Nanocomposite Based Enzyme-less Electrochemical Sensors for Carbamate and Organophosphorus Pesticides Detection

Page: [93 - 109] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: The excessive application of carbamate and organophosphorus pesticides showed relatively high acute toxicity due to inhibition of acetylcholinesterase enzyme in the neural system of insects and mammals.

Objective: This review aimed to assess the current outstanding performance of nanocomposite based enzyme-less electrochemical sensors toward the determination of organophosphorus and carbamate pesticides detection.

Methods: Enzyme based electrochemical sensor (biosensor) and classical (chromatographic) methods have been used widely for the detection of organophosphorus and carbamate pesticides. However, instability related to enzymes and complex sample preparation, the need for highly trained manpower, and other numerous disadvantages associated with chromatographic techniques limit their application for pesticides detection in many conditions. Therefore, currently, nanocomposite based enzyme-less electrochemical sensors are a good alternative to enzyme-based sensors for many researchers.

Results: The reviewed literature revealed that, nanocomposite based enzyme-less sensors with numerous advantages have shown a comparable sensitivity with enzyme-integrated sensor for pesticide detection.

Conclusion: Currently nanocomposite materials are widely used for many applications, including the fabrication of promising sensors for pesticide detections. The promising sensing potential might be attributed to the special functional groups on the surface of the nanomaterials and their composite form, enabling them to substitute those expensive bio-recognition elements (enzymes) and used as non-bio-recognition elements for the detection of pesticides.

Keywords: Enzyme-less sensor, nanomaterials, acetylcholinesterase enzyme, electrochemical methods, organophosphorus pesticides, carbamate pesticide.

Graphical Abstract

[1]
Rahmani T, Bagheri H, Behbahani M, Hajian A, Afkhami A. Modified 3D graphene-au as a novel sensing layer for direct and sensitive electrochemical determination of carbaryl pesticide in fruit, vegetable, and water samples. Food Anal Methods 2018; 11: 3005-14.
[http://dx.doi.org/10.1007/s12161-018-1280-4]
[2]
Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt Chem 2017; 92: 62-85.
[http://dx.doi.org/10.1016/j.trac.2017.04.012]
[3]
Ramachandran R, Mani V, Chen S, Gnana G. Recent developments in electrode materials and methods for pesticide analysis - An overview. Int J Electrochem Sci 2015; 10: 859-69.
[4]
Boneva I, Yaneva S, Danalev D. Development and validation of method for determination of organophosphorus pesticides traces in liver sample by GC-MS/MS-ion trap. Acta Chromatogr 2020; 2020: 188-94.
[5]
Hamid A, Yaqub G, Ayub M, Naeem M. Determination of malathion, chlorpyrifos, λ-cyhalothrin and arsenic in rice. Food Sci Technol 2021; 41: 461-6.
[http://dx.doi.org/10.1590/fst.01020]
[6]
Ravelo-Pérez LM, Hernández-Borges J, Rodríguez-Delgado MÁ. Pesticides analysis by liquid chromatography and capillary electrophoresis. J Sep Sci 2006; 29(17): 2557-77.
[http://dx.doi.org/10.1002/jssc.200600201] [PMID: 17313096]
[7]
Picó Y, Rodríguez R, Mañes J. Capillary electrophoresis for the determination of pesticide residues. Trends Analyt Chem 2003; 22: 133-51.
[http://dx.doi.org/10.1016/S0165-9936(03)00302-9]
[8]
Namera A. Direct colorimetric method for determination of organophosphates in human urine. Clin Chim Acta 2000; 291(1): 9-18.
[http://dx.doi.org/10.1016/S0009-8981(99)00189-8]
[9]
Che Sulaiman I S. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Microchim Acta 2020; 187: 131.
[10]
Mathew SB, Pillai AK, Gupta VK. A rapid spectrophotometric assay of some organophosphorus pesticide residues in vegetable samples. Spectrochim Acta A Mol Biomol Spectrosc 2007; 67(5): 1430-2.
[http://dx.doi.org/10.1016/j.saa.2006.11.020] [PMID: 17267272]
[11]
Hegazy AM, Abdelfatah RM, Mahmoud HM, Elsayed MA. Two spectrophotometric methods for quantitative determination of some pesticides applied for cucumber in Egypt. Beni Suef Univ J Basic Appl Sci 2018; 7: 598-605.
[http://dx.doi.org/10.1016/j.bjbas.2018.07.002]
[12]
Al’Abri AM, Abdul Halim SN, Abu Bakar NK, et al. Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. J Environ Sci Health B 2019; 54(12): 930-41.
[http://dx.doi.org/10.1080/03601234.2019.1652072] [PMID: 31407615]
[13]
Rodrigues NFM, Neto SY, Luz R de C S, Damos F S, Yamanaka H. Ultrasensitive determination of malathion using acetylcholinesterase immobilized on chitosan-functionalized magnetic iron nanoparticles. Biosensors (Basel) 2018; 8.
[14]
Jirasirichote A, Punrat E, Suea-Ngam A, Chailapakul O, Chuanuwatanakul S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta 2017; 175: 331-7.
[http://dx.doi.org/10.1016/j.talanta.2017.07.050] [PMID: 28841999]
[15]
Songa EA, Okonkwo JO. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016; 155: 289-304.
[http://dx.doi.org/10.1016/j.talanta.2016.04.046] [PMID: 27216686]
[16]
Li Y, Xu M, Li P, Dong J, Ai S. Nonenzymatic sensing of methyl parathion based on graphene/gadolinium Prussian Blue analogue nanocomposite modified glassy carbon electrode. Anal Methods 2014; 6: 2157-62.
[http://dx.doi.org/10.1039/c3ay41820k]
[17]
Khairy M, Ayoub HA, Banks CE. Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 2018; 255: 104-11.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.004] [PMID: 29571455]
[18]
Wang M, Huang J, Wang M, Zhang D, Chen J. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem 2014; 151: 191-7.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.046] [PMID: 24423520]
[19]
Wong A, Materon EM, Sotomayor MDPT. Development of a biomimetic sensor modified with hemin and graphene oxide for monitoring of carbofuran in food. Electrochim Acta 2014; 146: 830-7.
[http://dx.doi.org/10.1016/j.electacta.2014.09.091]
[20]
Diauudin FN. A review of current advances in the detection of organophosphorus chemical warfare agents based biosensor approaches. Sens Biosensing Res 2019; 26: 100305.
[http://dx.doi.org/10.1016/j.sbsr.2019.100305]
[21]
Li S, Yin G, Wu X, Liu C, Luo J. Supramolecular imprinted sensor for carbofuran detection based on a functionalized multiwalled carbon nanotube-supported Pd-Ir composite and methylene blue as catalyst. Electrochim Acta 2016; 188: 294-300.
[http://dx.doi.org/10.1016/j.electacta.2015.12.010]
[22]
Sroysee W, Chunta S, Amatatongchai M, Lieberzeit PA. Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors. Phys Med 2019; 7: 100016.
[http://dx.doi.org/10.1016/j.phmed.2019.100016]
[23]
Saylan Y, Erdem Ö, Inci F, Denizli A. Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics (Basel) 2020; 5(2): 1-16.
[http://dx.doi.org/10.3390/biomimetics5020020] [PMID: 32408710]
[24]
Fresco-Cala B, Batista AD, Cárdenas S. Molecularly imprinted polymer micro- And nano-particles: A review. Molecules 2020; 25(20): 1-22.
[http://dx.doi.org/10.3390/molecules25204740] [PMID: 33076552]
[25]
Zhao L, Zhao F, Zeng B. Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquid- graphene composite film coated electrode. Sens Actuators B Chem 2013; 176: 818-24.
[http://dx.doi.org/10.1016/j.snb.2012.10.003]
[26]
Tan X. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sens Actuators B Chem 2015; 220: 216-21.
[http://dx.doi.org/10.1016/j.snb.2015.05.048]
[27]
Keçili R, Hussain CM. Recent progress of imprinted nanomaterials in analytical chemistry. Int J Anal Chem 2018; 2018: 8503853.
[http://dx.doi.org/10.1155/2018/8503853] [PMID: 30057612]
[28]
Li H. Rapid and sensitive detection of methyl-parathion pesticide with an electropolymerized, molecularly imprinted polymer capacitive sensor. Electrochim Acta 2012; 62: 319-26.
[http://dx.doi.org/10.1016/j.electacta.2011.12.035]
[29]
Zarejousheghani M, Rahimi P, Borsdorf H, Zimmermann S, Joseph Y. Molecularly imprinted polymer-based sensors for priority pollutants. Sensors 2021; 21: 2406.
[30]
Gong J, Miao X, Zhou T, Zhang L. An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 2011; 85(3): 1344-9.
[http://dx.doi.org/10.1016/j.talanta.2011.06.016] [PMID: 21807193]
[31]
Zhao H, Ji X, Wang B, et al. An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 2015; 65: 23-30.
[http://dx.doi.org/10.1016/j.bios.2014.10.007] [PMID: 25461134]
[32]
Jenkins AL, Yin R, Jensen JL. Molecularly imprinted polymer sensors for pesticide and insecticide detection in water. Analyst (Lond) 2001; 126(6): 798-802.
[http://dx.doi.org/10.1039/b008853f] [PMID: 11445940]
[33]
Xue X. Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim Acta 2014; 116: 366-71.
[http://dx.doi.org/10.1016/j.electacta.2013.11.075]
[34]
Qiu L. Electrochemical detection of organophosphorus pesticides based on amino acids conjugated nanoenzyme modified electrodes. Sens Actuators B Chem 2019; 286: 386-93.
[http://dx.doi.org/10.1016/j.snb.2019.02.007]
[35]
Kaur G, Kaur A, Kaur H. Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. Polym Technol Mater 2021; 60: 502-19.
[http://dx.doi.org/10.1080/25740881.2020.1844233]
[36]
Ramanavicius S, Ramanavicius A. Conducting polymers in the design of biosensors and biofuel cells. Polymers (Basel) 2020; 13(1): 1-19.
[http://dx.doi.org/10.3390/polym13010049] [PMID: 33375584]
[37]
Manisankar P, Selvanathan G, Vedhi C. Utilisation of polypyrrole modified electrode for the determination of pesticides. Int J Environ Anal Chem 2005; 85: 409-22.
[http://dx.doi.org/10.1080/03067310500050726]
[38]
El Rhazi M, Majid S, Elbasri M, Salih FE, Oularbi L, Lafdi K. Recent progress in nanocomposites based on conducting polymer: Application as electrochemical sensors. Int Nano Lett 2018; 2018(8): 79-99.
[http://dx.doi.org/10.1007/s40089-018-0238-2]
[39]
Manisankar P, Abirama Sundari PL, Sasikumar R, Jestin Roy D. Voltammetric determination of phenoxybenzyl-type insecticides at chemically modified conducting polymer-carbon nanotubes coated electrodes. Electroanalysis 2008; 20: 2076-83.
[http://dx.doi.org/10.1002/elan.200804283]
[40]
Joshi P, Mehtab S, Zaidi MGH, Tyagi T, Bisht A. Development of polyindole/tungsten carbide nanocomposite- modified electrodes for electrochemical quantification of chlorpyrifos. J Nanostructure Chem 2020; 10: 33-45.
[http://dx.doi.org/10.1007/s40097-019-00326-9]
[41]
Mejri A, Mars A, Elfil H, Hamzaoui AH. Reduced graphene oxide nanosheets modified with nickel disulfide and curcumin nanoparticles for non-enzymatic electrochemical sensing of methyl parathion and 4-nitrophenol. Mikrochim Acta 2019; 186(11): 704.
[http://dx.doi.org/10.1007/s00604-019-3853-3] [PMID: 31628548]
[42]
Sundari PA, Manisankar P. Development of nano poly(3-methyl thiophene)/multiwalled carbon nanotubes sensor for the efficient detection of some pesticides. J Braz Chem Soc 2011; 22: 746-55.
[http://dx.doi.org/10.1590/S0103-50532011000400019]
[43]
Nasir S, Hussein MZ, Zainal Z, Yusof NA. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials (Basel) 2018; 11(2): 1-24.
[http://dx.doi.org/10.3390/ma11020295] [PMID: 29438327]
[44]
Kour R, Arya S, Young SJ, Gupta V, Bandhoria P, Khosla A. Review-Recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc 2020; 167: 037555.
[http://dx.doi.org/10.1149/1945-7111/ab6bc4]
[45]
Wang Y, Hu S. Applications of carbon nanotubes and graphene for electrochemical sensing of environmental pollutants. J Nanosci Nanotechnol 2016; 16: 7852-72.
[http://dx.doi.org/10.1166/jnn.2016.12762]
[46]
Khanna S, Islam N. Organic & medicinal chem ij carbon nanotubes-properties and applications. Org Med Chem Int J 2018; 7: 1-6.
[http://dx.doi.org/10.19080/OMCIJ.2018.07.555705]
[47]
Viswanath KB, Devasenathipathy R, Wang SF, Vasantha VS. A new route for the enzymeless trace level detection of creatinine based on reduced graphene oxide/silver nanocomposite biosensor. Electroanalysis 2017; 29: 559-65.
[http://dx.doi.org/10.1002/elan.201600425]
[48]
Coroş M, Pruneanu S, Stefan-van Staden RI. Review-Recent progress in the graphene-based electrochemical sensors and biosensors. J Electrochem Soc 2020; 2020(167): 037528.
[http://dx.doi.org/10.1149/2.0282003JES]
[49]
Qian L, Thiruppathi AR, Elmahdy R, van der Zalm J, Chen A. Graphene-oxide-based electrochemical sensors for the sensitive detection of pharmaceutical drug naproxen. Sensors (Basel) 2020; 20(5): E1252.
[http://dx.doi.org/10.3390/s20051252] [PMID: 32106566]
[50]
Facure MHM, Mercante LA, Mattoso LHC, Correa DS. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 2017; 167: 59-66.
[http://dx.doi.org/10.1016/j.talanta.2017.02.005] [PMID: 28340765]
[51]
Noyrod P, Chailapakul O, Wonsawat W, Chuanuwatanakul S. The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor. J Electroanal Chem (Lausanne) 2014; 719: 54-9.
[http://dx.doi.org/10.1016/j.jelechem.2014.02.001]
[52]
Yang S, Luo S, Liu C, Wei W. Direct synthesis of graphene-chitosan composite and its application as an enzymeless methyl parathion sensor. Colloids Surf B Biointerfaces 2012; 96: 75-9.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.007] [PMID: 22513003]
[53]
Rajaji U. Graphene oxide encapsulated 3D porous chalcopyrite (CuFeS2) nanocomposite as an emerging electrocatalyst for agro- hazardous (methyl paraoxon) detection in vegetables. Compos, Part B Eng 2019; 160: 268-76.
[http://dx.doi.org/10.1016/j.compositesb.2018.10.042]
[54]
Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O, Ganta D. Electrochemical biosensors based on nanostructured carbon black: A review. J Nanomater 2017; 2017: 4571614.
[http://dx.doi.org/10.1155/2017/4571614]
[55]
Vicentini FC, Ravanini AE, Figueiredo-Filho LCS, Iniesta J, Banks CE, Fatibello-Filho O. Imparting improvements in electrochemical sensors: Evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta 2015; 2015(157): 125-33.
[http://dx.doi.org/10.1016/j.electacta.2014.11.204]
[56]
Della Pelle F, Angelini C, Sergi M, Del Carlo M, Pepe A, Compagnone D. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta 2018; 186: 389-96.
[http://dx.doi.org/10.1016/j.talanta.2018.04.082] [PMID: 29784378]
[57]
Ibáñez-Redín G, Wilson D, Gonçalves D, Oliveira ON Jr. Low- cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J Colloid Interface Sci 2018; 515(515): 101-8.
[http://dx.doi.org/10.1016/j.jcis.2017.12.085] [PMID: 29331776]
[58]
Cinti S. Screen-printed electrodes modified with carbon nanomaterials: A comparison among carbon black, carbon nanotubes and graphene. Electroanalysis 2015; 2015(27): 2230-8.
[http://dx.doi.org/10.1002/elan.201500168]
[59]
Arduini F, Cinti S, Mazzaracchio V, Scognamiglio V, Amine A, Moscone D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosens Bioelectron 2020; 156: 112033.
[http://dx.doi.org/10.1016/j.bios.2020.112033] [PMID: 32174547]
[60]
Segawa Y, Yagi A, Matsui K, Itami K. Design and synthesis of carbon nanotube segments. Angew Chem Int Ed Engl 2016; 55(17): 5136-58.
[http://dx.doi.org/10.1002/anie.201508384] [PMID: 26890967]
[61]
Kierkowicz M. Comparative study of shortening and cutting strategies of single-walled and multi-walled carbon nanotubes assessed by scanning electron microscopy. Carbon N Y 2018; 139: 922-32.
[http://dx.doi.org/10.1016/j.carbon.2018.06.021]
[62]
Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV. Carbon nanotubes: Sensor properties. A review. Mod Electron Mater 2016; 2: 95-105.
[http://dx.doi.org/10.1016/j.moem.2017.02.002]
[63]
Saifuddin N, Raziah AZ, Junizah AR. Carbon nanotubes: A review on structure and their interaction with proteins. J Chem 2013; 2013: 676815.
[http://dx.doi.org/10.1155/2013/676815]
[64]
Yeow JTW, Wang Y. A review of carbon nanotubes-based gas sensors. J Sensors 2009; 2009: 493904.
[65]
Ganesh EN. Single walled and multi walled carbon nanotube structure. Synth Appl 2013; 2: 311-20.
[66]
Saleh Ahammad AJ, Lee JJ, Rahman MA. Electrochemical sensors based on carbon nanotubes. Sensors (Basel) 2009; 9(4): 2289-319.
[http://dx.doi.org/10.3390/s90402289] [PMID: 22574013]
[67]
Salehzadeh H, Ebrahimi M, Nematollahi D, Salarian AA. Electrochemical study of fenitrothion and bifenox and their simultaneous determination using multiwalled carbon nanotube modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2016; 767: 188-94.
[http://dx.doi.org/10.1016/j.jelechem.2016.02.011]
[68]
Wong A. An overview of pesticide monitoring at environmental samples using carbon nanotubes-based electrochemical sensors. J Carbon Res 2017; 2017(3): 8.
[http://dx.doi.org/10.3390/c3010008]
[69]
Seyed AA, Suma K, Mangala D, Ranjana M. Zirconia: Properties and application-A review. Pak Oral Dent J 2014; 2014(34): 178-83.
[70]
Liu G, Lin Y. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 2005; 77(18): 5894-901.
[http://dx.doi.org/10.1021/ac050791t] [PMID: 16159119]
[71]
Gao N, He C, Ma M, et al. Electrochemical co-deposition synthesis of Au-ZrO2-graphene nanocomposite for a nonenzymatic methyl parathion sensor. Anal Chim Acta 2019; 1072: 25-34.
[http://dx.doi.org/10.1016/j.aca.2019.04.043] [PMID: 31146862]
[72]
Gong J, Miao X, Wan H, Song D. Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sens Actuators B Chem 2012; 162: 341-7.
[http://dx.doi.org/10.1016/j.snb.2011.12.094]
[73]
Ge Q. Synthesis and characterization of mesoporous zirconia nanocomposite using self-assembled block copolymer template 2012.
[74]
Huo S, Zhao H, Dong J, Xu J. Facile synthesis of ordered mesoporous zirconia for electrochemical enrichment and detection of organophosphorus pesticides. Electroanalysis 2018; 30: 2121-30.
[http://dx.doi.org/10.1002/elan.201800284]
[75]
Caetano K dos S. MWCNT/zirconia porous composite applied as electrochemical sensor for determination of methyl parathion. Microporous Mesoporous Mater 2020; 309.
[http://dx.doi.org/10.1016/j.micromeso.2020.110583]
[76]
Gannavarapu KP, Ganesh V, Thakkar M, Mitra S, Dandamudi RB. Nanostructured Diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Sens Actuators B Chem 2019; 288: 611-7.
[http://dx.doi.org/10.1016/j.snb.2019.03.036] [PMID: 31772421]
[77]
Anandhakumar S, Dhanalakshmi K, Mathiyarasu J. Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochem Commun 2014; 38: 15-8.
[http://dx.doi.org/10.1016/j.elecom.2013.10.017]
[78]
Bolat G, Abaci S. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors 2018; 18(3): 773.
[79]
Rahmani T, Hajian A, Afkhami A, Bagheri H. A novel and high performance enzyme-less sensing layer for electrochemical detection of methyl parathion based on BSA templated Au-Ag bimetallic nanoclusters. New J Chem 2018; 42: 7213-22.
[http://dx.doi.org/10.1039/C8NJ00425K]
[80]
Zhou M, Zeng C, Li Q, Higaki T, Jin R. Gold nanoclusters: Bridging gold complexes and plasmonic nanoparticles in photophysical properties. Nanomaterials (Basel) 2019; 9(7): E933.
[http://dx.doi.org/10.3390/nano9070933] [PMID: 31261666]
[81]
Tian X. Nonenzymatic electrochemical sensor based on CuO- TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sens Actuators B Chem 2018; 256: 135-42.
[http://dx.doi.org/10.1016/j.snb.2017.10.066]
[82]
Ghodsi J, Rafati AA. A voltammetric sensor for diazinon pesticide based on electrode modified with TiO2 nanoparticles covered multi walled carbon nanotube nanocomposite. J Electroanal Chem (Lausanne) 2017; 807: 1-9.
[http://dx.doi.org/10.1016/j.jelechem.2017.11.003]
[83]
Sakamaki Y, Tsuji M, Heidrick Z, et al. Preparation and applications of Metal-Organic Frameworks (MOFs): A laboratory activity and demonstration for high school and/or undergraduate students. J Chem Educ 2020; 97(4): 1109-16.
[http://dx.doi.org/10.1021/acs.jchemed.9b01166] [PMID: 34113047]
[84]
Soltani-Shahrivar M. Design and application of a non-enzymatic sensor based on metal-organic frameworks for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Electroanalysis 2019; 31: 2455-65.
[http://dx.doi.org/10.1002/elan.201900363]
[85]
Mahmoudi E, Fakhri H, Hajian A, Afkhami A, Bagheri H. High-performance electrochemical enzyme sensor for organophosphate pesticide detection using modified metal-organic framework sensing platforms. Bioelectrochemistry 2019; 130: 107348.
[http://dx.doi.org/10.1016/j.bioelechem.2019.107348] [PMID: 31437810]
[86]
Ragni R, Cicco S, Vona D, Leone G, Farinola GM. Biosilica from diatoms microalgae: Smart materials from bio-medicine to photonics. J Mater Res 2017; 32: 279-91.
[http://dx.doi.org/10.1557/jmr.2016.459]
[87]
Leonardo S, Prieto-Simón B, Campàs M. Past, present and future of diatoms in biosensing. Trends Analyt Chem 2016; 79: 276-85.
[http://dx.doi.org/10.1016/j.trac.2015.11.022]
[88]
Nassif N, Livage J. From diatoms to silica-based biohybrids. Chem Soc Rev 2011; 40(2): 849-59.
[http://dx.doi.org/10.1039/C0CS00122H] [PMID: 21173981]
[89]
Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 2015; 87(1): 230-49.
[http://dx.doi.org/10.1021/ac5039863] [PMID: 25354297]
[90]
Hou X. Electrochemical determination of methyl parathion based on pillar[5]arene@AuNPs@reduced graphene oxide hybrid nanomaterials. New J Chem 2019; 43: 13048-57.
[http://dx.doi.org/10.1039/C9NJ02901J]
[91]
Duan Q, Wang L, Wang F, Zhang H, Lu K. Calix[n]arene/Pillar[n]arene-functionalized graphene nanocomposites and their applications. Front Chem 2020; 8(8): 504.
[http://dx.doi.org/10.3389/fchem.2020.00504] [PMID: 32596211]
[92]
Sathiyajith C, Shaikh RR, Han Q, Zhang Y, Meguellati K, Yang YW. Biological and related applications of pillar[n]arenes. Chem Commun (Camb) 2017; 53(4): 677-96.
[http://dx.doi.org/10.1039/C6CC08967D] [PMID: 27942626]
[93]
Tan X. Ultrasensitive electrochemical detection of methyl parathion pesticide based on cationic water-soluble pillar[5]arene and reduced graphene nanocomposite. RSC Advances 2019; 9: 345-53.
[http://dx.doi.org/10.1039/C8RA08555B]
[94]
Akyüz D, Koca A. An electrochemical sensor for the detection of pesticides based on the hybrid of manganese phthalocyanine and polyaniline. Sens Actuators B Chem 2019; 283: 848-56.
[http://dx.doi.org/10.1016/j.snb.2018.11.155]
[95]
Raghu P, Madhusudana RT, Reddaiah K, Kumara SBE, Sreedhar M. Acetylcholinesterase based biosensor for monitoring of Malathion and Acephate in food samples: A voltammetric study. Food Chem 2014; 142: 188-96.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.047] [PMID: 24001830]
[96]
Wang B, Li Y, Hu H, Shu W, Yang L, Zhang J. Acetylcholinesterase electrochemical biosensors with graphene-transition metal carbides nanocomposites modified for detection of organophosphate pesticides. PLoS One 2020; 15(4): e0231981.
[http://dx.doi.org/10.1371/journal.pone.0231981] [PMID: 32348360]
[97]
Singh AP, Balayan S, Hooda V, Sarin RK, Chauhan N. Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. Int J Biol Macromol 2020; 164: 3943-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.215] [PMID: 32882280]
[98]
Yang Y, Asiri AM, Du D, Lin Y. Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst (Lond) 2014; 139(12): 3055-60.
[http://dx.doi.org/10.1039/c4an00068d] [PMID: 24770670]
[99]
Wangbo S. A silver-graphene modified acetylcholinesterase biosensor for detecting organophosphate pesticides. In: 20th Int Conference Electron Packaging Technology ICEPT 20193; 12-15 Aug 2019; Hong Kong, China: IEEE 2019.
[http://dx.doi.org/10.1109/ICEPT47577.2019.245805]
[100]
Luzi-Thafeni L, Silwana B, Iwuoha E, Somerset V. Graphene-polyaniline biosensor for carbamate pesticide determination in fruit samples biosens. In: Rinken T. Micro and Nanoscale Applications. UK: IntechOpen 2015.
[http://dx.doi.org/10.5772/61220]
[101]
Cesarino I, Moraes FC, Lanza MRV, Machado SAS. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem 2012; 135(3): 873-9.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.147] [PMID: 22953799]