Progesterone Receptor Membrane Component 1 and its Accomplice: Emerging Therapeutic Targets in Lung Cancer

Page: [601 - 611] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Progesterone receptor membrane component 1 (PGRMC1) is a trans-membrane evolutionarily conserved protein with a cytochrome b5 like heme/steroid binding domain. PGRMC1 clinical levels are strongly suggested to correlate with poor patient survival and lung cancer prognosis. PGRMC1 has been reported to possess pleiotropic functions, such as participating in cellular and membrane trafficking, steroid hormone signaling, cholesterol metabolism and steroidogenesis, glycolysis and mitochondrial energy metabolism, heme transport and homeostasis, neuronal movement and synaptic function, autophagy, anti-apoptosis, stem cell survival and the list is still expanding. PGRMC1 mediates its pleiotropic functions through its ability to interact with multiple binding partners, such as epidermal growth factor receptor (EGFR), sterol regulatory element binding protein cleavage activating protein (SCAP), insulin induced gene-1 protein (Insig-1), heme binding proteins (hepcidin, ferrochelatase and cyp450 members), plasminogen activator inhibitor 1 RNA binding protein (PAIR-BP1). In this review, we provide a comprehensive overview of PGRMC1 and its associated pleiotropic functions that are indispensable for lung cancer promotion and progression, suggesting it as a prospective therapeutic target for intervention. Notably, we have compiled and reported various preclinical studies wherein prospective agonists and antagonists had been tested against PGRMC1 expressing cancer cell lines, suggesting it as a prospective therapeutic target for cancer intervention.

Keywords: PGRMC1, heme, cancer, binding partners, chemoresistance, tumorigenesis, downstream mediators.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Zhao, Y.; Ruan, X. Identification of PGRMC1 as a candidate oncogene for head and neck cancers and its involvement in metabolic activities. Front. Bioeng. Biotechnol., 2020, 7, 438.
[http://dx.doi.org/10.3389/fbioe.2019.00438] [PMID: 31970154]
[3]
Ryu, C.S.; Klein, K.; Zanger, U.M. Membrane associated progesterone receptors: Promiscuous proteins with pleiotropic functions - Focus on interactions with cytochromes P450. Front. Pharmacol., 2017, 8, 159.
[http://dx.doi.org/10.3389/fphar.2017.00159] [PMID: 28396637]
[4]
Crudden, G.; Loesel, R.; Craven, R.J. Overexpression of the cytochrome p450 activator hpr6 (heme-1 domain protein/human progesterone receptor) in tumors. Tumour Biol., 2005, 26(3), 142-146.
[http://dx.doi.org/10.1159/000086485] [PMID: 15970648]
[5]
Cahill, M.A.; Medlock, A.E. Thoughts on interactions between PGRMC1 and diverse attested and potential hydrophobic ligands. J. Steroid Biochem. Mol. Biol., 2017, 171, 11-33.
[http://dx.doi.org/10.1016/j.jsbmb.2016.12.020] [PMID: 28104494]
[6]
Kimura, I.; Nakayama, Y.; Konishi, M.; Terasawa, K.; Ohta, M.; Itoh, N.; Fujimoto, M. Functions of MAPR (membrane-associated progesterone receptor) family members as heme/steroid-binding proteins. Curr. Protein Pept. Sci., 2012, 13(7), 687-696.
[http://dx.doi.org/10.2174/138920312804142110] [PMID: 23228349]
[7]
Gerdes, D.; Wehling, M.; Leube, B.; Falkenstein, E. Cloning and tissue expression of two putative steroid membrane receptors. Biol. Chem., 1998, 379(7), 907-911.
[PMID: 9705155]
[8]
Piel, R.B., III; Shiferaw, M.T.; Vashisht, A.A.; Marcero, J.R.; Praissman, J.L.; Phillips, J.D.; Wohlschlegel, J.A.; Medlock, A.E. A novel role for progesterone receptor membrane component 1 (PGRMC1): A partner and regulator of ferrochelatase. Biochemistry, 2016, 55(37), 5204-5217.
[http://dx.doi.org/10.1021/acs.biochem.6b00756] [PMID: 27599036]
[9]
Nölte, I.; Jeckel, D.; Wieland, F.T.; Sohn, K. Localization and topology of ratp28, a member of a novel family of putative steroid-binding proteins. Biochim. Biophys. Acta, 2000, 1543(1), 123-130.
[http://dx.doi.org/10.1016/S0167-4838(00)00188-6] [PMID: 11087948]
[10]
Peluso, J.J.; Liu, X.; Saunders, M.M.; Claffey, K.P.; Phoenix, K. Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. J. Clin. Endocrinol. Metab., 2008, 93(5), 1592-1599.
[http://dx.doi.org/10.1210/jc.2007-2771] [PMID: 18319313]
[11]
Meyer, C.; Schmid, R.; Scriba, P.C.; Wehling, M. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem., 1996, 239(3), 726-731.
[http://dx.doi.org/10.1111/j.1432-1033.1996.0726u.x] [PMID: 8774719]
[12]
Cahill, M.A.; Jazayeri, J.A.; Catalano, S.M.; Toyokuni, S.; Kovacevic, Z.; Richardson, D.R. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim. Biophys. Acta, 2016, 1866(2), 339-349.
[PMID: 27452206]
[13]
Kabe, Y.; Nakane, T.; Koike, I.; Yamamoto, T.; Sugiura, Y.; Harada, E.; Sugase, K.; Shimamura, T.; Ohmura, M.; Muraoka, K.; Yamamoto, A.; Uchida, T.; Iwata, S.; Yamaguchi, Y.; Krayukhina, E.; Noda, M.; Handa, H.; Ishimori, K.; Uchiyama, S.; Kobayashi, T.; Suematsu, M. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat. Commun., 2016, 7(1), 11030.
[http://dx.doi.org/10.1038/ncomms11030] [PMID: 26988023]
[14]
Hehenberger, E.; Eitel, M.; Fortunato, S.A.V.; Miller, D.J.; Keeling, P.J.; Cahill, M.A. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol. Phylogenet. Evol., 2020, 148(106814), 106814.
[http://dx.doi.org/10.1016/j.ympev.2020.106814] [PMID: 32278076]
[15]
Thejer, B.M.; Adhikary, P.P.; Kaur, A.; Teakel, S.L.; Van Oosterum, A.; Seth, I.; Pajic, M.; Hannan, K.M.; Pavy, M.; Poh, P.; Jazayeri, J.A.; Zaw, T.; Pascovici, D.; Ludescher, M.; Pawlak, M.; Cassano, J.C.; Turnbull, L.; Jazayeri, M.; James, A.C.; Coorey, C.P.; Roberts, T.L.; Kinder, S.J.; Hannan, R.D.; Patrick, E.; Molloy, M.P.; New, E.J.; Fehm, T.N.; Neubauer, H.; Goldys, E.M.; Weston, L.A.; Cahill, M.A. PGRMC1 phosphorylation affects cell shape, motility, glycolysis, mitochondrial form and function, and tumor growth. BMC Mol. Cell Biol., 2020, 21(1), 24.
[http://dx.doi.org/10.1186/s12860-020-00256-3] [PMID: 32245408]
[16]
Mir, S.U.R.; Schwarze, S.R.; Jin, L.; Zhang, J.; Friend, W.; Miriyala, S.; St Clair, D.; Craven, R.J. Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy. Autophagy, 2013, 9(10), 1566-1578.
[http://dx.doi.org/10.4161/auto.25889] [PMID: 24113030]
[17]
Cahill, M.A.; Jazayeri, J.A.; Kovacevic, Z.; Richardson, D.R. PGRMC1 regulation by phosphorylation: Potential new insights in controlling biological activity. Oncotarget, 2016, 7(32), 50822-50827.
[http://dx.doi.org/10.18632/oncotarget.10691] [PMID: 27448967]
[18]
Kabe, Y.; Handa, H.; Suematsu, M. Function and structural regulation of the carbon monoxide (CO)-responsive membrane protein PGRMC1. J. Clin. Biochem. Nutr., 2018, 63(1), 12-17.
[http://dx.doi.org/10.3164/jcbn.17-132] [PMID: 30087538]
[19]
Swenson, S.A.; Moore, C.M.; Marcero, J.R.; Medlock, A.E.; Reddi, A.R.; Khalimonchuk, O. From synthesis to utilization: The ins and outs of mitochondrial heme. Cells, 2020, 9(3), 579.
[http://dx.doi.org/10.3390/cells9030579] [PMID: 32121449]
[20]
Cahill, M.A.; Neubauer, H. PGRMC proteins are coming of age: A special issue on the role of PGRMC1 and PGRMC2 in metabolism and cancer biology. Cancers (Basel), 2021, 13(3), 512.
[http://dx.doi.org/10.3390/cancers13030512] [PMID: 33572771]
[21]
Cahill, M.A. The evolutionary appearance of signaling motifs in PGRMC1. Biosci. Trends, 2017, 11(2), 179-192.
[http://dx.doi.org/10.5582/bst.2017.01009] [PMID: 28250339]
[22]
Hampton, K.K.; Stewart, R.; Napier, D.; Claudio, P.P.; Craven, R.J. PGRMC1 elevation in multiple cancers and essential role in stem cell survival. Adv. Lung Cancer (Irvine), 2015, 4(3), 37-51.
[http://dx.doi.org/10.4236/alc.2015.43006] [PMID: 27867772]
[23]
Asperger, H.; Stamm, N.; Gierke, B.; Pawlak, M.; Hofmann, U.; Zanger, U.M.; Marton, A.; Katona, R.L.; Buhala, A.; Vizler, C.; Cieslik, J.P.; Ruckhäberle, E.; Niederacher, D.; Fehm, T.; Neubauer, H.; Ludescher, M. Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res., 2020, 22(1), 75.
[http://dx.doi.org/10.1186/s13058-020-01312-8] [PMID: 32660617]
[24]
Suchanek, M.; Radzikowska, A.; Thiele, C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods, 2005, 2(4), 261-267.
[http://dx.doi.org/10.1038/nmeth752] [PMID: 15782218]
[25]
Hughes, A.L.; Powell, D.W.; Bard, M.; Eckstein, J.; Barbuch, R.; Link, A.J.; Espenshade, P.J. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell Metab., 2007, 5(2), 143-149.
[http://dx.doi.org/10.1016/j.cmet.2006.12.009] [PMID: 17276356]
[26]
Thejer, B.M.; Adhikary, P.P.; Teakel, S.L.; Fang, J.; Weston, P.A.; Gurusinghe, S.; Anwer, A.G.; Gosnell, M.; Jazayeri, J.A.; Ludescher, M.; Gray, L.A.; Pawlak, M.; Wallace, R.H.; Pant, S.D.; Wong, M.; Fischer, T.; New, E.J.; Fehm, T.N.; Neubauer, H.; Goldys, E.M.; Quinn, J.C.; Weston, L.A.; Cahill, M.A. PGRMC1 effects on metabolism, genomic mutation and CpG methylation imply crucial roles in animal biology and disease. BMC Mol. Cell Biol., 2020, 21(1), 26.
[http://dx.doi.org/10.1186/s12860-020-00268-z] [PMID: 32293262]
[27]
Sabbir, M.G. Progesterone induced Warburg effect in HEK293 cells is associated with post-translational modifications and proteasomal degradation of progesterone receptor membrane component 1. J. Steroid Biochem. Mol. Biol., 2019, 191(105376), 105376.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105376] [PMID: 31067491]
[28]
He, Y.; Zhang, P.; Zhang, D.; Xia, Z.; Wang, X.; Deng, S.; Li, H.; Zhu, H.; Xu, N.; Liang, S. Combined assessment of low PGRMC1/positive ATP1A1 levels has enhanced prognostic value for renal cell carcinoma. Oncol. Rep., 2018, 40(3), 1467-1476.
[http://dx.doi.org/10.3892/or.2018.6541] [PMID: 30015972]
[29]
Kim, J.Y.; Kim, S.Y.; Choi, H.S.; Kim, M.K.; Lee, H.M.; Jang, Y.J.; Ryu, C.J. Progesterone receptor membrane component 1 suppresses the p53 and Wnt/β-catenin pathways to promote human pluripotent stem cell self-renewal. Sci. Rep., 2018, 8(1), 3048.
[http://dx.doi.org/10.1038/s41598-018-21322-z] [PMID: 29445107]
[30]
Neubauer, H.; Clare, S.E.; Wozny, W.; Schwall, G.P.; Poznanovic, S.; Stegmann, W.; Vogel, U.; Sotlar, K.; Wallwiener, D.; Kurek, R.; Fehm, T.; Cahill, M.A. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res., 2008, 10(5), R85.
[http://dx.doi.org/10.1186/bcr2155] [PMID: 18922159]
[31]
Willibald, M.; Bayer, G.; Stahlhut, V.; Poschmann, G.; Stühler, K.; Gierke, B.; Pawlak, M.; Seeger, H.; Mueck, A.O.; Niederacher, D.; Fehm, T.; Neubauer, H. Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget, 2017, 8(42), 72480-72493.
[http://dx.doi.org/10.18632/oncotarget.19819] [PMID: 29069804]
[32]
Cahill, M.A. Progesterone receptor membrane component 1: An integrative review. J. Steroid Biochem. Mol. Biol., 2007, 105(1-5), 16-36.
[http://dx.doi.org/10.1016/j.jsbmb.2007.02.002] [PMID: 17583495]
[33]
Allen, T.K.; Feng, L.; Grotegut, C.A.; Murtha, A.P. Progesterone receptor membrane component 1 as the mediator of the inhibitory effect of progestins on cytokine-induced matrix metalloproteinase 9 activity in vitro. Reprod. Sci., 2014, 21(2), 260-268.
[http://dx.doi.org/10.1177/1933719113493514] [PMID: 23813454]
[34]
Wu, X.J.; Thomas, P.; Zhu, Y. Pgrmc1 knockout impairs oocyte maturation in zebrafish. Front. Endocrinol. (Lausanne), 2018, 9, 560.
[http://dx.doi.org/10.3389/fendo.2018.00560] [PMID: 30319543]
[35]
Zhang, M.; Robitaille, M.; Showalter, A.D.; Huang, X.; Liu, Y.; Bhattacharjee, A.; Willard, F.S.; Han, J.; Froese, S.; Wei, L.; Gaisano, H.Y.; Angers, S.; Sloop, K.W.; Dai, F.F.; Wheeler, M.B. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells. Mol. Cell. Proteomics, 2014, 13(11), 3049-3062.
[http://dx.doi.org/10.1074/mcp.M114.040196] [PMID: 25044020]
[36]
Lee, S.R.; Kwon, S.W.; Kaya, P.; Lee, Y.H.; Lee, J.G.; Kim, G.; Lee, G.S.; Baek, I.J.; Hong, E.J. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Sci. Rep., 2018, 8(1), 15711.
[http://dx.doi.org/10.1038/s41598-018-34148-6] [PMID: 30356113]
[37]
Kabe, Y.; Yamamoto, T.; Kajimura, M.; Sugiura, Y.; Koike, I.; Ohmura, M.; Nakamura, T.; Tokumoto, Y.; Tsugawa, H.; Handa, H.; Kobayashi, T.; Suematsu, M. Cystathionine β-synthase and PGRMC1 as CO sensors. Free Radic. Biol. Med., 2016, 99, 333-344.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.08.025] [PMID: 27565814]
[38]
Li, X.; Rhee, D.K.; Malhotra, R.; Mayeur, C.; Hurst, L.A.; Ager, E.; Shelton, G.; Kramer, Y.; McCulloh, D.; Keefe, D.; Bloch, K.D.; Bloch, D.B.; Peterson, R.T. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J. Clin. Invest., 2016, 126(1), 389-401.
[http://dx.doi.org/10.1172/JCI83831] [PMID: 26657863]
[39]
Rohe, H.J.; Ahmed, I.S.; Twist, K.E.; Craven, R.J. PGRMC1 (progesterone receptor membrane component 1): A targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol. Ther., 2009, 121(1), 14-19.
[http://dx.doi.org/10.1016/j.pharmthera.2008.09.006] [PMID: 18992768]
[40]
Ahmed, I.S.; Rohe, H.J.; Twist, K.E.; Craven, R.J. Pgrmc1 (progesterone receptor membrane component 1) associates with epidermal growth factor receptor and regulates erlotinib sensitivity. J. Biol. Chem., 2010, 285(32), 24775-24782.
[http://dx.doi.org/10.1074/jbc.M110.134585] [PMID: 20538600]
[41]
Ahmed, I.S.; Rohe, H.J.; Twist, K.E.; Mattingly, M.N.; Craven, R.J. Progesterone receptor membrane component 1 (Pgrmc1): A heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule. J. Pharmacol. Exp. Ther., 2010, 333(2), 564-573.
[http://dx.doi.org/10.1124/jpet.109.164210] [PMID: 20164297]
[42]
Lin, Y.; Higashisaka, K.; Shintani, T.; Maki, A.; Hanamuro, S.; Haga, Y.; Maeda, S.; Tsujino, H.; Nagano, K.; Fujio, Y.; Tsutsumi, Y. Progesterone receptor membrane component 1 leads to erlotinib resistance, initiating crosstalk of Wnt/β-catenin and NF-κB pathways, in lung adenocarcinoma cells. Sci. Rep., 2020, 10(1), 4748.
[http://dx.doi.org/10.1038/s41598-020-61727-3] [PMID: 32179851]
[43]
Lin, C-C.; Chen, J-T.; Lin, M-W.; Chan, C-H.; Wen, Y-F.; Wu, S-B.; Chung, T.W.; Lyu, K.W.; Chou, H.C.; Chan, H.L. Identification of protein expression alterations in gefitinib-resistant human lung adenocarcinoma: PCNT and mPR play key roles in the development of gefitinib-associated resistance. Toxicol. Appl. Pharmacol., 2015, 288(3), 359-373.
[http://dx.doi.org/10.1016/j.taap.2015.08.008] [PMID: 26298006]
[44]
Peluso, J.J.; Romak, J.; Liu, X. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone’s antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology, 2008, 149(2), 534-543.
[http://dx.doi.org/10.1210/en.2007-1050] [PMID: 17991724]
[45]
Kaluka, D.; Batabyal, D.; Chiang, B-Y.; Poulos, T.L.; Yeh, S-R. Spectroscopic and mutagenesis studies of human PGRMC1. Biochemistry, 2015, 54(8), 1638-1647.
[http://dx.doi.org/10.1021/bi501177e] [PMID: 25675345]
[46]
Teakel, S.L.; Ludescher, M.; Thejer, B.M.; Poschmann, G.; Forwood, J.K.; Neubauer, H.; Cahill, M.A. Protein complexes including PGRMC1 and actin-associated proteins are disrupted by AG-205. Biochem. Biophys. Res. Commun., 2020, 524(1), 64-69.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.108] [PMID: 31980178]
[47]
Selmin, O.; Lucier, G.W.; Clark, G.C.; Tritscher, A.M.; Vanden Heuvel, J.P.; Gastel, J.A.; Walker, N.J.; Sutter, T.R.; Bell, D.A. Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Carcinogenesis, 1996, 17(12), 2609-2615.
[http://dx.doi.org/10.1093/carcin/17.12.2609] [PMID: 9006096]
[48]
Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villén, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of hela cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(33), 12130-12135.
[http://dx.doi.org/10.1073/pnas.0404720101] [PMID: 15302935]
[49]
Peluso, J.J. Progesterone receptor membrane component 1 and its role in ovarian follicle growth. Front. Neurosci., 2013, 7, 99.
[http://dx.doi.org/10.3389/fnins.2013.00099] [PMID: 23781168]
[50]
Xu, J.; Zeng, C.; Chu, W.; Pan, F.; Rothfuss, J.M.; Zhang, F.; Tu, Z.; Zhou, D.; Zeng, D.; Vangveravong, S.; Johnston, F.; Spitzer, D.; Chang, K.C.; Hotchkiss, R.S.; Hawkins, W.G.; Wheeler, K.T.; Mach, R.H. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat. Commun., 2011, 2(1), 380.
[http://dx.doi.org/10.1038/ncomms1386] [PMID: 21730960]
[51]
Neubauer, H.; Yang, Y.; Seeger, H.; Fehm, T.; Cahill, M.A.; Tong, X.; Ruan, X.; Mueck, A.O. The presence of a membrane-bound progesterone receptor sensitizes the estradiol-induced effect on the proliferation of human breast cancer cells. Menopause, 2011, 18(8), 845-850.
[http://dx.doi.org/10.1097/gme.0b013e31820e5ac5] [PMID: 21532513]
[52]
Mir, S.U.R.; Ahmed, I.S.A.; Arnold, S.; Craven, R.J. Elevated progesterone receptor membrane component 1/sigma-2 receptor levels in lung tumors and plasma from lung cancer patients. Int. J. Cancer, 2012, 131(2), E1-E9.
[http://dx.doi.org/10.1002/ijc.26432] [PMID: 21918976]
[53]
Ruan, X.; Gu, M.; Cai, G.; Zhao, Y.; Wang, L.; Li, X.; Mueck, A.O. Progestogens and PGRMC1-dependent breast cancer tumor growth: An in vitro and xenograft study. Maturitas, 2019, 123, 1-8.
[http://dx.doi.org/10.1016/j.maturitas.2019.01.015] [PMID: 31027671]
[54]
Neubauer, H.; Ruan, X.; Schneck, H.; Seeger, H.; Cahill, M.A.; Liang, Y.; Mafuvadze, B.; Hyder, S.M.; Fehm, T.; Mueck, A.O. Overexpression of progesterone receptor membrane component 1: Possible mechanism for increased breast cancer risk with norethisterone in hormone therapy. Menopause, 2013, 20(5), 504-510.
[http://dx.doi.org/10.1097/gme.0b013e3182755c97] [PMID: 23615641]
[55]
Zhu, X.; Ji, M.; Han, Y.; Guo, Y.; Zhu, W.; Gao, F.; Yang, X.; Zhang, C. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Int. J. Oncol., 2017, 50(3), 835-846.
[http://dx.doi.org/10.3892/ijo.2017.3873] [PMID: 28197632]
[56]
Zeng, C.; Weng, C-C.; Schneider, M.E., Jr; Puentes, L.; Riad, A.; Xu, K.; Makvandi, M.; Jin, L.; Hawkins, W.G.; Mach, R.H. TMEM97 and PGRMC1 do not mediate sigma-2 ligand-induced cell death. Cell Death Discov., 2019, 5, 58.
[http://dx.doi.org/10.1038/s41420-019-0141-2] [PMID: 30701090]
[57]
Tong, H.; Feng, H.; Hu, X.; Wang, M.F.; Song, Y.F.; Wen, X.L.; Li, Y.R.; Wan, X.P. Identification of interleukin-9 producing immune cells in endometrial carcinoma and establishment of a prognostic nomogram. Front. Immunol., 2020, 11, 544248.
[http://dx.doi.org/10.3389/fimmu.2020.544248] [PMID: 33329510]
[58]
Chen, W.S.; Chen, P.L.; Li, J.; Lind, A.C.; Lu, D. Lipid synthesis and processing proteins ABHD5, PGRMC1 and squalene synthase can serve as novel immunohistochemical markers for sebaceous neoplasms and differentiate sebaceous carcinoma from sebaceoma and basal cell carcinoma with clear cell features. J. Cutan. Pathol., 2013, 40(7), 631-638.
[http://dx.doi.org/10.1111/cup.12147] [PMID: 23557589]
[59]
Thejer, B.M.; Adhikary, P.P.; Teakel, S.L.; Fang, J.; Weston, P.A.; Gurusinghe, S.; Anwer, A.G.; Gosnell, M.; Jazayeri, J.A.; Ludescher, M.; Gray, L.A. PGRMC1 phosphorylation and cell plasticity 2: Genomic integrity and CpG methylation. bioRxiv, 2019, 2019, 737783.
[http://dx.doi.org/10.1101/737783]