Role of the Supporting Surface in the Thermodynamics and Cooperativity of Axial Ligand Binding to Metalloporphyrins at Interfaces

Page: [553 - 562] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Metalloporphyrins have been shown to bind axial ligands in a variety of environments, including the vacuum/solid and solution/solid interfaces. Understanding the dynamics of such interactions is a desideratum for the design and implementation of next generation molecular devices which draw inspiration from biological systems to accomplish diverse tasks such as molecular sensing, electron transport, and catalysis to name a few. In this article, we review the current literature of axial ligand coordination to surface-supported porphyrin receptors. We will focus on the coordination process as monitored by scanning tunneling microscopy (STM) that can yield qualitative and quantitative information on the dynamics and binding affinity at the single molecule level. In particular, we will address the role of the substrate and intermolecular interactions in influencing cooperative effects (positive or negative) in the binding affinity of adjacent molecules based on experimental evidence and theoretical calculations.

Keywords: Porphyrins, axial ligand binding, STM, single molecule thermodynamics, cooperative binding, density functional theory calculations.

Graphical Abstract

[1]
Barona-Castaño, J.C.; Carmona-Vargas, C.C.; Brocksom, T.J.; de Oliveira, K.T.; Graça, M.; Neves, P.M.S.; Amparo, M.; Faustino, F. Porphyrins as cata-lysts in scalable organic reactions. Molecules, 2016, 21(3), 310.
[http://dx.doi.org/10.3390/molecules21030310] [PMID: 27005601]
[2]
Seo, S.; Lee, K.; Min, M.; Cho, Y.; Kim, M.; Lee, H. A molecular approach to an electrocatalytic hydrogen evolution reaction on single-layer graphene. Nanoscale, 2017, 9(11), 3969-3979.
[http://dx.doi.org/10.1039/C6NR09428G] [PMID: 28266680]
[3]
Lei, H.; Wang, Y.; Zhang, Q.; Cao, R. First-row transition metal porphyrins for electrocatalytic hydrogen evolution. J. Porphyr. Phthalocyanines, 2020, 24(11-12), 1361-1371.
[http://dx.doi.org/10.1142/S1088424620500157]
[4]
Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphy-rinoids for chemical sensor applications. Chem. Rev., 2017, 117(4), 2517-2583.
[http://dx.doi.org/10.1021/acs.chemrev.6b00361] [PMID: 28222604]
[5]
Lvova, L.; Mastroianni, M.; Di Natale, C.; Lundstroem, I.; Paolesse, R. Towards hyphenated sensors development: Design and application of por-phyrin electropolymer materials. Electroanalysis, 2012, 24(4), 776-789.
[http://dx.doi.org/10.1002/elan.201100562]
[6]
Lvova, L.; Monti, D.; Natale, C.D.; Paolesse, R. The long-lasting story of one sensor development: From novel ionophore design toward the sensor selectivity modeling and lifetime improvement. Sensors (Basel), 2021, 21(4), 1-15.
[http://dx.doi.org/10.3390/s21041401] [PMID: 33671289]
[7]
Han, J.; Bai, L.; Yang, B.; Bai, Y.; Luo, S.; Zeng, S.; Gao, H.; Nie, Y.; Ji, X.; Zhang, S.; Zhang, X. Highly selective oxygen/nitrogen separation membrane engineered using a porphyrin-based oxygen carrier. Membranes (Basel), 2019, 9(9), 115.
[http://dx.doi.org/10.3390/membranes9090115] [PMID: 31484439]
[8]
Chikushi, N.; Ohara, E.; Hisama, A.; Nishide, H. Porphyrin network poly-mers prepared via a click reaction and facilitated oxygen permeation through their membranes. Macromol. Rapid Commun., 2014, 35(10), 976-980.
[http://dx.doi.org/10.1002/marc.201400038] [PMID: 24619851]
[9]
Choi, W.; Ingole, P.G.; Li, H.; Kim, J.H.; Lee, H.K.; Baek, I.H. Preparation of facilitated transport hollow fiber membrane for gas separation using cobalt tetraphenylporphyrin complex as a coating material. J. Clean. Prod., 2016, 133, 1008-1016.
[http://dx.doi.org/10.1016/j.jclepro.2016.06.031]
[10]
Kuch, W.; Bernien, M. Controlling the magnetism of adsorbed metal-organic molecules. Condens. Matter, 2017, 29(2), 023001.
[http://dx.doi.org/10.1088/0953-8984/29/2/023001] [PMID: 27841987]
[11]
Wende, H.; Bernien, M.; Luo, J.; Sorg, C.; Ponpandian, N.; Kurde, J.; Mi-guel, J.; Piantek, M.; Xu, X.; Eckhold, P.; Kuch, W.; Baberschke, K.; Panchmatia, P.M.; Sanyal, B.; Oppeneer, P.M.; Eriksson, O. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater., 2007, 6(7), 516-520.
[http://dx.doi.org/10.1038/nmat1932] [PMID: 17558431]
[12]
Shi, Y.; Zhang, F.; Linhardt, R.J. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigments, 2021, 188, 109136.
[http://dx.doi.org/10.1016/j.dyepig.2021.109136]
[13]
Kralova, J.; Kejik, Z.; Briza, T.; Kaplanek, R.; Zaruba, K.; Martasek, P.; Kral, V. Design, synthesis, selective recognition properties and targeted drug de-livery application. In: Handbook of porphyrin science; World Scientific: Singapore, 2014; 33, pp. 1-75.
[http://dx.doi.org/10.1142/9789814417297_0008]
[14]
Zhang, J.; Wong, K-L.; Wong, W-K.; Mak, N-K.; Kwong, D.W.J.; Tam, H-L. Two-photon induced luminescence, singlet oxygen generation, cellular up-take and photocytotoxic properties of amphiphilic Ru(II) polypyridyl-porphyrin conjugates as potential bifunctional photodynamic therapeutic agents. Org. Biomol. Chem., 2011, 9(17), 6004-6010.
[http://dx.doi.org/10.1039/c1ob05415e] [PMID: 21748193]
[15]
Zhang, J-X.; Li, H.; Chan, C-F.; Lan, R.; Chan, W-L.; Law, G-L.; Wong, W-K.; Wong, K-L. A potential water-soluble ytterbium-based porphyrin-cyclen dual bio-probe for Golgi apparatus imaging and photodynamic ther-apy. Chem. Commun. (Camb.), 2012, 48(77), 9646-9648.
[http://dx.doi.org/10.1039/c2cc34963a] [PMID: 22908122]
[16]
Hieringer, W.; Flechtner, K.; Kretschmann, A.; Seufert, K.; Auwärter, W.; Barth, J.V.; Görling, A.; Steinrück, H.P.; Gottfried, J.M. The surface trans ef-fect: Influence of axial ligands on the surface chemical bonds of adsorbed metalloporphyrins. J. Am. Chem. Soc., 2011, 133(16), 6206-6222.
[http://dx.doi.org/10.1021/ja1093502] [PMID: 21462965]
[17]
Gottfried, J.M.; Marbach, H. Surface-confined coordination chemistry with porphyrins and phthalocyanines: Aspects of formation, electronic Struc-ture, and reactivity. Z. Phys. Chem., 2009, 223(1-2), 53-74.
[http://dx.doi.org/10.1524/zpch.2009.6024]
[18]
Scudiero, L.; Barlow, D.E.; Hipps, K.W. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of nickel(II) octaethylporphyrin deposited from vapor. J. Phys. Chem. B, 2002, 106(5), 996-1003.
[http://dx.doi.org/10.1021/jp012436m]
[19]
Drain, C.M.; Varotto, A.; Radivojevic, I. Self-organized porphyrinic materi-als. Chem. Rev., 2009, 109(5), 1630-1658.
[http://dx.doi.org/10.1021/cr8002483] [PMID: 19253946]
[20]
Otsuki, J. STM studies on porphyrins. Coord. Chem. Rev., 2010, 254(19), 2311-2341.
[http://dx.doi.org/10.1016/j.ccr.2009.12.038]
[21]
Kremer, C.; Lützen, A. Artificial allosteric receptors. Chemistry, 2013, 19(20), 6162-6196.
[http://dx.doi.org/10.1002/chem.201203814] [PMID: 23463705]
[22]
Whitty, A. Cooperativity and biological complexity. Nat. Chem. Biol., 2008, 4(8), 435-439.
[http://dx.doi.org/10.1038/nchembio0808-435] [PMID: 18641616]
[23]
Auwärter, W.; Écija, D.; Klappenberger, F.; Barth, J.V. Porphyrins at inter-faces. Nat. Chem., 2015, 7(2), 105-120.
[http://dx.doi.org/10.1038/nchem.2159] [PMID: 25615664]
[24]
Mazur, U.; Hipps, K.W. Single molecule level studies of reversible ligand binding to metal porphyrins at the solution/solid interface. J. Porphyr. Phthalocyanines, 2020, 24(8), 993-1002.
[http://dx.doi.org/10.1142/S1088424620300049]
[25]
Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep., 2015, 70(3), 259-379.
[http://dx.doi.org/10.1016/j.surfrep.2015.04.001]
[26]
Arruda, L.M.; Ali, M.E.; Bernien, M.; Hatter, N.; Nickel, F.; Kipgen, L.; Hermanns, C.F.; Bißwanger, T.; Loche, P.; Heinrich, B.W.; Franke, K.J.; Op-peneer, P.M.; Kuch, W. Surface-orientation- and ligand-dependent quench-ing of the spin magnetic moment of Co porphyrins adsorbed on Cu sub-strates. Phys. Chem. Chem. Phys., 2020, 22(22), 12688-12696.
[http://dx.doi.org/10.1039/D0CP00854K] [PMID: 32458937]
[27]
Liao, M.S.; Scheiner, S. Electronic structure and bonding in metal porphy-rins, metal = Fe, Co, Ni, Cu, Zn. J. Chem. Phys., 2002, 117(1), 205-219.
[http://dx.doi.org/10.1063/1.1480872]
[28]
Sanders, J.K.; Bampos, N.; Clyde-Watson, Z.; Darling, S.L.; Hawley, J.C.; Kim, H.J.; Webb, S.J. Axial coordination chemistry of metalloporphyrins. In: The Porphyrin Handbook; Kadish, K.M.; Smith, K.M.; Guilard, R., Eds.; Academic: San Diego, CA, USA, 2000; pp. 1-48.
[29]
Chilukuri, B.; Mazur, U.; Hipps, K.W. Structure, properties, and reactivity of porphyrins on surfaces and nanostructures with periodic DFT calcula-tions. Appl. Sci. (Basel), 2020, 10(3), 740.
[http://dx.doi.org/10.3390/app10030740]
[30]
Garthwaite, J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci., 1991, 14(2), 60-67.
[http://dx.doi.org/10.1016/0166-2236(91)90022-M] [PMID: 1708538]
[31]
Hoffman, B.M.; Petering, D.H. Coboglobins: Oxygen-carrying cobalt-reconstituted hemoglobin and myoglobin. Proc. Natl. Acad. Sci. USA, 1970, 67(2), 637-643.
[http://dx.doi.org/10.1073/pnas.67.2.637] [PMID: 4331717]
[32]
Zamborlini, G.; Jugovac, M.; Cossaro, A.; Verdini, A.; Floreano, L.; Lüftner, D.; Puschnig, P.; Feyer, V.; Schneider, C.M. On-surface nickel porphyrin mimics the reactive center of an enzyme cofactor. Chem. Commun. (Camb.), 2018, 54(95), 13423-13426.
[http://dx.doi.org/10.1039/C8CC06739B] [PMID: 30427327]
[33]
Libertexts. Strength of covalent bonds. 2021. Available from: http://chem.libretexts.org/@go/page/25291 (Accessed on: Jul 13, 2021).
[34]
Knecht, P.; Zhang, B.; Reichert, J.; Duncan, D.A.; Schwarz, M.; Haag, F.; Ryan, P.T.P.; Lee, T.L.; Deimel, P.S.; Feulner, P.; Allegretti, F.; Auwärter, W.; Médard, G.; Seitsonen, A.P.; Barth, J.V.; Papageorgiou, A.C. Assembly and manipulation of a prototypical N-heterocyclic carbene with a metal-loporphyrin pedestal on a solid surface. J. Am. Chem. Soc., 2021, 143(11), 4433-4439.
[http://dx.doi.org/10.1021/jacs.1c01229] [PMID: 33703887]
[35]
Knecht, P.; Reichert, J.; Deimel, P.S.; Feulner, P.; Haag, F.; Allegretti, F.; Garnica, M.; Schwarz, M.; Auwärter, W.; Ryan, P.T.P.; Lee, T.L.; Duncan, D.A.; Seitsonen, A.P.; Barth, J.V.; Papageorgiou, A.C. Conformational con-trol of chemical reactivity for surface-confined Ru-porphyrins. Angew. Chem. Int. Ed. Engl., 2021, 60(30), 16561-16567.
[http://dx.doi.org/10.1002/anie.202104075] [PMID: 33938629]
[36]
Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manip-ulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem., 2006, 57(1), 497-525.
[http://dx.doi.org/10.1146/annurev.physchem.57.032905.104634] [PMID: 16599819]
[37]
den Boer, D.; Elemans, J.A.A.W. Triggering chemical reactions by scanning tunneling microscopy: From atoms to polymers. Eur. Polym. J., 2016, 83, 390-406.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.03.002]
[38]
Tsuda, M.; Dy, E.S.; Kasai, H. Comparative study of O2 dissociation on various metalloporphyrins. J. Chem. Phys., 2005, 122(24), 244719.
[http://dx.doi.org/10.1063/1.1947187] [PMID: 16035805]
[39]
Sun, S.; Jiang, N.; Xia, D. Density functional theory study of the oxygen reduction reaction on metalloporphyrins and metallophthalocyanines. J. Phys. Chem. C, 2011, 115(19), 9511-9517.
[http://dx.doi.org/10.1021/jp101036j]
[40]
Murphy, B.E.; Krasnikov, S.A.; Sergeeva, N.N.; Cafolla, A.A.; Preobrajen-ski, A.B.; Chaika, A.N.; Lübben, O.; Shvets, I.V. Homolytic cleavage of mo-lecular oxygen by manganese porphyrins supported on Ag(111). ACS Nano, 2014, 8(5), 5190-5198.
[http://dx.doi.org/10.1021/nn501240j] [PMID: 24766567]
[41]
Wang, Y.; Yuan, H.; Li, Y.; Chen, Z. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: A computational study. Nanoscale, 2015, 7(27), 11633-11641.
[http://dx.doi.org/10.1039/C5NR00302D] [PMID: 26098266]
[42]
Sedona, F.; Lo Cicero, M.; Carlotto, S.; Basagni, A.; Fakhrabadi, M.M.S.; Casarin, M.; Sambi, M. Substrate involvement in dioxygen bond dissocia-tion catalysed by iron phthalocyanine supported on Ag(100). Chem. Commun. (Camb.), 2018, 54(68), 9418-9421.
[http://dx.doi.org/10.1039/C8CC04362K] [PMID: 30091439]
[43]
Duncan, D.A.; Deimel, P.S.; Wiengarten, A.; Han, R.; Acres, R.G.; Auwärter, W.; Feulner, P.; Papageorgiou, A.C.; Allegretti, F.; Barth, J.V. Immobilised molecular catalysts and the role of the supporting metal substrate. Chem. Commun. (Camb.), 2015, 51(46), 9483-9486.
[http://dx.doi.org/10.1039/C5CC01639H] [PMID: 25962437]
[44]
Wäckerlin, C.; Chylarecka, D.; Kleibert, A.; Müller, K.; Iacovita, C.; Nolt-ing, F.; Jung, T.A.; Ballav, N. Controlling spins in adsorbed molecules by a chemical switch. Nat. Commun., 2010, 1(1), 61.
[http://dx.doi.org/10.1038/ncomms1057] [PMID: 20975713]
[45]
Chang, M.H.; Chang, Y.H.; Kim, N.Y.; Kim, H.; Lee, S.H.; Choi, M.S.; Kim, Y.H.; Kahng, S.J. Tuning and sensing spin interactions in Co-porphyrin/Au with NH3 and NO2 binding. Phys. Rev. B, 2019, 100(24), 245406.
[http://dx.doi.org/10.1103/PhysRevB.100.245406]
[46]
Summers, J.S.; Stolzenberg, A.M. The cis-influence of hydroporphyrin macrocycles on the axial ligation equilibria of cobalt(II) and zinc(II) por-phyrin complexes. J. Am. Chem. Soc., 1993, 115(23), 10559-10567.
[http://dx.doi.org/10.1021/ja00076a014]
[47]
Ikeda, T.; Asakawa, M.; Goto, M.; Miyake, K.; Ishida, T.; Shimizu, T. STM observation of alkyl-chain-assisted self-assembled monolayers of pyridine-coordinated porphyrin rhodium chlorides. Langmuir, 2004, 20(13), 5454-5459.
[http://dx.doi.org/10.1021/la049577a] [PMID: 15986686]
[48]
Otsuki, J.; Seki, E.; Taguchi, T.; Asakawa, M.; Miyake, K. STM observation of labile axial ligands to zinc porphyrin at liquid/solid interface. Chem. Lett., 2007, 36(6), 740-741.
[http://dx.doi.org/10.1246/cl.2007.740]
[49]
Visser, J.; Katsonis, N.; Vicario, J.; Feringa, B.L. Two-dimensional molecu-lar patterning by surface-enhanced Zn-porphyrin coordination. Langmuir, 2009, 25(10), 5980-5985.
[http://dx.doi.org/10.1021/la804196r] [PMID: 19341279]
[50]
Johnson, K.N.; Hipps, K.W.; Mazur, U. Quantifying reversible nitrogenous ligand binding to Co(ii) porphyrin receptors at the solution/solid interface and in solution. Phys. Chem. Chem. Phys., 2020, 22(42), 24226-24235.
[http://dx.doi.org/10.1039/D0CP04109B] [PMID: 33084667]
[51]
Nandi, G.; Chilukuri, B.; Hipps, K.W.; Mazur, U. Surface directed reversible imidazole ligation to nickel(ii) octaethylporphyrin at the solution/solid in-terface: A single molecule level study. Phys. Chem. Chem. Phys., 2016, 18(30), 20819-20829.
[http://dx.doi.org/10.1039/C6CP04454A] [PMID: 27416994]
[52]
Korpany, K.V.; Chilukuri, B.; Hipps, K.W.; Mazur, U. Cooperative binding of 1-phenylimidazole to cobalt(II) octaethylporphyrin on graphite: A quan-titative imaging and computational study at molecular resolution. J. Phys. Chem. C, 2020, 124(34), 18639-18649.
[http://dx.doi.org/10.1021/acs.jpcc.0c05516]
[53]
den Boer, D.; Li, M.; Habets, T.; Iavicoli, P.; Rowan, A.E.; Nolte, R.J.M.; Speller, S.; Amabilino, D.B.; De Feyter, S.; Elemans, J.A.A.W. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface. Nat. Chem., 2013, 5(7), 621-627.
[http://dx.doi.org/10.1038/nchem.1667] [PMID: 23787754]
[54]
Friesen, B.A.; Bhattarai, A.; Mazur, U.; Hipps, K.W. Single molecule imag-ing of oxygenation of cobalt octaethylporphyrin at the solution/solid inter-face: Thermodynamics from microscopy. J. Am. Chem. Soc., 2012, 134(36), 14897-14904.
[http://dx.doi.org/10.1021/ja304431b] [PMID: 22697040]
[55]
Collman, J.P.; Brauman, J.I.; Doxsee, K.M.; Halbert, T.R.; Hayes, S.E.; Suslick, K.S. Oxygen binding to cobalt porphyrins. J. Am. Chem. Soc., 1978, 100(9), 2761-2766.
[http://dx.doi.org/10.1021/ja00477a031]
[56]
Collman, J.P. Synthetic models for the oxygen-binding hemoproteins. Acc. Chem. Res., 1977, 10(7), 265-272.
[http://dx.doi.org/10.1021/ar50115a006]
[57]
Bhattarai, A.; Mazur, U.; Hipps, K.W. A single molecule level study of the temperature-dependent kinetics for the formation of metal porphyrin mono-layers on Au(111) from solution. J. Am. Chem. Soc., 2014, 136(5), 2142-2148.
[http://dx.doi.org/10.1021/ja412648x] [PMID: 24405275]
[58]
Bhattarai, A.; Marchbanks-Owens, K.; Mazur, U.; Hipps, K.W. Influence of the central metal ion on the desorption kinetics of a porphyrin from the so-lution/HOPG interface. J. Phys. Chem. C, 2016, 120(32), 18140-18150.
[http://dx.doi.org/10.1021/acs.jpcc.6b05964]
[59]
Hambright, P. The coordination chemistry of metalloporphyrins. Coord. Chem. Rev., 1971, 6(2–3), 247-268.
[http://dx.doi.org/10.1016/S0010-8545(00)80041-7]
[60]
Satake, A.; Kobuke, Y. Dynamic supramolecular porphyrin systems. Tetrahedron, 2005, 61(1), 13-41.
[http://dx.doi.org/10.1016/j.tet.2004.10.073]
[61]
Kirksey, C.H.; Hambright, P.; Storm, C.B. Stability constants and proton magnetic resonance studies of zinc α,β,γ,δ-tetraphenylporphin and substi-tuted pyridines. Inorg. Chem., 1969, 8(10), 2141-2144.
[http://dx.doi.org/10.1021/ic50080a022]
[62]
Falk, J.E.; Phillips, J.N.; Magnusson, E.A. Metal-ligand bonding in iron-porphyrins and oxyhaemoglobin. Nature, 1966, 212(5070), 1531-1533.
[http://dx.doi.org/10.1038/2121531a0]
[63]
Walker, F.A. Steric and electronic effects in the coordination of amines to a cobalt(II) porphyrin. J. Am. Chem. Soc., 1973, 95(4), 1150-1153.
[http://dx.doi.org/10.1021/ja00785a025] [PMID: 4687684]
[64]
Yoshimoto, S.; Inukai, J.; Tada, A.; Abe, T.; Morimoto, T.; Osuka, A.; Fu-ruta, H.; Itaya, K. Adlayer structure of and electrochemical O2 reduction on cobalt porphine-modified and cobalt octaethylporphyrin-modified Au(111) in HClO4. J. Phys. Chem. B, 2004, 108(6), 1948-1954.
[http://dx.doi.org/10.1021/jp0366421]
[65]
Feng, H.; Xu, X.; Du, Y.; Dou, S.X. Application of scanning tunneling microscopy in electrocatalysis and electrochemistry. Electrochem. Energ. Rev., 2021, 4(2), 249-268.
[http://dx.doi.org/10.1007/s41918-020-00074-3]
[66]
Langner, A.; Tait, S.L.; Lin, N.; Rajadurai, C.; Ruben, M.; Kern, K. Self-recognition and self-selection in multicomponent supramolecular coordina-tion networks on surfaces. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 17927-17930.
[http://dx.doi.org/10.1073/pnas.0704882104] [PMID: 17984048]
[67]
Pauling, L. The oxygen equilibrium of hemoglobin and its structural inter-pretation. Proc. Natl. Acad. Sci. USA, 1935, 21(4), 186-191.
[http://dx.doi.org/10.1073/pnas.21.4.186] [PMID: 16587956]
[68]
Hulsken, B.; Van Hameren, R.; Gerritsen, J.W.; Khoury, T.; Thordarson, P.; Crossley, M.J.; Rowan, A.E.; Nolte, R.J.; Elemans, J.A.; Speller, S. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid inter-face. Nat. Nanotechnol., 2007, 2(5), 285-289.
[http://dx.doi.org/10.1038/nnano.2007.106] [PMID: 18654285]
[69]
Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater., 2020, 393, 122383.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122383] [PMID: 32369889]
[70]
Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 2010, 156(1), 2-10.
[http://dx.doi.org/10.1016/j.cej.2009.09.013]
[71]
Nandi, G.; Hipps, K.W.; Mazur, U. Unpublished work Washington State University; Pullman, WA, USA, 2016.
[72]
Johnson, K.N.; Hipps, K.W.; Mazur, U. Unpublished work; Washington State University: Pullman, WA, USA, 2021.
[73]
Deimel, P.S.; Bababrik, R.M.; Wang, B.; Blowey, P.J.; Rochford, L.A.; Thakur, P.K.; Lee, T.L.; Bocquet, M.L.; Barth, J.V.; Woodruff, D.P.; Duncan, D.A.; Allegretti, F. Direct quantitative identification of the “surface trans-effect”. Chem. Sci. (Camb.), 2016, 7(9), 5647-5656.
[http://dx.doi.org/10.1039/C6SC01677D] [PMID: 30034702]
[74]
Magnussen, O.M.; Polewska, W.; Zitzler, L.; Behm, R.J. In situ video-STM studies of dynamic processes at electrochemical interfaces. Faraday Discuss., 2002, 121(121), 43-52.
[http://dx.doi.org/10.1039/b200016b] [PMID: 12227584]
[75]
Yanson, Y.I.; Schenkel, F.; Rost, M.J. Design of a high-speed electrochemi-cal scanning tunneling microscope. Rev. Sci. Instrum., 2013, 84(2), 023702.
[http://dx.doi.org/10.1063/1.4779086] [PMID: 23464213]