Green Synthesis of Deep Ultraviolet Response Nanophosphors with Tunable Full-visible-spectra Emission for Luminescent Temperature Sensing

Article ID: e280122200640 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Recently, the CaMoO4 nanocrystal has been viewed as one of the most promising substrates for rare-earth-doped nanophosphors due to its high density, stable chemical properties, and good deep-ultraviolet (DUV) responding characteristics.

Aim: In this work, a green synthesis approach is proposed to obtain rare-earth-doped CaMoO4 nanodispersion with full-visible-spectra emission by using an ethanol-water mixed solvent in a rotating packed bed (RPB) reactor.

Method: The obtained nanophosphors exhibited bright luminescent emission with tunable color in the range of full-visible-spectra via doping of Eu3+, Tb3+, and Dy3+, when they were excited by deepultraviolet (DUV) light. The RPB promoted the uniform distribution of rare-earth ions and the crystallinity of CaMoO4 particles, and the use of ethanol-water as solvents with no toxicity and less environmental pollution was beneficial for large-scale production.

Result: The quantum yields for nanophosphors of CaMoO4: Na+, Eu3+, CaMoO4: Na+, Tb3+, and Ca- MoO4: Na+, Dy3+ were measured to be 46.96 %, 28.05 %, and 10.27 %, respectively, which were among the highest values ever reported for rare-earth-doped CaMoO4-based nanophosphors with similar morphology. The temperature-dependent luminescence of CaMoO4: Eu3+, Na+ nanophosphors was investigated in the range of 298 K - 498 K.

Conclusion: The clear correlation between luminescence intensity and temperature indicates the potential novel application areas for CaMoO4: Na+, Eu3+ nanophosphor as a non-invasive thermometer. Upon regulating different nanophosphor material ratios, the obtained product shows a flexible fluorescence towards full-visible-spectra emission.

Keywords: Rotating packed bed, process intensification, nanodispersion, full-visible-spectra emission, temperature sensing, green solvent.

Graphical Abstract

[1]
Moon BJ, Kim SJ, Lee S, et al. Rare-earth-element-ytterbium-substituted lead-free inorganic perovskite nanocrystals for optoelectronic applications. Adv Mater 2019; 31(33): e1901716.
[http://dx.doi.org/10.1002/adma.201901716] [PMID: 31231874]
[2]
Yuan B, Song Y, Sheng Y, et al. Luminescence properties and energy transfer of Ca2Mg0.5AlSi1.5O7: Ce3+, Eu2+ phosphors for UV-excited white LEDs. Powder Technol 2014; 253: 803-8.
[http://dx.doi.org/10.1016/j.powtec.2013.12.047]
[3]
Nguyen TMH, Suwan P, Koottatep T, Beck SE. Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse. Water Res 2019; 153(153): 53-62.
[http://dx.doi.org/10.1016/j.watres.2019.01.006] [PMID: 30690218]
[4]
Minamikawa T, Koma T, Suzuki A, et al. Quantitative evaluation of SARS-CoV-2 inactivation using a deep ultraviolet light-emitting diode. Sci Rep 2021; 11(1): 5070.
[http://dx.doi.org/10.1038/s41598-021-84592-0] [PMID: 33658595]
[5]
Kneissl M, Seong T-Y, Han J, Amano H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics 2019; 13: 233-44.
[http://dx.doi.org/10.1038/s41566-019-0359-9]
[6]
Song K, Mohseni M, Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res 2016; 94: 341-9.
[http://dx.doi.org/10.1016/j.watres.2016.03.003] [PMID: 26971809]
[7]
Wang X, Chen Y, Liu F, Pan Z. Solar-blind ultraviolet-C persistent luminescence phosphors. Nat Commun 2020; 11(1): 2040.
[http://dx.doi.org/10.1038/s41467-020-16015-z] [PMID: 32341355]
[8]
Stupca M, Nayfeh OM, Hoang T, et al. Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode. J Appl Phys 2012; 112: 074313.
[http://dx.doi.org/10.1063/1.4754449]
[9]
Zhu H, Chen Y, Li J, Cui G, Wang X. High-pressure X-ray diffraction study, optical properties, and applications of CaMoO4:Eu3+ nanosheets in white LEDs. J Alloys Compd 2020; 846: 156473.
[http://dx.doi.org/10.1016/j.jallcom.2020.156473]
[10]
Wang Y, Song J, Zhao Y, Xu L, He D, Jiao H. Effects of organic additives on morphology and luminescent properties of Eu3+-doped calcium molybdate red phosphors. Powder Technol 2015; 275: 1-11.
[http://dx.doi.org/10.1016/j.powtec.2015.01.055]
[11]
Ding Y, Liu J, Zhu Y, et al. Brightly luminescent and color-tunable CaMoO4:RE3+ (RE = Eu, Sm, Dy, Tb) nanofibers synthesized through a facile route for efficient light-emitting diodes. J Mater Sci 2018; 53: 4861-73.
[http://dx.doi.org/10.1007/s10853-017-1888-6]
[12]
Parchur AK, Ansari AA, Singh BP, et al. Enhanced luminescence of CaMoO₄:Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe₃O₄: cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells. Integr Biol 2014; 6(1): 53-64.
[http://dx.doi.org/10.1039/C3IB40148K] [PMID: 24287920]
[13]
Pu Y, Lin L, Liu J, Wang J-X, Wang D. High-gravity-assisted green synthesis of rare-earth doped calcium molybdate colloidal nanophosphors. Chin J Chem Eng 2020; 28: 1744-51.
[http://dx.doi.org/10.1016/j.cjche.2020.03.023]
[14]
Bu W, Chen Z, Chen F, Shi J. Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J Phys Chem C 2009; 113: 12176-85.
[http://dx.doi.org/10.1021/jp901437a]
[15]
Dinh C-T, Nguyen T-D, Kleitz F, Do T-O. Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 2009; 3(11): 3737-43.
[http://dx.doi.org/10.1021/nn900940p] [PMID: 19807108]
[16]
Zhang Y-Q, Wang D, Zhang L-L, Le Y, Wang J-X, Chen J-F. Facile preparation of α-calcium sulfate hemihydrate with low aspect ratio using high-gravity reactive precipitation combined with a salt solution method at atmospheric pressure. Ind Eng Chem Res 2017; 56(47): 14053-9.
[http://dx.doi.org/10.1021/acs.iecr.7b03356]
[17]
Galuszka A, Migaszewski Z, Namiesnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical principles. Trends Analyt Chem 2013; 50: 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[18]
Kokosa JM. Selecting an extraction solvent for a greener liquid phase microextration (LPME) mode-based analytical method. Trends Analyt Chem 2019; 118: 238-47.
[http://dx.doi.org/10.1016/j.trac.2019.05.012]
[19]
Li F, Weng H, Shang Y, et al. Environmentally friendly and facile synthesis of Rh nanoparticles at room temperature by alkaline ethanol solution and their application for ethanol electrooxidation. RSC Advances 2017; 7: 3161-9.
[http://dx.doi.org/10.1039/C6RA26591J]
[20]
Chen S-F, Cölfen H, Antonietti M, Yu S-H. Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chem Commun (Camb) 2013; 49(83): 9564-6.
[http://dx.doi.org/10.1039/c3cc45427d] [PMID: 24022058]
[21]
Han J-H, Pack S-P, Chung S. Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions. Korean J Chem Eng 2020; 37(5): 891-7.
[http://dx.doi.org/10.1007/s11814-020-0496-3]
[22]
Wang X-F, Peng G-H, Li N, Liang Z-H, Wang X, Wu J-L. Hydrothermal synthesis and luminescence properties of 3D walnut-like CaMoO4:Eu3+ red phosphors. J Alloys Compd 2014; 599: 102-7.
[http://dx.doi.org/10.1016/j.jallcom.2014.02.091]
[23]
Bhagwan J, Hussain SK, Yu JS. Facile hydrothermal synthesis and electrochemical properties of CaMoO4 nanoparticles for aqueous asymmetric supercapacitors. ACS Sustain Chem& Eng 2019; 7: 12340-50.
[http://dx.doi.org/10.1021/acssuschemeng.9b01708]
[24]
Leng J, Chen J, Wang D, Wang J-X, Pu Y, Chen J-F. Scalable preparation of Gd2O3:Yb3+/Er3+ upconversion nanophosphors in a high-gravity rotating packed bed reactor for transparent upconversion luminescent films. Ind Eng Chem Res 2017; 56(28): 7977-83.
[http://dx.doi.org/10.1021/acs.iecr.7b02262]
[25]
Yang H-J, Chu G-W, Zhang J-W, Shen Z-G, Chen J-F. Micromixing efficiency in a rotating packed bed: Experiments and simulation. Ind Eng Chem Res 2005; 44: 7730-7.
[http://dx.doi.org/10.1021/ie0503646]
[26]
Park K, Hakeem DA, Pi JW, Jung GW. Emission enhancement of Eu3þ-doped ZnO by adding charge compensators. J Alloys Compd 2019; 772: 1040-51.
[http://dx.doi.org/10.1016/j.jallcom.2018.08.278]
[27]
Park K, Hakeem DA, Pi JW, Kim SW. Improvement of photoluminescence properties of Ce3+-doped CaSrAl2SiO7 phosphors by charge compensation with Li+ and Na+. Ceram Int 2018; 44(2): 1929-34.
[http://dx.doi.org/10.1016/j.ceramint.2017.10.135]
[28]
Verma A, Sharma SK. Rare-earth doped/codoped CaMoO4 phosphors: A candidate for solar spectrum conversion. Solid State Sci 2019; 96: 105945.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.105945]
[29]
Hakeem DA, Pi JW, Kim SW, Park K, New Y. 2LuCaAl2SiO12:Ln (Ln = Ce3+, Eu3+, and Tb3+) phosphors for white LED applications. Inorg Chem Front 2018; 5: 1336-45.
[http://dx.doi.org/10.1039/C8QI00111A]
[30]
Kumari P, Manam J. Influence of Dy3+ ions doping on structural and luminescent properties of GdVO4. J Mater 2016; 27: 9437-47.
[31]
Zhai H-F, Li W, Zhang J, et al. Excitation-induced tunable luminescent properties of polyhedral CaMoO4 microcrystallites. J Mater Sci Mater Electron 2021; 32: 10008-17.
[http://dx.doi.org/10.1007/s10854-021-05659-2]
[32]
Hazra C, Samanta T, Asaithambi AV, Mahalingam V. Bilayer stabilized Ln³⁺-doped CaMoO₄ nanocrystals with high luminescence quantum efficiency and photocatalytic properties. Dalton Trans 2014; 43(18): 6623-30.
[http://dx.doi.org/10.1039/C3DT53450B] [PMID: 24667891]
[33]
Parchur AK, Prasad AI, Ansari AA, Rai SB, Ningthoujam RS. Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core-shell formation. Dalton Trans 2012; 41(36): 11032-45.
[http://dx.doi.org/10.1039/c2dt31257c] [PMID: 22859260]
[34]
Guo X, Song S, Jiang X, et al. Functional applications and luminescence properties of emission tunable phosphors CaMoO4@SiO2:Ln3+ (Ln=Eu, Tb, Dy). J Alloys Compd 2021; 857: 157515.
[http://dx.doi.org/10.1016/j.jallcom.2020.157515]
[35]
Dutta S, Som S, Sharma S. Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors. RSC Advances 2015; 5: 7380-7.
[http://dx.doi.org/10.1039/C4RA12447B]
[36]
Du P, Guo Y, Lee S, Yu J. Broad near-ultraviolet and blue excitation band induced dazzling red emissions in Eu3+-activated Gd2MoO6 phosphors for white light-emitting diodes. RSC Advances 2017; 7: 3170-8.
[http://dx.doi.org/10.1039/C6RA25652J]
[37]
Ren X, Zhang F, Guo B, Gao N, Zhang X. Synthesis of N-Doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging. Nanomaterials (Basel) 2019; 9(4): 495.
[http://dx.doi.org/10.3390/nano9040495] [PMID: 30939724]
[38]
Kumamoto Y, Taguchi A, Kawata S. Deep-ultraviolet biomolecular imaging and analysis. Adv Opt Mater 2019; 7: 1801099.
[http://dx.doi.org/10.1002/adom.201801099]
[39]
Guo Y, Yang C, Zhang Y, Tao T. Nanomaterials for fluorescent detection of curcumin. Spectrochim Acta A Mol Biomol 2021; 120359.
[40]
Renard D, Tian S, Ahmadivand A, et al. Polydopamine-stabilized aluminum nanocrystals: Aqueous stability and benzo[a]pyrene detection. ACS Nano 2019; 13(3): 3117-24.
[http://dx.doi.org/10.1021/acsnano.8b08445] [PMID: 30807101]