Current Advances in Diazoles-based Chemosensors for CN- and FDetection

Page: [77 - 95] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Advances in molecular probes have recently intensified because they are valuable tools in studying species of interest for human health, the environment, and industry. Among these species, cyanide (CN-) and fluoride (F-) stand out as hazardous and toxic ions in trace amounts. Thus, there is a significant interest in probes design for their detection with diverse diazoles (pyrazole and imidazole) used for this purpose. These diazole derivatives are known as functional molecules because of their known synthetic versatility and applicability, as they exhibit essential photophysical properties with helpful recognition centers. This review provides an overview of the recent progress (2017-2021) in diazole-based sensors for CN- and F- detection, using the azolic ring as a signaling or recognition unit. The discussion focuses on the mechanism of the action described for recognizing the anion, the structure of the probes with the best synthetic simplicity, detection limits (LODs), application, and selectivity. In this context, the analysis involves probes for cyanide sensing first, then probes for fluoride sensing, and ultimately, dual probes that allow both species recognition.

Keywords: Cyanide, fluorescence, fluoride, fused azoles, imidazoles, molecular probes, photophysical properties, pyrazoles.

Graphical Abstract

[1]
Majumdar, P.; Pati, A.; Patra, M.; Behera, R.K.; Behera, A.K. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings. Chem. Rev., 2014, 114(5), 2942-2977.
[http://dx.doi.org/10.1021/cr300122t] [PMID: 24506477]
[2]
Castillo, J.C.; Portilla, J. Recent advances in the synthesis of new pyrazole derivatives. Targets Heterocycl. Syst., 2018, 22, 194-223.
[3]
Soni, J.; Sethiya, A.; Sahiba, N.; Agarwal, D.K.; Agarwal, S. Contemporary progress in the synthetic strategies of imidazole and its biological activities. Curr. Org. Synth., 2019, 16(8), 1078-1104.
[http://dx.doi.org/10.2174/1570179416666191007092548] [PMID: 31984918]
[4]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G]
[5]
Zhou, P.; Han, K. Unraveling the detailed mechanism of excited-state proton transfer. Acc. Chem. Res., 2018, 51(7), 1681-1690.
[http://dx.doi.org/10.1021/acs.accounts.8b00172] [PMID: 29906102]
[6]
Tigreros, A.; Portilla, J. Recent progress in chemosensors based on pyrazole derivatives. RSC Advances, 2020, 10(33), 19693-19712.
[http://dx.doi.org/10.1039/D0RA02394A]
[7]
Rios, M-C.; Bravo, N-F.; Sánchez, C-C.; Portilla, J. Chemosensors based on N-heterocyclic dyes: Advances in sensing highly toxic ions such as CN- and Hg2+. RSC Advances, 2021, 11(54), 34206-34234.
[http://dx.doi.org/10.1039/D1RA06567J]
[8]
Alvarez-Builla, J.; Vaquero, J.J.; Barluenga, Ed. J. Modern Heterocyclic Chemistry; 2011, 1, PP. 2350.
[http://dx.doi.org/10.1002/9783527637737]
[9]
Portilla, J.; Mata, E.G.; Cobo, J.; Low, J.N.; Glidewell, C. Two isomeric reaction products: Hydrogen-bonded sheets in methyl 4-(5-amino-3-phenyl-1H-pyrazol-1-yl)-3-nitro-benzoate and hydrogen-bonded chains of edge-fused rings in methyl 3-nitro-4-[(5-phenyl-1H-pyrazol-3-yl)amino] benzoate. Acta Crystallogr. C, 2007, 63(9), 510-513.
[http://dx.doi.org/10.1107/S010827010703346X]
[10]
Macías, M.A.; Elejalde, N.R.; Butassi, E.; Zacchino, S.; Portilla, J. Studies via X-ray analysis on intermolecular interactions and energy frameworks based on the effects of substituents of three 4-aryl-2-methyl-1H-imidazoles of different electronic nature and their in vitro antifungal evaluation. Acta Crystallogr. C Struct. Chem., 2018, 74(Pt 11), 1447-1458.
[http://dx.doi.org/10.1107/S2053229618014109] [PMID: 30398201]
[11]
Elejalde, N.R.; Butassi, E.; Zacchino, S.; Macías, M.A.; Portilla, J. Intermolecular interaction energies and molecular conformations in N-substituted 4-aryl-2-methylimidazoles with promising in vitro antifungal activity. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2019, 75(Pt 6), 1197-1207.
[http://dx.doi.org/10.1107/S2052520619013271] [PMID: 32830699]
[12]
Vargas-Oviedo, D.; Portilla, J.; Macías, M.A. Influence of the haloaryl moiety over the molecular packing in N-phenacylbenzimidazoles crystallizing in the same space group. J. Mol. Struct., 2021, 1230, 129869.
[http://dx.doi.org/10.1016/j.molstruc.2020.129869]
[13]
Tigreros, A.; Macías, M.; Portilla, J. Photophysical and crystallographic study of three integrated pyrazolo[1,5-a]pyrimidine-triphenylamine systems. Dyes Pigments, 2021, 184, 108730.
[http://dx.doi.org/10.1016/j.dyepig.2020.108730]
[14]
Vargas-Oviedo, D.; Charris-Molina, A.; Portilla, J. Efficient access to o-phenylendiamines and their use in the synthesis of a 1,2-dialkyl-5-trifluoromethylbenzimidazoles library under microwave conditions. ChemistrySelect, 2017, 2(13), 3896-3901.
[http://dx.doi.org/10.1002/slct.201700623]
[15]
Tigreros, A.; Aranzazu, S-L.; Bravo, N-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]pyrimidines based fluorophores: A comprehensive theoretical-experimental study. RSC Advances, 2020, 10(65), 39542-39552.
[http://dx.doi.org/10.1039/D0RA07716J]
[16]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[17]
Arias-Gómez, A.; Godoy, A.; Portilla, J. Functional pyrazolo[1,5-a]pyrimidines: Current approaches in synthetic transformations and uses as an antitumor scaffold. Molecules, 2021, 26(9), 2708.
[http://dx.doi.org/10.3390/molecules26092708] [PMID: 34063043]
[18]
Verma, A.; Joshi, S.; Singh, D. Imidazole: Having versatile biological activities. J. Chem., 2013, 2013, 329412.
[http://dx.doi.org/10.1155/2013/329412]
[19]
Vargas-Oviedo, D.; Butassi, E.; Zacchino, S.; Portilla, J. Eco-friendly synthesis and antifungal evaluation of N-substituted benzimidazoles. Monatsh. Chem., 2020, 151(4), 575-588.
[http://dx.doi.org/10.1007/s00706-020-02575-9]
[20]
Elejalde, N.R.; Macías, M.; Castillo, J.C.; Sortino, M.; Svetaz, L.; Zacchino, S.; Portilla, J. Synthesis and in vitro antifungal evaluation of novel N-Substituted 4-Aryl-2-methylimidazoles. ChemistrySelect, 2018, 3(18), 5220-5227.
[http://dx.doi.org/10.1002/slct.201801238]
[21]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[22]
Khatha, P.; Phutthaphongloet, T.; Timpa, P.; Ninwong, B.; Income, K.; Ratnarathorn, N.; Dungchai, W. Distance-based paper device combined with headspace extraction for determination of cyanide. Sensors (Basel), 2019, 19(10), 2340.
[http://dx.doi.org/10.3390/s19102340] [PMID: 31117244]
[23]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
[24]
Orrego-Hernández, J.; Cobo, J.; Portilla, J. Chemoselective synthesis of 5-Alkylamino-1H-pyrazole-4-carbaldehydes by Cesium- and copper-mediated amination. Eur. J. Org. Chem., 2015, 2015(23), 5064-5069.
[http://dx.doi.org/10.1002/ejoc.201500505]
[25]
Castillo, J.C.; Rosero, H.A.; Portilla, J. Simple access toward 3-halo- and 3-nitro-pyrazolo[1,5-a]pyrimidines through a one-pot sequence. RSC Advances, 2017, 7(45), 28483-28488.
[http://dx.doi.org/10.1039/C7RA04336H]
[26]
Fukuhara, G. Analytical supramolecular chemistry: Colorimetric and fluorimetric chemosensors. J. Photochem. Photobiol. Photochem. Rev., 2020, 42, 100340.
[http://dx.doi.org/10.1016/j.jphotochemrev.2020.100340]
[27]
Tigreros, A.; Portilla, J. Fluorescent pyrazole derivatives: An attractive scaffold for biological imaging applications. Curr. Chinese Sci., 2021, 1(2), 197-206.
[http://dx.doi.org/10.2174/2210298101999201208211116]
[28]
Duong, T.Q.; Kim, J.S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev., 2010, 110(10), 6280-6301.
[http://dx.doi.org/10.1021/cr100154p] [PMID: 20726526]
[29]
Lee, J.J.; Lee, S.Y.; Bok, K.H.; Kim, C. A new dual-channel chemosensor based on chemodosimeter approach for detecting cyanide in aqueous solution: A combination of experimental and theoretical studies. J. Fluoresc., 2015, 25(5), 1449-1459.
[http://dx.doi.org/10.1007/s10895-015-1635-9] [PMID: 26245457]
[30]
Velmurugan, K.; Thamilselvan, A.; Antony, R.; Kannan, V.R.; Tang, L.; Nandhakumar, R. Imidazoloquinoline bearing thiol probe as fluorescent electrochemical sensing of Ag and relay recognition of Proline. J. Photochem. Photobiol. Chem., 2017, 333, 130-141.
[http://dx.doi.org/10.1016/j.jphotochem.2016.10.025]
[31]
Saravana Mani, K.; Rajamanikandan, R.; Ravikumar, G.; Vijaya Pandiyan, B.; Kolandaivel, P.; Ilanchelian, M.; Rajendran, S.P. Highly sensitive coumarin-pyrazolone probe for the detection of Cr3+ and the application in living cells. ACS Omega, 2018, 3(12), 17212-17219.
[http://dx.doi.org/10.1021/acsomega.8b01907]
[32]
García, M.; Romero, I.; Portilla, J. Synthesis of fluorescent 1,7-Dipyridyl-bis-pyrazolo[3,4-b′:4,3′-e]pyridines: Design of reversible chemosensors for nanomolar detection of Cu2. ACS Omega, 2019, 4(4), 6757-6768.
[http://dx.doi.org/10.1021/acsomega.9b00226] [PMID: 31459798]
[33]
Ansari, S.N.; Saini, A.K.; Kumari, P.; Mobin, S.M. An imidazole derivative-based chemodosimeter for Zn2+ and Cu2+ ions through “oN-OFF-ON” switching with intracellular Zn2+ detection. Inorg. Chem. Front., 2019, 6(3), 736-745.
[http://dx.doi.org/10.1039/C8QI01127C]
[34]
Molina, P.; Zapata, F.; Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev., 2017, 117(15), 9907-9972.
[http://dx.doi.org/10.1021/acs.chemrev.6b00814] [PMID: 28665114]
[35]
Ding, H.L.; Pu, Y.Q.; Ye, D.Y.; Dong, Z.Y.; Yang, M.; Lü, C.W.; An, Y. The design and synthesis of two imidazole fluorescent probes for the special recognition of HClO/NaHSO3 and their applications. Anal. Methods, 2020, 12(19), 2476-2483.
[http://dx.doi.org/10.1039/D0AY00334D] [PMID: 32930237]
[36]
Lohar, S.; Maji, A.; Pal, S.; Mukhopadhyay, S.K.; Nag, D.; Demitri, N.; Chattopadhyay, P. Naphthalimide-based turn-on fluorosensor for aqueous sulfide ions for staining in living cells. ChemistrySelect, 2017, 2(31), 9977-9983.
[http://dx.doi.org/10.1002/slct.201701351]
[37]
Dey, S.K.; Al Kobaisi, M.; Bhosale, S.V. Functionalized quinoxaline for chromogenic and fluorogenic anion sensing. ChemistryOpen, 2018, 7(12), 934-952.
[http://dx.doi.org/10.1002/open.201800163] [PMID: 30524920]
[38]
Molina, P.; Tárraga, A.; Otón, F. Imidazole derivatives: A comprehensive survey of their recognition properties. Org. Biomol. Chem., 2012, 10(9), 1711-1724.
[http://dx.doi.org/10.1039/c2ob06808g] [PMID: 22281703]
[39]
Fabbrizzi, L.; Licchelli, M.; Rabaioli, G.; Taglietti, A. The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev., 2000, 205(1), 85-108.
[http://dx.doi.org/10.1016/S0010-8545(00)00239-3]
[40]
Udhayakumari, D. Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015-2019. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 228, 117817.
[http://dx.doi.org/10.1016/j.saa.2019.117817] [PMID: 31780310]
[41]
Mondal, A.; Nag, S.; Banerjee, P. Coumarin functionalized molecular scaffolds for the effectual detection of hazardous fluoride and cyanide. Dalton Trans., 2021, 50(2), 429-451.
[http://dx.doi.org/10.1039/D0DT03451G] [PMID: 33325937]
[42]
Udhayakumari, D. Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sens. Actuators B Chem., 2018, 259, 1022-1057.
[http://dx.doi.org/10.1016/j.snb.2017.12.006]
[43]
Ma, J.; Dasgupta, P.K. Recent developments in cyanide detection: A review. Anal. Chim. Acta, 2010, 673(2), 117-125.
[http://dx.doi.org/10.1016/j.aca.2010.05.042] [PMID: 20599024]
[44]
Orrego-Hernández, J.; Portilla, J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. J. Org. Chem., 2017, 82(24), 13376-13385.
[http://dx.doi.org/10.1021/acs.joc.7b02460] [PMID: 29171269]
[45]
Emandi, G.; Flanagan, K.J.; Senge, M.O. Fluorescent imidazole-based chemosensors for the reversible detection of cyanide and mercury ions. Photochem. Photobiol. Sci., 2018, 17(10), 1450-1461.
[http://dx.doi.org/10.1039/C8PP00226F] [PMID: 30259951]
[46]
Raja Lakshmi, P.; Manivannan, R.; Jayasudha, P.; Elango, K.P. Multispectroscopic and theoretical studies on rapid, selective and sensitive visual sensing of cyanide ion in aqueous solution by receptors possessing varying HBD property. Res. Chem. Intermed., 2018, 44(4), 2807-2821.
[http://dx.doi.org/10.1007/s11164-018-3262-y]
[47]
Manivannan, R.; Satheshkumar, A.; Elango, K.P. Tuning of the H-bonding ability of imidazole N-H towards the colorimetric sensing of fluoride and cyanide ions as their sodium salts in water. New J. Chem., 2013, 37(10), 3152-3160.
[http://dx.doi.org/10.1039/c3nj00371j]
[48]
Liu, S.; Yang, M.; Liu, Y.; Chen, H.; Li, H. A novel “turn-on” fluorescent probe based on triphenylimidazole-hemicyanine dyad for colorimetric detection of CN- in 100% aqueous solution. J. Hazard. Mater., 2018, 344, 875-882.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.042] [PMID: 29190585]
[49]
Ozdemir, A.; Erdemir, S. Phenanthroimidazole and dicyanovinyl-substituted triphenylamine for the selective detection of CN-: DFT calculations and practically applications. J. Photochem. Photobiol. Chem., 2020, 390, 112328.
[http://dx.doi.org/10.1016/j.jphotochem.2019.112328]
[50]
Bhaskar, R.; Vijayakumar, V.; Srinivasadesikan, V.; Lee, S.L.; Sarveswari, S. Rationally designed imidazole derivative as colorimetric and fluorometric sensor for selective, qualitative and quantitative cyanide ion detection in real time samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118212.
[http://dx.doi.org/10.1016/j.saa.2020.118212] [PMID: 32224435]
[51]
Garzón, L.M.; Portilla, J. Synthesis of Novel D-π-A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine-Functionalized N-(2-Pyridyl)pyrazoles. Eur. J. Org. Chem., 2019, 2019(42), 7079-7088.
[http://dx.doi.org/10.1002/ejoc.201901178]
[52]
Castillo, J.C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5- a]pyrimidines as key intermediates for the preparation of functional fluorophores. J. Org. Chem., 2018, 83(18), 10887-10897.
[http://dx.doi.org/10.1021/acs.joc.8b01571] [PMID: 30051714]
[53]
Tigreros, A.; Rosero, H-A.; Castillo, J-C.; Portilla, J. Integrated pyrazolo[1,5-a]pyrimidine-hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water. Talanta, 2019, 196, 395-401.
[http://dx.doi.org/10.1016/j.talanta.2018.12.100] [PMID: 30683383]
[54]
Orrego-Hernández, J.; Lizarazo, C.; Cobo, J.; Portilla, J. Pyrazolo-fused 4-azafluorenones as key reagents for the synthesis of fluorescent dicyanovinylidene-substituted derivatives. RSC Advances, 2019, 9(47), 27318-27323.
[http://dx.doi.org/10.1039/C9RA04682H]
[55]
Tigreros, A.; Castillo, J.C.; Portilla, J. Cyanide chemosensors based on 3-dicyanovinylpyrazolo[1,5-a]pyrimidines: Effects of peripheral 4-anisyl group substitution on the photophysical properties. Talanta, 2020, 215, 120905.
[http://dx.doi.org/10.1016/j.talanta.2020.120905] [PMID: 32312450]
[56]
Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]pyrimidinium salts for cyanide sensing: A performance and sustainability study of the probes. ACS Sustain. Chem.& Eng., 2021, 9(36), 12058-12069.
[http://dx.doi.org/10.1021/acssuschemeng.1c01689]
[57]
Hao, Y.; Xie, Z.; Bao, W.; Wang, X.; Shi, W. Synthesis and properties of a novel colorimetric and fluorescent turn-on sensor for cyanide. Youji Huaxue, 2018, 38(8), 2109-2115.
[http://dx.doi.org/10.6023/cjoc201804034]
[58]
Nair, R.R.; Raju, M.; Debnath, S.; Ghosh, R.; Chatterjee, P.B. Concurrent detection and treatment of cyanide-contaminated water using mechanosynthesized receptors. Analyst (Lond.), 2020, 145(16), 5647-5656.
[http://dx.doi.org/10.1039/D0AN00449A] [PMID: 32638714]
[59]
Riggs, B.L.; Hodgson, S.F.; O’Fallon, W.M.; Chao, E.Y.S.; Wahner, H.W.; Muhs, J.M.; Cedel, S.L.; Melton, L.J., III Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N. Engl. J. Med., 1990, 322(12), 802-809.
[http://dx.doi.org/10.1056/NEJM199003223221203] [PMID: 2407957]
[60]
Malin, A.J.; Till, C. Exposure to fluoridated water and attention deficit hyperactivity disorder prevalence among children and adolescents in the United States: An ecological association. Environ. Health, 2015, 14(1), 17.
[http://dx.doi.org/10.1186/s12940-015-0003-1] [PMID: 25890329]
[61]
Chavali, R.; Gunda, N.S.K.; Naicker, S.; Mitra, S.K. Rapid detection of fluoride in potable water using a novel fluorogenic compound 7-O-tert-butyldiphenylsilyl-4-methylcoumarin. Anal. Chem. Res., 2015, 6, 26-31.
[http://dx.doi.org/10.1016/j.ancr.2015.10.003]
[62]
Zhou, Y.; Zhang, J.F.; Yoon, J. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev., 2014, 114(10), 5511-5571.
[http://dx.doi.org/10.1021/cr400352m] [PMID: 24661114]
[63]
Jali, B.R.; Barick, A.K.; Mohapatra, P.; Sahoo, S.K. A comprehensive review on quinones based fluoride selective colorimetric and fluorescence chemosensors. J. Fluor. Chem., 2021, 244, 109744.
[http://dx.doi.org/10.1016/j.jfluchem.2021.109744]
[64]
Jain, A.; Gupta, R.; Agarwal, M. Rationally designed tri-armed imidazole-indole hybrids as naked eye receptors for fluoride ion sensing. Synth. Commun., 2017, 47(14), 1307-1318.
[http://dx.doi.org/10.1080/00397911.2017.1324625]
[65]
Gupta, R.C.; Ali, R.; Razi, S.S.; Srivastava, P.; Dwivedi, S.K.; Misra, A. Synthesis and application of a new class of D-π-A type charge transfer probe containing imidazole-naphthalene units for detection of F- and CO2. RSC Advances, 2017, 7(9), 4941-4949.
[http://dx.doi.org/10.1039/C6RA26439E]
[66]
Aradhyula, B.P.R.; Ranga Naidu Chinta, R.V.; Dhanunjayarao, K.; Venkatasubbaiah, K. Synthesis and characterization of poly(tetraphenylimidazole)s and their application in the detection of fluoride ions. RSC Advances, 2020, 10(22), 13149-13154.
[http://dx.doi.org/10.1039/D0RA01559H]
[67]
Hu, Y.; Long, S.; Fu, H.; She, Y.; Xu, Z.; Yoon, J. Revisiting imidazolium receptors for the recognition of anions: Highlighted research during 2010-2019. Chem. Soc. Rev., 2021, 50(1), 589-618.
[http://dx.doi.org/10.1039/D0CS00642D] [PMID: 33174897]
[68]
Kongwutthivech, J.; Tuntulani, T.; Promarak, V.; Tomapatanaget, B. Dual naked-eye optical sensor based on imidazolium cation and napthalamide for specific detection of fluoride. J. Fluoresc., 2020, 30(2), 259-267.
[http://dx.doi.org/10.1007/s10895-020-02494-2] [PMID: 31989418]
[69]
Zhang, Y.; Yu, X. Colorimetric and electrochemical sensing for fluoride anion by ferrocenyl-based imidazole compound with electron donor-acceptor structure. Res. Chem. Intermed., 2017, 43(2), 1099-1105.
[http://dx.doi.org/10.1007/s11164-016-2685-6]
[70]
Liu, J.B.; Wang, W.; Li, G.; Wang, R.X.; Leung, C.H.; Ma, D.L. Luminescent Iridium(III) chemosensor for tandem detection of F- and Al3. ACS Omega, 2017, 2(12), 9150-9155.
[http://dx.doi.org/10.1021/acsomega.7b01646] [PMID: 31457433]
[71]
Tabasi, Z.A.; Younes, E.A.; Walsh, J.C.; Thompson, D.W.; Bodwell, G.J.; Zhao, Y. Pyrenoimidazolyl-benzaldehyde fluorophores: Synthesis, properties, and sensing function for fluoride anions. ACS Omega, 2018, 3(11), 16387-16397.
[http://dx.doi.org/10.1021/acsomega.8b02482] [PMID: 31458274]
[72]
Beneto, A.J.; Siva, A. A phenanthroimidazole based effective colorimetric chemosensor for copper(II) and fluoride ions. Sens. Actuators B Chem., 2017, 247, 526-531.
[http://dx.doi.org/10.1016/j.snb.2017.03.028]
[73]
Khan, S.A.; Ullah, Q.; Parveen, H.; Mukhtar, S.; Alzahrani, K.A.; Asad, M. Synthesis and photophysical investigation of novel imidazole derivative an efficient multimodal chemosensor for Cu(II) and fluoride ions. J. Photochem. Photobiol. Chem., 2021, 406, 406.
[http://dx.doi.org/10.1016/j.jphotochem.2020.113022]
[74]
Yalçın, E.; Alkış, M.; Seferoğlu, N.; Seferoğlu, Z. A novel coumarin-pyrazole-triazine based fluorescence chemosensor for fluoride detection via deprotonation process: Experimental and theoretical studies. J. Mol. Struct., 2018, 1155, 573-581.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.042]
[75]
Alkış, M.; Pekyılmaz, D.; Yalçın, E.; Aydıner, B.; Dede, Y.; Seferoğlu, Z. H-bond stabilization of a tautomeric coumarin-pyrazole-pyridine triad generates a PET driven, reversible and reusable fluorescent chemosensor for anion detection. Dyes Pigments, 2017, 141, 493-500.
[http://dx.doi.org/10.1016/j.dyepig.2017.03.011]
[76]
Hu, Y.; Liu, Y.Y.; Li, Q.; Sun, J.Y.; Hu, S.L. New colorimetric and fluorometric fluoride ion probe based on anthra[1,9-cd]pyrazol-6(2H)-one. J. Fluoresc., 2017, 27(6), 2287-2294.
[http://dx.doi.org/10.1007/s10895-017-2170-7] [PMID: 28887743]
[77]
Jain, A.; Gupta, R.; Agarwal, M. Instantaneous and selective bare eye detection of inorganic fluoride ion by coumarin-pyrazole-based receptors. J. Heterocycl. Chem., 2017, 54(5), 2808-2816.
[http://dx.doi.org/10.1002/jhet.2884]
[78]
Krishnaveni, K.; Murugesan, S.; Siva, A. Dual-mode recognition of biogenic amine tryptamine and fluoride ions by a naphthyl hydrazone platform: Application in fluorescence imaging of HeLa cells and zebrafish embryos. New J. Chem., 2019, 43(23), 9021-9031.
[http://dx.doi.org/10.1039/C9NJ01688K]
[79]
Hossain, S.M.; Dam, G.K.; Mishra, S.; Singh, A.K. A nano-molar level fluorogenic and oxidation state-selective chromogenic dual reversible chemosensor for multiple targets, Cu2+/S2-and Fe3+/F-ions. New J. Chem., 2020, 44(35), 15186-15194.
[http://dx.doi.org/10.1039/D0NJ02777D]
[80]
Yadav, P.; Kumari, M.; Jain, Y.; Agarwal, M.; Gupta, R. Antipyrine based Schiff’s base as a reversible fluorescence turn “off-on-off” chemosensor for sequential recognition of Al3+ and F- ions: A theoretical and experimental perspective. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117596.
[http://dx.doi.org/10.1016/j.saa.2019.117596] [PMID: 31655389]
[81]
Saikia, E.; Dutta, P.; Chetia, B. A novel benzimidazolyl-based receptor for the recognition of fluoride and cyanide anion. J. Chem. Sci., 2017, 129(1), 1-7.
[http://dx.doi.org/10.1007/s12039-016-1211-0]
[82]
Kim, M.; Mergu, N.; Son, Y.A. Imidazole-containing ratiometric receptor for the selective and sensitive detection of cyanide and fluoride via deprotonation and a receptor-anion ensemble for Cu2+ sensing. J. Lumin., 2018, 204, 244-252.
[http://dx.doi.org/10.1016/j.jlumin.2018.08.021]
[83]
Kwon, N.; Baek, G.; Swamy, K.M.K.; Lee, M.; Xu, Q.; Kim, Y.; Kim, S.J.; Yoon, J. Naphthoimidazolium based ratiometric fluorescent probes for F- and CN-, and anion-activated CO2 sensing. Dyes Pigments, 2019, 171, 107679.
[http://dx.doi.org/10.1016/j.dyepig.2019.107679]
[84]
Ali, R.; Dwivedi, S.K.; Mishra, H.; Misra, A. Imidazole-coumarin containing D - A type fluorescent probe: Synthesis photophysical properties and sensing behavior for F- and CN- anion. Dyes Pigments, 2020, 175, 108163.
[http://dx.doi.org/10.1016/j.dyepig.2019.108163]
[85]
Kuzu, B.; Ekmekci, Z.; Tan, M.; Menges, N. Excited State Intramolecular Proton Transfer (ESIPT)-based sensor for ion detection. J. Fluoresc., 2021, 31(3), 861-872.
[http://dx.doi.org/10.1007/s10895-021-02716-1] [PMID: 33772405]
[86]
Chakraborty, N.; Chakraborty, A.; Das, S. Schiff base derived from salicylaldehyde-based azo dye as chromogenic anionic sensor and specific turn-on emission sensor for cyanide ion. J. Heterocycl. Chem., 2019, 56(11), 2993-2999.
[http://dx.doi.org/10.1002/jhet.3693]
[87]
Durga Prasad, K.; Venkataramaiah, N.; Guru Row, T.N. 1,9-pyrazoloanthrone as a colorimetric and “turn-on” fluorometric chemosensor: Structural implications. Cryst. Growth Des., 2014, 14(5), 2118-2122.
[http://dx.doi.org/10.1021/cg5002489]