Polysaccharides to Combat Viruses (COVID-19) and Microbes: New updates

Article ID: e120122200188 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

COVID-19, which is speedily distributed across the world and presents a significant challenge to public health, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following MERS coronavirus (MERS-CoV) and SARS, this is the third severe coronavirus outbreak in less than 20 years. To date, there are no exact agents and vaccines available for the treatment of COVID-19 that are clinically successful. Antimicrobial medications are effective in controlling infectious diseases. However, the extensive use of antibiotics makes microbes more resistant to drugs and demands novel bioactive agents’ development. Polysaccharides are currently commonly used in the biomedical and pharmaceutical industries for their remarkable applications. Polysaccharides appear to have a wide range of anti-virus (anti-coronavirus) and antimicrobial applications. Polysaccharides are able to induce bacterial cell membrane disruption as they demonstrate potency in binding onto the surfaces of microbial cells. Here, the antiviral mechanisms of such polysaccharides and their success in the application of antiviral infections are reviewed. Additionally, this report provides a summary of current advancements of well-recognized polysaccharides as antimicrobial and anti-biofilm agents.

Keywords: Polysaccharides, Covid-19, microbes, biofilm, antiviral activity, natural sources.

Graphical Abstract

[1]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S. Research and development on therapeutic agents and vaccines for covid-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272]
[2]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[3]
Yang, Y.; Peng, F.; Wang, R.; Yange, M.; Guan, K.; Jiang, T.; Xu, G.; Sun, J.; Chang, C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J. Autoimmun., 2020, 109, 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[4]
Anthony, S.J.; Johnson, C.K.; Greig, D.J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A.L.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.; Lipkin, W.I.; Morse, S.S.; Mazet, J.A.K.; Goldstein, T. PREDICT Consortium Global patterns in coronavirus diversity. Virus Evol., 2017, 3(1), vex012.
[http://dx.doi.org/10.1093/ve/vex012] [PMID: 28630747]
[5]
Weiss, S.R.; Leibowitz, J.L. In: Advances in virus research.Elsevier, 2011, Vol. 81, .
[6]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B-J.; Jiang, S. The spike protein of SARS-CoV- a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[7]
AlMatar, M.; Makky, E.A.; AlMandeal, H.; Eker, E.; Kayar, B.; Var, I.; Köksal, F. Does the development of vaccines advance solutions for tuberculosis? Curr. Mol. Pharmacol., 2019, 12(2), 83-104.
[http://dx.doi.org/10.2174/1874467212666181126151948] [PMID: 30474542]
[8]
AlMatar, M.; Albarri, O.; Makky, E.A.; Köksal, F. Efflux pump inhibitors: new updates. Pharmacol. Rep., 2021, 73(1), 1-16.
[http://dx.doi.org/10.1007/s43440-020-00160-9] [PMID: 32946075]
[9]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[10]
Xie, J.-H.; Jin, M.-L.; Morris, G. A.; Zha, X.-Q.; Chen, H.-Q.; Yi, Y.; Li, J.-E.; Wang, Z.-J.; Gao, J.; Nie, S.-P. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr., 2016, 56(sup1), S60.
[http://dx.doi.org/10.1080/10408398.2015.1069255]
[11]
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym., 2018, 183, 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[12]
Chen, Y.Y.; Xue, Y.T. Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from porphyra haitanensis. Carbohydr. Polym., 2019, 206, 179-186.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.093] [PMID: 30553311]
[13]
Wang, J.; Wang, H.; Zhang, H.; Liu, Z.; Ma, C.; Kang, W. Immunomodulation of ADPs-1a and ADPs-3a on RAW264.7 cells through NF-κB/MAPK signaling pathway. Int. J. Biol. Macromol., 2019, 132, 1024-1030.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.031] [PMID: 30959132]
[14]
Sousa, S.G.; Oliveira, L.A.; de Aguiar Magalhães, D.; de Brito, T.V.; Batista, J.A.; Pereira, C.M.C.; de Souza Costa, M.; Mazulo, J.C.R.; de Carvalho Filgueiras, M.; Vasconselos, D.F.P.; da Silva, D.A.; Barros, F.C.N.; Sombra, V.G.; Freitas, A.L.P.; de Paula, R.C.M.; de Andrade Feitosa, J.P.; Dos Reis Barbosa, A.L. Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydr. Polym., 2018, 197, 515-523.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.042] [PMID: 30007642]
[15]
Zhang, N.; Wang, Y.; Kan, J.; Wu, X.; Zhang, X.; Tang, S.; Sun, R.; Liu, J.; Qian, C.; Jin, C. In vivo and in vitro anti-inflammatory effects of water-soluble polysaccharide from Arctium lappa. Int. J. Biol. Macromol., 2019, 135, 717-724.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.171] [PMID: 31129217]
[16]
Baldwin, A.D.; Kiick, K.L. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers, 2010, 94(1), 128-140.
[http://dx.doi.org/10.1002/bip.21334] [PMID: 20091875]
[17]
Maciel, J.V.; Durigon, A.M.M.; Souza, M.M.; Quadrado, R.F.N.; Fajardo, A.R.; Dias, D. Polysaccharides derived from natural sources applied to the development of chemically modified electrodes for environmental applications: A review. Trends Environ. Anal. Chem., 2019, 22, e00062.
[http://dx.doi.org/10.1016/j.teac.2019.e00062]
[18]
Poletto, M.; Ornaghi, H.L.; Zattera, A.J. Native cellulose: structure, characterization and thermal properties. Materials (Basel), 2014, 7(9), 6105-6119.
[http://dx.doi.org/10.3390/ma7096105] [PMID: 28788179]
[19]
Onofrei, M.; Filimon, A. Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. Poly. Sci., 2016, 108 Available from: https://www.pharmaexcipients.com/wp-content/uploads/attachments/108-120.pdf
[20]
Domingues, R.M.; Gomes, M.E.; Reis, R.L. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014, 15(7), 2327-2346.
[http://dx.doi.org/10.1021/bm500524s] [PMID: 24914454]
[21]
Gu, H.; Yue, Z.; Leong, W.S.; Nugraha, B.; Tan, L.P. Control of in vitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. Regen. Med., 2010, 5(2), 245-253.
[http://dx.doi.org/10.2217/rme.09.89] [PMID: 20210584]
[22]
Rusnati, M.; Presta, M. Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Biological implications in neovascularization. Int. J. Clin. Lab. Res., 1996, 26(1), 15-23.
[http://dx.doi.org/10.1007/BF02644769] [PMID: 8739851]
[23]
DeAngelis, P.L. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl. Microbiol. Biotechnol., 2012, 94(2), 295-305.
[http://dx.doi.org/10.1007/s00253-011-3801-6] [PMID: 22391966]
[24]
Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M.J.; Kaplan, D.L. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci., 2018, 85, 1-56.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.06.004] [PMID: 31915410]
[25]
Kaur, S.; Dhillon, G.S. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol., 2014, 40(2), 155-175.
[http://dx.doi.org/10.3109/1040841X.2013.770385] [PMID: 23488873]
[26]
Liu, C.; Omer, A.M.; Ouyang, X.K. Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. Int. J. Biol. Macromol., 2018, 106, 823-833.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.084] [PMID: 28834705]
[27]
Sharma, G.; Sharma, S.; Kumar, A.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Mola, G.T.; Stadler, F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr. Polym., 2018, 199, 534-545.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.053] [PMID: 30143160]
[28]
Azeredo, H.M.; Waldron, K.W. Crosslinking in polysaccharide and protein films and coatings for food contact-A review. Trends Food Sci. Technol., 2016, 52, 109.
[http://dx.doi.org/10.1016/j.tifs.2016.04.008]
[29]
Dai, L.; Zhang, L.; Wang, B.; Yang, B.; Khan, I.; Khan, A.; Ni, Y. Multifunctional self-assembling hydrogel from guar gum. Chem. Eng. J., 2017, 330, 1044.
[http://dx.doi.org/10.1016/j.cej.2017.08.041]
[30]
Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol., 2017, 96, 282-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.095] [PMID: 27914965]
[31]
Khan, F.; Ahmad, S.R. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol. Biosci., 2013, 13(4), 395-421.
[http://dx.doi.org/10.1002/mabi.201200409] [PMID: 23512290]
[32]
Shamshina, J.; Barber, P.; Gurau, G.; Griggs, C.; Rogers, R. Pulping of crustacean waste using ionic liquids: to extract or not to extract. ACS Sustain. Chem.& Eng., 2016, 4(11), 6072.
[http://dx.doi.org/10.1021/acssuschemeng.6b01434]
[33]
Mohammed, M.H.; Williams, P.A.; Tverezovskaya, O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll., 2013, 31(2), 166.
[http://dx.doi.org/10.1016/j.foodhyd.2012.10.021]
[34]
Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 2015, 13(3), 1133-1174.
[http://dx.doi.org/10.3390/md13031133] [PMID: 25738328]
[35]
Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 2015, 6(25), 4497.
[http://dx.doi.org/10.1039/C5PY00263J]
[36]
Cikoš, A-M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the application of modern methods for the extraction of bioactive compounds from marine macroalgae. Mar. Drugs, 2018, 16(10), 348.
[http://dx.doi.org/10.3390/md16100348] [PMID: 30249037]
[37]
Hou, Q.; Ju, M.; Li, W.; Liu, L.; Chen, Y.; Yang, Q. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 2017, 22(3), 490.
[http://dx.doi.org/10.3390/molecules22030490] [PMID: 28335528]
[38]
Yang, L.; Zhang, L-M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym., 2009, 76(3), 349.
[http://dx.doi.org/10.1016/j.carbpol.2008.12.015]
[39]
Bancerz, R.; Osińska-Jaroszuk, M.; Jaszek, M.; Sulej, J.; Wiater, A.; Matuszewska, A.; Rogalski, J. Fungal polysaccharides as a water-adsorbing material in esters production with the use of lipase from Rhizomucor variabilis. Int. J. Biol. Macromol., 2018, 118(Pt A), 957-964.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.162] [PMID: 29964116]
[40]
Guilherme, M.R.; Aouada, F.A.; Fajardo, A.R.; Martins, A.F.; Paulino, A.T.; Davi, M.F.; Rubira, A.F.; Muniz, E.C. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J., 2015, 72, 365.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.04.017]
[41]
Dalsin, S.J.; Hillmyer, M.A.; Bates, F.S. Molecular weight dependence of zero-shear viscosity in atactic polypropylene bottlebrush polymers. ACS Macro Lett., 2014, 3(5), 423.
[http://dx.doi.org/10.1021/mz500082h]
[42]
Albuquerque, P.; Coelho, L.C.; Teixeira, J.A.; Carneiro-da-Cunha, M.G. Approaches in biotechnological applications of natural polymers. AIMS Mol. Sci., 2016, 3(3), 386-425.
[http://dx.doi.org/10.3934/molsci.2016.3.386]
[43]
Mondal, M.; Hosain, M. Biodegradable surfactant from natural starch for the reduction of environmental pollution and safety for water living organism. Int. J. Innov. Res. Adv. Eng., 2014, 1(8), 424.
[44]
Gorelik, E.; Galili, U.; Raz, A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev., 2001, 20(3-4), 245-277.
[http://dx.doi.org/10.1023/A:1015535427597] [PMID: 12085965]
[45]
Mody, R.; Joshi, S.; Chaney, W. Use of lectins as diagnostic and therapeutic tools for cancer. J. Pharmacol. Toxicol. Methods, 1995, 33(1), 1-10.
[http://dx.doi.org/10.1016/1056-8719(94)00052-6] [PMID: 7727802]
[46]
Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem., 2011, 113(3), 236-247.
[http://dx.doi.org/10.1016/j.acthis.2010.02.004] [PMID: 20199800]
[47]
Liu, J.; Willför, S.; Xu, C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioact. Carbohyd. Diet. Fibre, 2015, 5(1), 31.
[http://dx.doi.org/10.1016/j.bcdf.2014.12.001]
[48]
Bimalendu, R. Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology, 2008, 1, 1.
[49]
Honda-Okubo, Y.; Barnard, D.; Ong, C.H.; Peng, B.H.; Tseng, C.T.K.; Petrovsky, N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J. Virol., 2015, 89(6), 2995-3007.
[http://dx.doi.org/10.1128/JVI.02980-14] [PMID: 25520500]
[50]
van der Meer, F.J.U.M.; de Haan, C.A.M.; Schuurman, N.M.P.; Haijema, B.J.; Peumans, W.J.; Van Damme, E.J.M.; Delputte, P.L.; Balzarini, J.; Egberink, H.F. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Res., 2007, 76(1), 21-29.
[http://dx.doi.org/10.1016/j.antiviral.2007.04.003] [PMID: 17560666]
[51]
Mycroft-West, C.; Su, D.; Elli, S.; Guimond, S.; Miller, G.; Turnbull, J.; Yates, E.; Guerrini, M.; Fernig, D.; Lima, M. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 Receptor Binding Domain undergoes conformational change upon heparin binding. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.29.971093]
[52]
Milewska, A.; Zarebski, M.; Nowak, P.; Stozek, K.; Potempa, J.; Pyrc, K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J. Virol., 2014, 88(22), 13221-13230.
[http://dx.doi.org/10.1128/JVI.02078-14] [PMID: 25187545]
[53]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[54]
Zhang, P.; Wang, J.; Wang, W.; Liu, X.; Liu, H.; Li, X.; Wu, X. Astragalus polysaccharides enhance the immune response to avian infectious bronchitis virus vaccination in chickens. Microb. Pathog., 2017, 111, 81-85.
[http://dx.doi.org/10.1016/j.micpath.2017.08.023] [PMID: 28826771]
[55]
Zhang, P.; Liu, X.; Liu, H.; Wang, W.; Liu, X.; Li, X.; Wu, X. Astragalus polysaccharides inhibit avian infectious bronchitis virus infection by regulating viral replication. Microb. Pathog., 2018, 114, 124-128.
[http://dx.doi.org/10.1016/j.micpath.2017.11.026] [PMID: 29170045]
[56]
Zhao, Y.L.; Wang, J.B.; Shan, L.M.; Jin, C.; Ma, L.; Xiao, X.H. Effect of Radix isatidis polysaccharides on immunological function and expression of immune related cytokines in mice. Chin. J. Integr. Med., 2008, 14(3), 207-211.
[http://dx.doi.org/10.1007/s11655-008-0207-2] [PMID: 18853118]
[57]
Lu, C.; Ma, Y.; Wang, H. Protective effects and mechanism of Astragalus polysaccharides on influenza virus PR8-induced acute lung injury model. Mod. Prev. Med., 2017, 11, 29.
[58]
Jiao, G.; Yu, G.; Wang, W.; Zhao, X.; Zhang, J.; Ewart, S.H. Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities. J. Ocean Univ. China, 2012, 11(2), 205.
[http://dx.doi.org/10.1007/s11802-012-1906-x]
[59]
Zierer, M.S.; Mourão, P.A.S. A wide diversity of sulfated polysaccharides are synthesized by different species of marine sponges. Carbohydr. Res., 2000, 328(2), 209-216.
[http://dx.doi.org/10.1016/S0008-6215(00)00076-8] [PMID: 11028788]
[60]
Neyts, J.; Snoeck, R.; Schols, D.; Balzarini, J.; Esko, J.D.; Van Schepdael, A.; De Clercq, E. Sulfated polymers inhibit the interaction of human cytomegalovirus with cell surface heparan sulfate. Virology, 1992, 189(1), 48-58.
[http://dx.doi.org/10.1016/0042-6822(92)90680-N] [PMID: 1376540]
[61]
Wang, W.; Wang, S.X.; Guan, H.S. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar. Drugs, 2012, 10(12), 2795-2816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[62]
Jiang, Y.; Sheng, P.; Zhang, L. Extraction and ,in vitro anti-newcastle disease virus activity test of polysaccharides from Inonotus obliquus. China Poultry, 2014, 1, 47.
[63]
Wang, Y.; Hu, H.; Wen, Y.; Yi, W.; Liu, C.; Yuan, G.; Zhang, R.; Qiu, H.; Chai, H.; Yue, H. Uterine artery embolization in comprehensive therapy of high-risk cesarean scar pregnancy. Chinese J. Intervent. Imag. Ther., 2016, 13(1), 21.
[64]
Ye, S.M.; Cen, Y.Z.; Zhang, M.Y.; Wang, Y.F. Antiviral activities of polysaccharides from Eucheuma gelatinae and Eucheuma striatum in vitro. Chin J Mar Drugs, 2007, 26, 14.
[65]
Li, P.; Sheng, J.; Liu, Y.; Li, J.; Liu, J.; Wang, F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med. Res. Rev., 2013, 33(3), 665-692.
[http://dx.doi.org/10.1002/med.21263] [PMID: 22495734]
[66]
Lopes, N.; Faccin-Galhardi, L.C.; Espada, S.F.; Pacheco, A.C.; Ricardo, N.M.; Linhares, R.E.; Nozawa, C. Sulfated polysaccharide of Caesalpinia ferrea inhibits herpes simplex virus and poliovirus. Int. J. Biol. Macromol., 2013, 60, 93-99.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.015] [PMID: 23707733]
[67]
Li, Q.; Li, C.; Gou, D.; Guan, H. Research progress of phosphorylated polysaccharides. Chin. Bull. Life Sci., 2013, 3, 262.
[68]
Xiong, W.; Ma, X.; Wu, Y.; Chen, Y.; Zeng, L.; Liu, J.G.; Sun, W.D.; Wang, D.Y.; Hu, Y.L. Determine the structure of phosphorylated modification of icariin and its antiviral activity against duck hepatitis virus A. BMC Vet. Res., 2015, 205, 1.
[69]
Ming, K.; Chen, Y.; Shi, J.; Yang, J.; Yao, F.; Du, H.; Zhang, W.; Bai, J.; Liu, J.; Wang, D.; Hu, Y.; Wu, Y. Effects of Chrysanthemum indicum polysaccharide and its phosphate on anti-duck hepatitis a virus and alleviating hepatic injury. Int. J. Biol. Macromol., 2017, 102, 813-821.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.093] [PMID: 28455254]
[70]
Feng, H.; Fan, J.; Yang, S.; Zhao, X.; Yi, X. Antiviral activity of phosphorylated radix cyathulae officinalis polysaccharide against canine parvovirus in vitro. Int. J. Biol. Macromol., 2017, 99, 511-518.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.085] [PMID: 28238913]
[71]
Zhang, P.; Wang, W.; Li, C.; Guan, H. Advances in antiviral mechanism of carrageenan. Chin. J. Mar. Drugs, 2012, 2, 52.
[72]
Zhang, C.M.; Li, X.F.; Zuo, D.W. Fundamental study on plasma sprayed piezoelectric ceramic coatings. Aviat. Technol., 1999, (4), 25.
[73]
Song, X.; Yin, Z.; Zhao, X.; Cheng, A.; Jia, R.; Yuan, G.; Xu, J.; Fan, Q.; Dai, S.; Lu, H.; Lv, C.; Liang, X.; He, C.; Su, G.; Zhao, L.; Ye, G.; Shi, F. Antiviral activity of sulfated Chuanmingshen violaceum polysaccharide against Newcastle disease virus. J. Gen. Virol., 2013, 94(Pt 10), 2164-2174.
[http://dx.doi.org/10.1099/vir.0.054270-0] [PMID: 23884364]
[74]
Wang, W.; Wu, J.; Zhang, X.; Hao, C.; Zhao, X.; Jiao, G.; Shan, X.; Tai, W.; Yu, G. Inhibition of influenza A virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci. Rep., 2017, 7, 40760.
[http://dx.doi.org/10.1038/srep40760] [PMID: 28094330]
[75]
Wang, Y.; Chen, Y.; Du, H.; Yang, J.; Ming, K.; Song, M.; Liu, J. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp. Biol. Med. (Maywood), 2017, 242(3), 344-353.
[http://dx.doi.org/10.1177/1535370216672750] [PMID: 27703041]
[76]
Xue, H.; Gan, F.; Zhang, Z.; Hu, J.; Chen, X.; Huang, K. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway. Int. J. Biol. Macromol., 2015, 81, 22-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.050] [PMID: 26226456]
[77]
Zhao, C.; Gao, L.; Wang, C.; Liu, B.; Jin, Y.; Xing, Z. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydr. Polym., 2016, 144, 382-389.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.005] [PMID: 27083830]
[78]
Cao, Y.G.; Hao, Y.; Li, Z.H.; Liu, S.T.; Wang, L.X. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus. Biomed. Pharmacother., 2016, 84, 1705-1710.
[http://dx.doi.org/10.1016/j.biopha.2016.10.082] [PMID: 27847204]
[79]
Shahid-Ul-Islam, ; Butola, B.S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol., 2019, 121, 905-912.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.102] [PMID: 30342136]
[80]
Tahmouzi, S.; Ghodsi, M. Optimum extraction of polysaccharides from motherwort leaf and its antioxidant and antimicrobial activities. Carbohydr. Polym., 2014, 112, 396-403.
[http://dx.doi.org/10.1016/j.carbpol.2014.06.024] [PMID: 25129759]
[81]
Krichen, F.; Karoud, W.; Sila, A.; Abdelmalek, B.E.; Ghorbel, R.; Ellouz-Chaabouni, S.; Bougatef, A. Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins. Int. J. Biol. Macromol., 2015, 75, 283-289.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.044] [PMID: 25647621]
[82]
Fakhfakh, N.; Abdelhedi, O.; Jdir, H.; Nasri, M.; Zouari, N. Isolation of polysaccharides from Malva aegyptiaca and evaluation of their antioxidant and antibacterial properties. Int. J. Biol. Macromol., 2017, 105(Pt 2), 1519-1525.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.105] [PMID: 28732725]
[83]
Li, Y.T.; Chen, B.J.; Wu, W.D.; Ge, K.; Wei, X.Y.; Kong, L.M.; Xie, Y.Y.; Gu, J.P.; Zhang, J.C.; Zhou, T. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme. Int. J. Biol. Macromol., 2018, 118(Pt B), 1550-1557.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.196] [PMID: 29981327]
[84]
Shao, L.L.; Xu, J.; Shi, M.J.; Wang, X.L.; Li, Y.T.; Kong, L.M.; Hider, R.C.; Zhou, T. Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chem., 2017, 237, 481-487.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.119] [PMID: 28764023]
[85]
Heydarian, M.; Jooyandeh, H.; Nasehi, B.; Noshad, M. Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. Int. J. Biol. Macromol., 2017, 104(Pt A), 287-293.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.049] [PMID: 28602988]
[86]
Mazarei, F.; Jooyandeh, H.; Noshad, M.; Hojjati, M. Polysaccharide of caper (Capparis spinosa L.) Leaf: Extraction optimization, antioxidant potential and antimicrobial activity. Int. J. Biol. Macromol., 2017, 95, 224-231.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.049] [PMID: 27865953]
[87]
Bouaziz, F.; Helbert, C.B.; Romdhane, M.B.; Koubaa, M.; Bhiri, F.; Kallel, F.; Chaari, F.; Driss, D.; Buon, L.; Chaabouni, S.E. Structural data and biological properties of almond gum oligosaccharide: application to beef meat preservation. Int. J. Biol. Macromol., 2015, 72, 472-479.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.044] [PMID: 25195541]
[88]
Li, P.J.; Xia, J.L.; Nie, Z.Y.; Shan, Y. Pectic oligosaccharides hydrolyzed from orange peel by fungal multi-enzyme complexes and their prebiotic and antibacterial potentials. Lebensm. Wiss. Technol., 2016, 69, 203.
[http://dx.doi.org/10.1016/j.lwt.2016.01.042]
[89]
Yue, L.; Sun, D.; Mahmood Khan, I.; Liu, X.; Jiang, Q.; Xia, W. Cinnamyl alcohol modified chitosan oligosaccharide for enhancing antimicrobial activity. Food Chem., 2020, 309, 125513.
[http://dx.doi.org/10.1016/j.foodchem.2019.125513] [PMID: 31683147]
[90]
Mirzadeh, M.; Arianejad, M.R.; Khedmat, L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr. Polym., 2020, 229, 115421.
[http://dx.doi.org/10.1016/j.carbpol.2019.115421] [PMID: 31826454]
[91]
Sun, L.; Wang, C.; Shi, Q.; Ma, C. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int. J. Biol. Macromol., 2009, 45(1), 42-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.03.013] [PMID: 19447258]
[92]
Tahmouzi, S. Extraction, antioxidant and antilisterial activities of polysaccharides from the flower of viper’s bugloss. Int. J. Biol. Macromol., 2014, 69, 523-531.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.008] [PMID: 24950309]
[93]
Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.; Lembo, D.; Cravotto, G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol., 2019, 124, 131-137.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.201] [PMID: 30471396]
[94]
Zhang, Y.; Wu, Y.T.; Zheng, W.; Han, X.X.; Jiang, Y.H.; Hu, P.L.; Tang, Z.X.; Shi, L.E. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. J. Funct. Foods, 2017, 38, 273.
[http://dx.doi.org/10.1016/j.jff.2017.09.047]
[95]
Zhao, J.L.; Zhang, M.; Zhou, H.L. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules, 2019, 24(8), E1605.
[http://dx.doi.org/10.3390/molecules24081605] [PMID: 31018583]
[96]
Gharibzahedi, S.M.T.; Mohammadnabi, S. Characterizing the novel surfactant-stabilized nanoemulsions of stinging nettle essential oil: Thermal behaviour, storage stability, antimicrobial activity and bioaccessibility. J. Mol. Liq., 2016, 224, 1332.
[http://dx.doi.org/10.1016/j.molliq.2016.10.120]
[97]
Rahbarimanesh, A.; Mojtahedi, S.Y.; Sadeghi, P.; Ghodsi, M.; Kianfar, S.; Khedmat, L.; Siyahkali, S.J.M.; Yazdi, M.K.; Izadi, A. Antimicrobial stewardship program (ASP): an effective implementing technique for the therapy efficiency of meropenem and vancomycin antibiotics in Iranian pediatric patients. Ann. Clin. Microbiol. Antimicrob., 2019, 18(1), 6.
[http://dx.doi.org/10.1186/s12941-019-0305-1] [PMID: 30696456]
[98]
Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of intervention, treatment, and antibiotic resistance of biofilm- forming microorganisms. Heliyon, 2019, 5(8), e02192.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02192] [PMID: 31463386]
[99]
Oliveira, W.F.; Silva, P.M.S.; Silva, R.C.S.; Silva, G.M.M.; Machado, G.; Coelho, L.C.B.B.; Correia, M.T.S. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect., 2018, 98(2), 111-117.
[http://dx.doi.org/10.1016/j.jhin.2017.11.008] [PMID: 29175074]
[100]
Tong, L.; Jiao, R.; Zhang, X.; Ou, D.; Wang, Y.; Zhang, J.; Wu, Q.; Ye, Y. Inhibitory effects of chitosan on Cronobacter malonaticus cells and biofilm formation. Lebensm. Wiss. Technol., 2018, 97, 302.
[http://dx.doi.org/10.1016/j.lwt.2018.07.008]
[101]
Felipe, V.; Breser, M.L.; Bohl, L.P.; Rodrigues da Silva, E.; Morgante, C.A.; Correa, S.G.; Porporatto, C. Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. Int. J. Biol. Macromol., 2019, 126, 60-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.159] [PMID: 30586583]
[102]
Garcia, L.G.S.; Guedes, G.M.M.; da Silva, M.L.Q.; Castelo-Branco, D.S.C.M.; Sidrim, J.J.C.; Cordeiro, R.A.; Rocha, M.F.G.; Vieira, R.S.; Brilhante, R.S.N. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm. Carbohydr. Polym., 2018, 195, 662-669.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.091] [PMID: 29805025]
[103]
Jung, J.; Wen, J.; Sun, Y. Amphiphilic quaternary ammonium chitosans self-assemble onto bacterial and fungal biofilms and kill adherent microorganisms. Colloids Surf. B Biointerfaces, 2019, 174, 1-8.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.078] [PMID: 30399475]
[104]
Tan, Y.; Leonhard, M.; Moser, D.; Schneider-Stickler, B. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species. Carbohydr. Polym., 2016, 149, 77-82.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.101] [PMID: 27261732]
[105]
Tan, Y.; Leonhard, M.; Ma, S.; Moser, D.; Schneider-Stickler, B. Efficacy of carboxymethyl chitosan against Candida tropicalis and Staphylococcus epidermidis monomicrobial and polymicrobial biofilms. Int. J. Biol. Macromol., 2018, 110, 150-156.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.094] [PMID: 28834707]
[106]
Liu, Y.; Jiang, Y.; Zhu, J.; Huang, J.; Zhang, H. Inhibition of bacterial adhesion and biofilm formation of sulfonated chitosan against Pseudomonas aeruginosa. Carbohydr. Polym., 2019, 206, 412-419.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.015] [PMID: 30553340]
[107]
Ackerman, D.L.; Doster, R.S.; Weitkamp, J.H.; Aronoff, D.M.; Gaddy, J.A.; Townsend, S.D. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against group b streptococcus. ACS Infect. Dis., 2017, 3(8), 595-605.
[http://dx.doi.org/10.1021/acsinfecdis.7b00064] [PMID: 28570820]
[108]
Ackerman, D.L.; Craft, K.M.; Doster, R.S.; Weitkamp, J.H.; Aronoff, D.M.; Gaddy, J.A.; Townsend, S.D. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect. Dis., 2018, 4(3), 315-324.
[http://dx.doi.org/10.1021/acsinfecdis.7b00183] [PMID: 29198102]
[109]
Craft, K.M.; Thomas, H.C.; Townsend, S.D. Interrogation of human milk oligosaccharide fucosylation patterns for antimicrobial and antibiofilm trends in Group B streptococcus. ACS Infect. Dis., 2018, 4(12), 1755-1765.
[http://dx.doi.org/10.1021/acsinfecdis.8b00234] [PMID: 30350565]
[110]
Scalabrini, M.; Hamon, J.; Linossier, I.; Ferrières, V.; Réhel, K. Pseudomonas aeruginosa resistance of monosaccharide-functionalized glass surfaces. Colloids Surf. B Biointerfaces, 2019, 183, 110383.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110383] [PMID: 31450058]
[111]
Xu, W.; Fang, S.; Wang, Y.; Zhang, T.; Hu, S. Molecular mechanisms associated with macrophage activation by Rhizoma Atractylodis Macrocephalae polysaccharides. Int. J. Biol. Macromol., 2020, 147, 616-628.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.081] [PMID: 31931060]
[112]
Xie, J.Y.; Di, H.Y.; Li, H.; Cheng, X.Q.; Zhang, Y.Y.; Chen, D.F. Bupleurum chinense DC polysaccharides attenuates lipopolysaccharide-induced acute lung injury in mice. Phytomedicine, 2012, 19(2), 130-137.
[http://dx.doi.org/10.1016/j.phymed.2011.08.057] [PMID: 22112722]
[113]
Zhai, X.; Zhu, C.; Zhang, Y.; Sun, J.; Alim, A.; Yang, X. Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel. Carbohydr. Polym., 2018, 202, 461-469.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.013] [PMID: 30287023]
[114]
Chen, J.; Lu, J.; Wang, B.; Zhang, X.; Huang, Q.; Yuan, J.; Hao, H.; Chen, X.; Zhi, J.; Zhao, L.; Chu, H. Polysaccharides from Dendrobium officinale inhibit bleomycin-induced pulmonary fibrosis via the TGFβ1-Smad2/3 axis. Int. J. Biol. Macromol., 2018, 118(Pt B), 2163-2175.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.056] [PMID: 30030077]
[115]
He, T.B.; Huang, Y.P.; Yang, L.; Liu, T.T.; Gong, W.Y.; Wang, X.J.; Sheng, J.; Hu, J.M. Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol., 2016, 83, 34-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.038] [PMID: 26592697]
[116]
Khan, I.; Huang, G.; Li, X.; Leong, W.; Xia, W.; Hsiao, W.L.W. Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. J. Funct. Foods, 2018, 41, 191.
[http://dx.doi.org/10.1016/j.jff.2017.12.046]
[117]
Wang, N.; Wang, X.; He, M.; Zheng, W.; Qi, D.; Zhang, Y.; Han, C. Ginseng polysaccharides: A potential neuroprotective agent. J. Ginseng Res., 2020, 45(2), 211-217.
[http://dx.doi.org/10.1016/j.jgr.2020.09.002] [PMID: 33841001]
[118]
Cao, P.; Wu, S.; Wu, T.; Deng, Y.; Zhang, Q.; Wang, K.; Zhang, Y. The important role of polysaccharides from a traditional chinese medicine-lung cleansing and detoxifying decoction against the COVID-19 pandemic. Carbohydr. Polym., 2020, 240, 116346.
[http://dx.doi.org/10.1016/j.carbpol.2020.116346] [PMID: 32475597]
[119]
Wang, Y.F.; Yang, X.F.; Cheng, B.; Mei, C.L.; Li, Q.X.; Xiao, H.; Zeng, Q.T.; Liao, Y.H.; Liu, K. Protective effect of Astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cells exposed to tumor necrosis factor-alpha. Phytother. Res., 2010, 24(3), 393-398.
[http://dx.doi.org/10.1002/ptr.2958] [PMID: 19653192]