al. Conference Participants. Kidney disease in the setting of HIV infection: Conclusions from a kidney disease: Improving Global Outcomes (KDIGO) Controversies Conference Kidney Int 2018; 93(3): 545-59.
[http://dx.doi.org/10.1016/j.kint.2017.11.007] [PMID: 29398134]
[171]
Abramowsky CR, Swinehart GL. The nephropathy of cystic fibrosis: A human model of chronic nephrotoxicity. Hum Pathol 1982; 13(10): 934-9.
[http://dx.doi.org/10.1016/S0046-8177(82)80056-7] [PMID: 7129409]
[172]
Allen JL. Progressive nephropathy in a patient with cystic fibrosis and diabetes. N Engl J Med 1986; 315(12): 764.
[http://dx.doi.org/10.1056/NEJM198609183151215] [PMID: 3748086]
[173]
Hadjiliadis D, Madill J, Chaparro C, et al. Incidence and prevalence of diabetes mellitus in patients with cystic fibrosis undergoing lung transplantation before and after lung transplantation. Clin Transplant 2005; 19(6): 773-8.
[http://dx.doi.org/10.1111/j.1399-0012.2005.00420.x] [PMID: 16313324]
[174]
Lefaucheur C, Nochy D, Amrein C, et al. Renal histopathological lesions after lung transplantation in patients with cystic fibrosis. Am J Transplant 2008; 8(9): 1901-10.
[http://dx.doi.org/10.1111/j.1600-6143.2008.02342.x] [PMID: 18671673]
[175]
Lanng S, Hansen A, Thorsteinsson B, Nerup J, Koch C. Glucose tolerance in patients with cystic fibrosis: Five year prospective study. BMJ 1995; 311(7006): 655-9.
[http://dx.doi.org/10.1136/bmj.311.7006.655] [PMID: 7549632]
[176]
Quon BS, Mayer-Hamblett N, Aitken ML, Smyth AR, Goss CH. Risk factors for chronic kidney disease in adults with cystic fibrosis. Am J Respir Crit Care Med 2011; 184(10): 1147-52.
[http://dx.doi.org/10.1164/rccm.201105-0932OC] [PMID: 21799076]
[177]
McGlennen RC, Burke BA, Dehner LP. Systemic amyloidosis complicating cystic fibrosis. A retrospective pathologic study. Arch Pathol Lab Med 1986; 110(10): 879-84.
[PMID: 2429633]
[178]
Soriano E, Fischman D, Cheriyath P. Membranoproliferative glomerulonephritis in patients with cystic fibrosis: Coincidence or comorbidity? A case series. South Med J 2008; 101(6): 641-5.
[http://dx.doi.org/10.1097/SMJ.0b013e318172f697] [PMID: 18475229]
[179]
Santoro D, Siligato R, Vadalà C, et al. C3 glomerulopathy in cystic fibrosis: A case report. BMC Nephrol 2018; 19(1): 73.
[http://dx.doi.org/10.1186/s12882-018-0880-y] [PMID: 29592796]
[180]
Ishimura E, Goto K, Kawagishi T, et al. Combination of glomerulonephritis with diabetic glomerulopathy in a patient with diabetes mellitus due to autoantibody to insulin receptor. Nephron J 1994; 66(1): 105-7.
[http://dx.doi.org/10.1159/000187776] [PMID: 8107939]
[181]
Arioglu E, Andewelt A, Diabo C, Bell M, Taylor SI, Gorden P. Clinical course of the syndrome of autoantibodies to the insulin receptor (type B insulin resistance): A 28-year perspective. Medicine (Baltimore) 2002; 81(2): 87-100.
[http://dx.doi.org/10.1097/00005792-200203000-00001] [PMID: 11889410]
[182]
Kadowaki T, Kadowaki H, Rechler MM, et al. Five mutant alleles of the insulin receptor gene in patients with genetic forms of insulin resistance. J Clin Invest 1990; 86(1): 254-64.
[http://dx.doi.org/10.1172/JCI114693] [PMID: 2365819]
[183]
Musso C, Cochran E, Moran SA, et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): A 30-year prospective. Medicine (Baltimore) 2004; 83(4): 209-22.
[http://dx.doi.org/10.1097/01.md.0000133625.73570.54] [PMID: 15232309]
[184]
Ellis EN, Kemp SF, Frindik JP, Elders MJ. Glomerulopathy in patient with Donohue syndrome (leprechaunism). Diabetes Care 1991; 14(5): 413-4.
[http://dx.doi.org/10.2337/diacare.14.5.413] [PMID: 1711953]
[185]
Simpkin A, Cochran E, Cameron F, Dattani M, de Bock M, Dunger DB, et al. Insulin receptor and the kidney: Nephrocalcinosis in patients with recessive INSR mutations. Nephron, Physiol 2014; 128(3-4): 55-61.
[http://dx.doi.org/10.1159/000366225] [PMID: 25358339]
[186]
Marshall JD, Bronson RT, Collin GB, et al. New Alström syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med 2005; 165(6): 675-83.
[http://dx.doi.org/10.1001/archinte.165.6.675] [PMID: 15795345]
[187]
Baig S, Paisey R, Dawson C, et al. Defining renal phenotype in Alström syndrome. Nephrol Dial Transplant 2020; 35(6): 994-1001.
[http://dx.doi.org/10.1093/ndt/gfy293] [PMID: 30307515]
[188]
Bettini S, Bombonato G, Dassie F, et al. Liver fibrosis and steatosis in alström syndrome: A genetic model for metabolic syndrome. Diagnostics (Basel) 2021; 11(5): 797.
[http://dx.doi.org/10.3390/diagnostics11050797] [PMID: 33924909]
[189]
Goldstein JL, Fialkow PJ. The Alström syndrome. Report of three cases with further delineation of the clinical, pathophysiological, and genetic aspects of the disorder. Medicine (Baltimore) 1973; 52(1): 53-71.
[http://dx.doi.org/10.1097/00005792-197301000-00003] [PMID: 4689172]
[190]
Adeva-Andany MM, Castro-Quintela E, Fernández-Fernández C, Carneiro-Freire N, Vila-Altesor M. The role of collagen homeostasis in the pathogenesis of vascular disease associated to insulin resistance. Diabetes Metab Syndr 2019; 13(3): 1877-83.
[http://dx.doi.org/10.1016/j.dsx.2019.04.019] [PMID: 31235109]
[191]
Williams AS, Kang L, Wasserman DH. The extracellular matrix and insulin resistance. Trends Endocrinol Metab 2015; 26(7): 357-66.
[http://dx.doi.org/10.1016/j.tem.2015.05.006] [PMID: 26059707]
[192]
Siperstein MD, Unger RH, Madison LL. Studies of muscle capillary basement membranes in normal subjects, diabetic, and prediabetic patients. J Clin Invest 1968; 47(9): 1973-99.
[http://dx.doi.org/10.1172/JCI105886] [PMID: 5675423]
[193]
Kohn RR. Effects of age and diabetes mellitus on cyanogen bromide digestion of human dura mater collagen. Connect Tissue Res 1983; 11(2-3): 169-73.
[http://dx.doi.org/10.3109/03008208309004852] [PMID: 6224640]
[194]
Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 1993; 46(1): 32-6.
[http://dx.doi.org/10.1136/jcp.46.1.32] [PMID: 7679418]
[195]
Quilliot D, Alla F, Böhme P, et al. Myocardial collagen turnover in normotensive obese patients: Relation to insulin resistance. Int J Obes 2005; 29(11): 1321-8.
[http://dx.doi.org/10.1038/sj.ijo.0803022] [PMID: 16116494]
[196]
Sedgwick B, Riches K, Bageghni SA, O’Regan DJ, Porter KE, Turner NA. Investigating inherent functional differences between human cardiac fibroblasts cultured from nondiabetic and Type 2 diabetic donors. Cardiovasc Pathol 2014; 23(4): 204-10.
[http://dx.doi.org/10.1016/j.carpath.2014.03.004] [PMID: 24746387]
[197]
Watanabe K, Senju S, Toyoshima H, Yoshida M. Thickness of the basement membrane of bronchial epithelial cells in lung diseases as determined by transbronchial biopsy. Respir Med 1997; 91(7): 406-10.
[http://dx.doi.org/10.1016/S0954-6111(97)90254-7] [PMID: 9327041]
[198]
Weynand B, Jonckheere A, Frans A, Rahier J. Diabetes mellitus induces a thickening of the pulmonary basal lamina. Respiration 1999; 66(1): 14-9.
[http://dx.doi.org/10.1159/000029331] [PMID: 9973685]
[199]
Latry P, Bioulac-Sage P, Echinard E, et al. Perisinusoidal fibrosis and basement membrane-like material in the livers of diabetic patients. Hum Pathol 1987; 18(8): 775-80.
[http://dx.doi.org/10.1016/S0046-8177(87)80050-3] [PMID: 3610129]
[200]
Jaskiewicz K, Rzepko R, Sledzinski Z. Fibrogenesis in fatty liver associated with obesity and diabetes mellitus type 2. Dig Dis Sci 2008; 53(3): 785-8.
[http://dx.doi.org/10.1007/s10620-007-9942-x] [PMID: 17846888]
[201]
McMillan DE, Breithaupt DL, Rosenau W, Lee JC, Forsham PH. Forearm skin capillaries of diabetic, potential diabetic and nondiabetic subjects. Changes seen by light microscope. Diabetes 1966; 15(4): 251-7.
[http://dx.doi.org/10.2337/diab.15.4.251] [PMID: 4160218]
[202]
Sohar E, Ravid M, Ben-Shaul Y, Reshef T, Gafni J. Diabetic fibrillosis. A report of three cases. Am J Med 1970; 49(1): 64-9.
[http://dx.doi.org/10.1016/S0002-9343(70)80114-0] [PMID: 5431478]
[203]
Williamson JR, Kilo C. Current status of capillary basement-membrane disease in diabetes mellitus. Diabetes 1977; 26(1): 65-73.
[http://dx.doi.org/10.2337/diab.26.1.65] [PMID: 318626]
[204]
Lin JH, Duffy JL, Roginsky MS. Microcirculation in diabetes mellitus: A study of gingival biopsies. Hum Pathol 1975; 6(1): 77-96.
[http://dx.doi.org/10.1016/S0046-8177(75)80110-9] [PMID: 1089085]
[205]
Shekhonin BV, Domogatsky SP, Muzykantov VR, Idelson GL, Rukosuev VS. Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: Immunomorphological characteristics. Coll Relat Res 1985; 5(4): 355-68.
[http://dx.doi.org/10.1016/S0174-173X(85)80024-8] [PMID: 3902343]
[206]
Hector EE, Robins SP, Mercer DK, Brittenden J, Wainwright CL. Quantitative measurement of mature collagen cross-links in human carotid artery plaques. Atherosclerosis 2010; 211(2): 471-4.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.03.028] [PMID: 20417515]
[207]
Kuzan A, Chwiłkowska A, Pezowicz C. et al The content of collagen type II in human arteries is correlated with the stage of atherosclerosis and calcification foci. Cardiovasc Pathol 2017; 28: 21-7.
[http://dx.doi.org/10.1016/j.carpath.2017.02.003] [PMID: 28284062]
[208]
Argyropoulos AJ, Robichaud P, Balimunkwe RM, et al. Alterations of dermal connective tissue collagen in diabetes: Molecular basis of aged-appearing skin. PLoS One 2016; 11(4): e0153806.
[http://dx.doi.org/10.1371/journal.pone.0153806] [PMID: 27104752]
[209]
Walker A, Nissen E, Geiger A. Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes. IUBMB Life 2018; 70(11): 1122-32.
[http://dx.doi.org/10.1002/iub.1920] [PMID: 30184318]
[210]
Rosenbloom AL. Limited joint mobility in insulin dependent childhood diabetes. Eur J Pediatr 1990; 149(6): 380-8.
[http://dx.doi.org/10.1007/BF02009653] [PMID: 2185025]
[211]
Ranger TA, Wong AM, Cook JL, Gaida JE. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br J Sports Med 2016; 50(16): 982-9.
[http://dx.doi.org/10.1136/bjsports-2015-094735] [PMID: 26598716]
[212]
Couppe C, Svensson RB, Kongsgaard M, Kovanen V, Grosset JF, Snorgaard O, et al. Human Achilles tendon glycation and function in diabetes. J Appl Physiol 2016; 120(2): 130-7.
[213]
James VJ, Delbridge L, McLennan SV, Yue DK. Use of X-ray diffraction in study of human diabetic and aging collagen. Diabetes 1991; 40(3): 391-4.
[http://dx.doi.org/10.2337/diab.40.3.391] [PMID: 1999280]
[214]
Kaplan M, Arici L, Ozturk S, Simsek BC, Hergunsel OB, Erol FS. A comparison of the type IX collagen levels of the intervertebral disc materials in diabetic and non-diabetic patients who treated with lumbar microdiscectomy. Eur Spine J 2018; 27(1): 214-21.
[http://dx.doi.org/10.1007/s00586-017-5361-7] [PMID: 29071411]
[215]
Saito M, Kida Y, Kato S, Marumo K. Diabetes, collagen, and bone quality. Curr Osteoporos Rep 2014; 12(2): 181-8.
[http://dx.doi.org/10.1007/s11914-014-0202-7] [PMID: 24623537]
[216]
Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int 2007; 18(4): 427-44.
[http://dx.doi.org/10.1007/s00198-006-0253-4] [PMID: 17068657]
[217]
Lange P, Groth S, Mortensen J, et al. Diabetes mellitus and ventilatory capacity: A five year follow-up study. Eur Respir J 1990; 3(3): 288-92.
[PMID: 2340886]
[218]
Ford ES, Mannino DM. National health and nutrition examination survey epidemiologic follow-up study. Prospective association between lung function and the incidence of diabetes: Findings from the National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Diabetes Care 2004; 27(12): 2966-70.
[http://dx.doi.org/10.2337/diacare.27.12.2966] [PMID: 15562215]
[219]
Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet Med 2010; 27(9): 977-87.
[http://dx.doi.org/10.1111/j.1464-5491.2010.03073.x] [PMID: 20722670]
[220]
Alba DL, Farooq JA, Lin MYC, Schafer AL, Shepherd J, Koliwad SK. Subcutaneous fat fibrosis links obesity to insulin resistance in Chinese Americans. J Clin Endocrinol Metab 2018; 103(9): 3194-204.
[http://dx.doi.org/10.1210/jc.2017-02301] [PMID: 29846621]
[221]
Guglielmi V, Cardellini M, Cinti F, et al. Omental adipose tissue fibrosis and insulin resistance in severe obesity. Nutr Diabetes 2015; 5(8): e175.
[http://dx.doi.org/10.1038/nutd.2015.22] [PMID: 26258766]
[222]
Tam CS, Covington JD, Bajpeyi S, et al. Weight gain reveals dramatic increases in skeletal muscle extracellular matrix remodeling. J Clin Endocrinol Metab 2014; 99(5): 1749-57.
[http://dx.doi.org/10.1210/jc.2013-4381] [PMID: 24601694]
[223]
Richardson DK, Kashyap S, Bajaj M, et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 2005; 280(11): 10290-7.
[http://dx.doi.org/10.1074/jbc.M408985200] [PMID: 15598661]
[224]
Berria R, Wang L, Richardson DK, et al. Increased collagen content in insulin-resistant skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290(3): E560-5.
[http://dx.doi.org/10.1152/ajpendo.00202.2005] [PMID: 16249255]
[225]
Hearn T, Spalluto C, Phillips VJ, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 2005; 54(5): 1581-7.
[http://dx.doi.org/10.2337/diabetes.54.5.1581] [PMID: 15855349]
[226]
Knorz VJ, Spalluto C, Lessard M, et al. Centriolar association of ALMS1 and likely centrosomal functions of the ALMS motif-containing proteins C10orf90 and KIAA1731. Mol Biol Cell 2010; 21(21): 3617-29.
[http://dx.doi.org/10.1091/mbc.e10-03-0246] [PMID: 20844083]
[227]
Zulato E, Favaretto F, Veronese C, et al. ALMS1-deficient fibroblasts over-express extra-cellular matrix components, display cell cycle delay and are resistant to apoptosis. PLoS One 2011; 6(4): e19081.
[http://dx.doi.org/10.1371/journal.pone.0019081] [PMID: 21541333]
[228]
Riches K, Alshanwani AR, Warburton P, et al. Elevated expression levels of miR-143/5 in saphenous vein smooth muscle cells from patients with Type 2 diabetes drive persistent changes in phenotype and function. J Mol Cell Cardiol 2014; 74: 240-50.
[http://dx.doi.org/10.1016/j.yjmcc.2014.05.018] [PMID: 24927876]