Theranostic Applications of Nanomaterials in Alzheimer’s Disease: A Multifunctional Approach

Page: [116 - 132] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

The blood-brain barrier (BBB) prevents the transfer of many therapeutic drugs across the brain. Therefore, the leading treatment strategies of Alzheimer’s disease (AD) are often unsuccessful. Another challenge is to achieve specific targetability across BBB and diagnosis. Herein, theranostic-based strategies are emerging in order to combine therapeutic, targeting, and diagnostic capabilities. Recent nanotechnological advancements enable a common platform for the formulation and development of efficient theranostics. This can be attained by engineering some of the properties of nanomaterials, thus enabling them to become efficient and suitable theranostics. In this review, we discuss the various novel approaches of theranostic nanomaterials owing to multimodal functionality across the brain as an effective and probable treatment as well as early (timely) diagnosis of Alzheimer’s disease. In this respect, we conducted a PubMed search to review the latest development in theranostic nanomaterials, especially for Alzheimer’s (major type of dementia) therapy that led us to discuss the present theranostic nanomaterials utilizing drug carriers that include cargo, targeting ligands, and imaging agents for delivery to particular tissues, cells, or subcellular components. Our focus is on strategies for syntheses, but we will also consider the challenges and prospects associated with this evolving technology. The current review includes knowledge of the history, overview of AD, and therapeutics with a future approach of using theranostic nanomaterials as personalized medicines.

Keywords: Theranostics, drug delivery, nanomedicine, Alzheimer’s disease, nanoparticles, diagnostics, brain-targeted nanoparticles.

[1]
RP F. There’s plenty of room at the bottom. Eng Sci 1960; 23(5): 22-36.
[2]
Güven E. Lipid-based nanoparticles in the treatment of erectile dysfunction. Int J Impot Res 2020; 32(6): 578-86.
[http://dx.doi.org/10.1038/s41443-020-0235-7] [PMID: 32005938]
[3]
Cacciatore FA, Brandelli A, Malheiros PDS. Combining natural antimicrobials and nanotechnology for disinfecting food surfaces and control microbial biofilm formation. Crit Rev Food Sci Nutr 2020; 1-12.
[http://dx.doi.org/10.1080/10408398.2020.1806782] [PMID: 32811167]
[4]
Li C, Yan B. Opportunities and challenges of phyto-nanotechnology. Environ Sci Nano 2020; 7: 2863-74.
[http://dx.doi.org/10.1039/D0EN00729C]
[5]
Mamun MAA, Yuce MR. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv Funct Mater 2020; 30: 2005703.
[http://dx.doi.org/10.1002/adfm.202005703]
[6]
Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 2019; 14: 1335-46.
[http://dx.doi.org/10.2147/IJN.S191837] [PMID: 30863064]
[7]
Deng Y, Zhang X, Shen H, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol 2020; 7: 489.
[http://dx.doi.org/10.3389/fbioe.2019.00489] [PMID: 32083068]
[8]
Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 2020; 8(15): 4109-28.
[http://dx.doi.org/10.1039/D0BM00809E] [PMID: 32638706]
[9]
Oroojalian F, Charbgoo F, Hashemi M, et al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Rel Offic J Control Rel Soc 2020; 321: 442-62.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.027]
[10]
Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioact Mater 2020; 5(4): 1071-86.
[http://dx.doi.org/10.1016/j.bioactmat.2020.06.012] [PMID: 32695937]
[11]
Kavaz D, Odabaş S, Güven E, Demirbilek M, Denkbaş EB. Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers. J Bioact Compat Polym 2010; 25: 305-18.
[http://dx.doi.org/10.1177/0883911509360735]
[12]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[13]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[14]
Güven E. Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg 2021; 32(1): 267-73.
[http://dx.doi.org/10.5606/ehc.2021.80360] [PMID: 33463450]
[15]
Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13: 5561-76.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[16]
Davis SS. Biomedical applications of nanotechnology--implications for drug targeting and gene therapy. Trends Biotechnol 1997; 15(6): 217-24.
[http://dx.doi.org/10.1016/S0167-7799(97)01036-6] [PMID: 9183864]
[17]
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9(2): 79-89.
[http://dx.doi.org/10.1007/s12551-016-0246-2] [PMID: 28510082]
[18]
Menaa B. The importance of nanotechnology in biomedical sciences. J Biotechnol Biomater 2011; 1: 105e.
[http://dx.doi.org/10.4172/2155-952X.1000105e]
[19]
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K-H. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Mater Sci Eng C 2020; 106: 110154.
[http://dx.doi.org/10.1016/j.msec.2019.110154] [PMID: 31753376]
[20]
Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 2009; 42(8): 1097-107.
[http://dx.doi.org/10.1021/ar9000026] [PMID: 19476332]
[21]
Warner S. Diagnostics + therapy = theranostics. Scientist 2004; 18(16): 38-9.
[22]
Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today 2012; 17(17-18): 928-34.
[http://dx.doi.org/10.1016/j.drudis.2012.03.010] [PMID: 22484464]
[23]
Kojima R, Aubel D, Fussenegger M. Novel theranostic agents for next-generation personalized medicine: small molecules, nanoparticles, and engineered mammalian cells. Curr Opin Chem Biol 2015; 28: 29-38.
[http://dx.doi.org/10.1016/j.cbpa.2015.05.021] [PMID: 26056952]
[24]
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 2015; 115(19): 10907-37.
[http://dx.doi.org/10.1021/cr500314d] [PMID: 26166537]
[25]
Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics 2014; 4(6): 660-77.
[http://dx.doi.org/10.7150/thno.8698] [PMID: 24723986]
[26]
Bolognesi ML, Gandini A, Prati F, Uliassi E. From companion diagnostics to theranostics: a new avenue for Alzheimer’s disease? J Med Chem 2016; 59(17): 7759-70.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00151] [PMID: 27124551]
[27]
Pandey M, Choudhury H, Yeun OC, et al. Perspectives of nanoemulsion strategies in the improvement of oral, parenteral and transdermal chemotherapy. Curr Pharm Biotechnol 2018; 19(4): 276-92.
[http://dx.doi.org/10.2174/1389201019666180605125234] [PMID: 29874994]
[28]
Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P. Theranostic application of nanoemulsions in chemotherapy. Drug Discov Today 2020; 25(7): 1174-88.
[http://dx.doi.org/10.1016/j.drudis.2020.04.013] [PMID: 32344042]
[29]
Cedres N, Machado A, Molina Y, et al. Subjective cognitive decline below and above the age of 60: a multivariate study on neuroimaging, cognitive, clinical, and demographic measures. J Alzheimers Dis 2019; 68(1): 295-309.
[http://dx.doi.org/10.3233/JAD-180720] [PMID: 30741680]
[30]
Cantore M. New perspective in Alzheimer’s disease - theranostic strategy. Biomed J Sci Tech Res 2019; 15(1): 11108-11.
[http://dx.doi.org/10.26717/BJSTR.2019.15.002648]
[31]
Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. Global Burden of Mental, Neurological, and Substance Use Disorders: An Analysis from the Global Burden of Disease Study 2010. In: Patel V, Chisholm D, Dua T, Laxminarayan R, Medina-Mora ME, Eds. Mental, neurological, and substance use disorders: disease control priorities. Third edition. The international bank for reconstruction and development / The World Bank 2016; 4.
[32]
Alzheimer’s Disease Fact Sheet. 2021. Available at: https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet.
[33]
Andreas S, Schulz H, Volkert J, et al. Prevalence of mental disorders in elderly people: the European MentDis_ICF65+ study. Br J Psychiatry 2017; 210(2): 125-31.
[http://dx.doi.org/10.1192/bjp.bp.115.180463] [PMID: 27609811]
[34]
Bryant C. Anxiety and depression in old age: challenges in recognition and diagnosis. Int Psychogeriatr 2010; 22(4): 511-3.
[http://dx.doi.org/10.1017/S1041610209991785] [PMID: 20122303]
[35]
World Health Organization (WHO). Dementia Fact Sheet. 2021.
[36]
Giacomeli R, Izoton JC, Dos Santos RB, Boeira SP, Jesse CR, Haas SE. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res 2019; 1721: 146325.
[http://dx.doi.org/10.1016/j.brainres.2019.146325] [PMID: 31325424]
[37]
Alzheimer’s Association. Alzheimer’s Disease Report. In: Alzheimer’s Disease Facts and Figures. 2020. Available at: https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf
[38]
Burns A, Iliffe S. Alzheimer’s disease. BMJ 2009; 338: b158.
[http://dx.doi.org/10.1136/bmj.b158] [PMID: 19196745]
[39]
GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459-544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[40]
Todd S, Barr S, Roberts M, Passmore AP. Survival in dementia and predictors of mortality: A review. Int J Geriatr Psychiatry 2013; 28(11): 1109-24.
[http://dx.doi.org/10.1002/gps.3946] [PMID: 23526458]
[41]
Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 2019; 1725: 146476.
[http://dx.doi.org/10.1016/j.brainres.2019.146476] [PMID: 31560864]
[42]
Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 2011; 377(9770): 1019-31.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[43]
Fontana IC, Zimmer AR, Rocha AS, et al. Amyloid-β oligomers in cellular models of Alzheimer’s disease. J Neurochem 2020; 155(4): 348-69.
[http://dx.doi.org/10.1111/jnc.15030] [PMID: 32320074]
[44]
Nortley R, Korte N, Izquierdo P, et al. Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 2019; 365(6450): eaav9518.
[http://dx.doi.org/10.1126/science.aav9518] [PMID: 31221773]
[45]
Hefti F, Goure WF, Jerecic J, Iverson KS, Walicke PA, Krafft GA. The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol Sci 2013; 34(5): 261-6.
[http://dx.doi.org/10.1016/j.tips.2013.03.002] [PMID: 23582316]
[46]
Shabbir U, Rubab M, Tyagi A, Oh D-H. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: the implication of nanotechnology. Int J Mol Sci 2020; 22(1): 196.
[http://dx.doi.org/10.3390/ijms22010196] [PMID: 33375513]
[47]
Merry TL, Chan A, Woodhead JST, et al. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab 2020; 319(4): E659-66.
[http://dx.doi.org/10.1152/ajpendo.00249.2020] [PMID: 32776825]
[48]
Agrawal I, Jha S. Mitochondrial dysfunction and Alzheimer’s disease: role of microglia. Front Aging Neurosci 2020; 12: 252.
[http://dx.doi.org/10.3389/fnagi.2020.00252] [PMID: 32973488]
[49]
Szczechowiak K, Diniz BS, Leszek J. Diet and Alzheimer’s dementia - Nutritional approach to modulate inflammation. Pharmacol Biochem Behav 2019; 184: 172743.
[http://dx.doi.org/10.1016/j.pbb.2019.172743] [PMID: 31356838]
[50]
Hsu D, Marshall GA. Primary and secondary prevention trials in Alzheimer disease: looking back, moving forward. Curr Alzheimer Res 2017; 14(4): 426-40.
[http://dx.doi.org/10.2174/1567205013666160930112125] [PMID: 27697063]
[51]
Pistollato F, Iglesias RC, Ruiz R, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol Res 2018; 131: 32-43.
[http://dx.doi.org/10.1016/j.phrs.2018.03.012] [PMID: 29555333]
[52]
Lohmann E, Guerreiro RJ, Erginel-Unaltuna N, et al. Identification of PSEN1 and PSEN2 gene mutations and variants in Turkish dementia patients. Neurobiol Aging 2012; 33(8): 1850.e17-.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.02.020] [PMID: 22503161]
[53]
Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrindeâ€. Clin Anat 1995; 8(6): 429-31.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[54]
Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. BioMed Res Int 2018; 2018: 3740461.
[http://dx.doi.org/10.1155/2018/3740461] [PMID: 29707568]
[55]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[56]
Minati L, Edginton T, Bruzzone MG, Giaccone G. Current concepts in Alzheimer’s disease: A multidisciplinary review. Am J Alzheimers Dis Other Demen 2009; 24(2): 95-121.
[http://dx.doi.org/10.1177/1533317508328602] [PMID: 19116299]
[57]
Groves-Wright K, Neils-Strunjas J, Burnett R, O’Neill MJ. A comparison of verbal and written language in Alzheimer’s disease. J Commun Disord 2004; 37(2): 109-30.
[http://dx.doi.org/10.1016/j.jcomdis.2003.08.004] [PMID: 15013729]
[58]
2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14: 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[59]
Mega MS, Cummings JL, Fiorello T, Gornbein J. The spectrum of behavioral changes in Alzheimer’s disease. Neurology 1996; 46(1): 130-5.
[http://dx.doi.org/10.1212/WNL.46.1.130] [PMID: 8559361]
[60]
Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent progress in Alzheimer’s disease research, part 3: diagnosis and treatment. J Alzheimers Dis 2017; 57(3): 645-65.
[http://dx.doi.org/10.3233/JAD-160907] [PMID: 28269772]
[61]
Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734-46.
[http://dx.doi.org/10.1016/S1474-4422(07)70178-3] [PMID: 17616482]
[62]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[63]
Kelley BJ, Petersen RC. Alzheimer’s disease and mild cognitive impairment. Neurol Clin 2007; 25(3): 577-609.
[http://dx.doi.org/10.1016/j.ncl.2007.03.008] [PMID: 17659182]
[64]
Hyman BT, Phelps CH, Beach TG, et al. National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8(1): 1-13.
[http://dx.doi.org/10.1016/j.jalz.2011.10.007] [PMID: 22265587]
[65]
Nisbet RM, Polanco JC, Ittner LM, Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 2015; 129(2): 207-20.
[http://dx.doi.org/10.1007/s00401-014-1371-2] [PMID: 25492702]
[66]
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 2014; 82(4): 756-71.
[http://dx.doi.org/10.1016/j.neuron.2014.05.004] [PMID: 24853936]
[67]
Iqbal K, Alonso AdelC, Chen S, et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 2005; 1739(2-3): 198-210.
[http://dx.doi.org/10.1016/j.bbadis.2004.09.008] [PMID: 15615638]
[68]
Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat 2015; 11: 243-56.
[http://dx.doi.org/10.2147/NDT.S75546] [PMID: 25673992]
[69]
Bali J, Halima SB, Felmy B, Goodger Z, Zurbriggen S, Rajendran L. Cellular basis of Alzheimer’s disease. Ann Indian Acad Neurol 2010; 13(Suppl. 2): S89-93.
[http://dx.doi.org/10.4103/0972-2327.74251] [PMID: 21369424]
[70]
Murray PS, Kirkwood CM, Gray MC, et al. Hyperphosphorylated tau is elevated in Alzheimer’s disease with psychosis. J Alzheimers Dis 2014; 39(4): 759-73.
[http://dx.doi.org/10.3233/JAD-131166] [PMID: 24270207]
[71]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[72]
Nalivaeva NN, Turner AJ. The amyloid precursor protein: A biochemical enigma in brain development, function and disease. FEBS Lett 2013; 587(13): 2046-54.
[http://dx.doi.org/10.1016/j.febslet.2013.05.010] [PMID: 23684647]
[73]
Dawkins E, Small DH. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 2014; 129(5): 756-69.
[http://dx.doi.org/10.1111/jnc.12675] [PMID: 24517464]
[74]
Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ. A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 2007; 27(52): 14459-69.
[http://dx.doi.org/10.1523/JNEUROSCI.4701-07.2007] [PMID: 18160654]
[75]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med 2010; 12(1): 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[76]
Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic potential of secreted amyloid precursor protein APPsα. Front Mol Neurosci 2017; 10: 30.
[http://dx.doi.org/10.3389/fnmol.2017.00030] [PMID: 28223920]
[77]
Lucey BP, Bateman RJ. Amyloid-β diurnal pattern: possible role of sleep in Alzheimer’s disease pathogenesis. Neurobiol Aging 2014; 35(Suppl. 2): S29-34.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.035] [PMID: 24910393]
[78]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[79]
Golde TE, Eckman CB, Younkin SG. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochim Biophys Acta 2000; 1502(1): 172-87.
[http://dx.doi.org/10.1016/S0925-4439(00)00043-0] [PMID: 10899442]
[80]
Canevari L, Clark JB, Bates TE. beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 1999; 457(1): 131-4.
[http://dx.doi.org/10.1016/S0014-5793(99)01028-5] [PMID: 10486579]
[81]
Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 2001; 15(13): 2433-44.
[http://dx.doi.org/10.1096/fj.01-0377com] [PMID: 11689468]
[82]
Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velázquez M, Acosta-Martínez JP, Ortiz GG. Kinetics of the neuroinflammation-oxidative stress correlation in rat brain following the injection of fibrillar amyloid-beta onto the hippocampus In vivo. J Neuroimmunol 2004; 150(1-2): 20-8.
[http://dx.doi.org/10.1016/j.jneuroim.2004.01.005] [PMID: 15081245]
[83]
Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 2007; 43(5): 658-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.05.037] [PMID: 17664130]
[84]
Parameshwaran K, Dhanasekaran M, Suppiramaniam V. Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp Neurol 2008; 210(1): 7-13.
[http://dx.doi.org/10.1016/j.expneurol.2007.10.008] [PMID: 18053990]
[85]
Li T, Braunstein KE, Zhang J, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer’s disease mouse model. Nat Commun 2016; 7: 12082.
[http://dx.doi.org/10.1038/ncomms12082] [PMID: 27373369]
[86]
Brion JP. Neurofibrillary tangles and Alzheimer’s disease. Eur Neurol 1998; 40(3): 130-40.
[http://dx.doi.org/10.1159/000007969] [PMID: 9748670]
[87]
Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 2016; 6(1): 6.
[http://dx.doi.org/10.3390/biom6010006] [PMID: 26751493]
[88]
Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur J Med Chem 2017; 139: 153-67.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.070] [PMID: 28800454]
[89]
Huang Y, Weisgraber KH, Mucke L, Mahley RW. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci 2004; 23(3): 189-204.
[http://dx.doi.org/10.1385/JMN:23:3:189] [PMID: 15181247]
[90]
Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43(8): 1467-72.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[91]
Nagy Z, Esiri MM, Jobst KA, et al. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience 1995; 69(3): 757-61.
[http://dx.doi.org/10.1016/0306-4522(95)00331-C] [PMID: 8596645]
[92]
Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, et al. APOE2 enhances neuroprotection against Alzheimer’s disease through multiple molecular mechanisms. Mol Psychiatry 2014; 19(11): 1243-50.
[http://dx.doi.org/10.1038/mp.2013.194] [PMID: 24492349]
[93]
Berlau DJ, Corrada MM, Head E, Kawas CH. APOE epsilon2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology 2009; 72(9): 829-34.
[http://dx.doi.org/10.1212/01.wnl.0000343853.00346.a4] [PMID: 19255410]
[94]
Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278(16): 1349-56.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[95]
DeMattos RB, Cirrito JR, Parsadanian M, et al. ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism In vivo. Neuron 2004; 41(2): 193-202.
[http://dx.doi.org/10.1016/S0896-6273(03)00850-X] [PMID: 14741101]
[96]
Hartmann T. Intracellular biology of Alzheimer’s disease amyloid beta peptide. Eur Arch Psychiatry Clin Neurosci 1999; 249(6): 291-8.
[http://dx.doi.org/10.1007/s004060050102] [PMID: 10653285]
[97]
Kevadiya BD, Ottemann BM, Thomas MB, et al. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148: 252-89.
[http://dx.doi.org/10.1016/j.addr.2018.10.011] [PMID: 30421721]
[98]
Becker RE, Greig NH, Giacobini E, Schneider LS, Ferrucci L. A new roadmap for drug development for Alzheimer’s disease. Nat Rev Drug Discov 2014; 13(2): 156.
[http://dx.doi.org/10.1038/nrd3842-c2] [PMID: 24362362]
[99]
Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 51: 90-105.
[http://dx.doi.org/10.1124/mi.3.2.90]
[100]
Mitri Z, Esmerian MO, Simaan JA, Sabra R, Zgheib NK. Pharmacogenetics and personalized medicine: the future for drug prescribing. J Med Liban 2010; 58(2): 101-4.
[PMID: 20549897]
[101]
Ruano G. Quo vadis personalized medicine? Per Med 2004; 1(1): 1-7.
[http://dx.doi.org/10.1517/17410541.1.1.1] [PMID: 29793223]
[102]
Landais P, Méresse V, Ghislain JC. Evaluation and validation of diagnostic tests for guiding therapeutic decisions. Therapie 2009; 64(3): 187-201.
[http://dx.doi.org/10.2515/therapie/2009027] [PMID: 19671431]
[103]
Pene F, Courtine E, Cariou A, Mira JP. Toward theragnostics. Crit Care Med 2009; 37(1)(Suppl.): S50-8.
[http://dx.doi.org/10.1097/CCM.0b013e3181921349] [PMID: 19104225]
[104]
Idée JM, Louguet S, Ballet S, Corot C. Theranostics and contrast-agents for medical imaging: A pharmaceutical company viewpoint. Quant Imaging Med Surg 2013; 3(6): 292-7.
[PMID: 24404442]
[105]
Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J 2006; 6(1): 16-21.
[http://dx.doi.org/10.1038/sj.tpj.6500338] [PMID: 16302022]
[106]
Limaye N. Pharmacogenomics, theranostics and personalized medicine - the complexities of clinical trials: challenges in the developing world. Appl Transl Genomics 2013; 2: 17-21.
[http://dx.doi.org/10.1016/j.atg.2013.05.002] [PMID: 27942441]
[107]
Jeelani S, Reddy RC, Maheswaran T, Asokan GS, Dany A, Anand B. Theranostics: A treasured tailor for tomorrow. J Pharm Bioallied Sci 2014; 6(Suppl. 1): S6-8.
[http://dx.doi.org/10.4103/0975-7406.137249] [PMID: 25210387]
[108]
Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2014; 55: 1919-22.
[http://dx.doi.org/10.2967/jnumed.114.146019]
[109]
Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res 2011; 44(10): 1050-60.
[http://dx.doi.org/10.1021/ar200106e] [PMID: 21919457]
[110]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064-79.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[111]
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1029-38.
[http://dx.doi.org/10.1021/ar200019c] [PMID: 21545096]
[112]
Blackwell KL, Burstein HJ, Storniolo AM, et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J Clin Oncol 2012; 30(21): 2585-92.
[http://dx.doi.org/10.1200/JCO.2011.35.6725] [PMID: 22689807]
[113]
Benezra M, Penate-Medina O, Zanzonico PB, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011; 121(7): 2768-80.
[http://dx.doi.org/10.1172/JCI45600] [PMID: 21670497]
[114]
Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 2013; 63(6): 395-418.
[http://dx.doi.org/10.3322/caac.21199] [PMID: 24114523]
[115]
Feng SS. New-concept chemotherapy by nanoparticles of biodegradable polymers: where are we now? Nanomedicine (Lond) 2006; 1(3): 297-309.
[http://dx.doi.org/10.2217/17435889.1.3.297] [PMID: 17716160]
[116]
Muthu MS, Feng SS. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin Drug Deliv 2013; 10(2): 151-5.
[http://dx.doi.org/10.1517/17425247.2013.729576] [PMID: 23061654]
[117]
Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond) 2009; 4(1): 105-18.
[http://dx.doi.org/10.2217/17435889.4.1.105] [PMID: 19093899]
[118]
Muthu MS, Rajesh CV, Mishra A, Singh S. Stimulus-responsive targeted nanomicelles for effective cancer therapy. Nanomedicine (Lond) 2009; 4(6): 657-67.
[http://dx.doi.org/10.2217/nnm.09.44] [PMID: 19663594]
[119]
Zhao J, Mi Y, Feng SS. siRNA-based nanomedicine. Nanomedicine (Lond) 2013; 8(6): 859-62.
[http://dx.doi.org/10.2217/nnm.13.73] [PMID: 23730692]
[120]
Mei L, Zhang Z, Zhao L, et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev 2013; 65(6): 880-90.
[http://dx.doi.org/10.1016/j.addr.2012.11.005] [PMID: 23220325]
[121]
Smith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012; 23(10): 1989-2006.
[http://dx.doi.org/10.1021/bc3003309] [PMID: 22989049]
[122]
Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 2011; 44(10): 1061-70.
[http://dx.doi.org/10.1021/ar2001777] [PMID: 21932809]
[123]
Xu C, Zhao W. Nanoparticle-based monitoring of stem cell therapy. Theranostics 2013; 3(8): 616-7.
[http://dx.doi.org/10.7150/thno.7020] [PMID: 23946826]
[124]
Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011; 44(10): 1114-22.
[http://dx.doi.org/10.1021/ar2000056] [PMID: 21732606]
[125]
Tan YF, Chandrasekharan P, Maity D, et al. Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-D-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials 2011; 32(11): 2969-78.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.055] [PMID: 21257200]
[126]
Zhao L, Feng SS. Enhanced oral bioavailability of paclitaxel formulated in vitamin E-TPGS emulsified nanoparticles of biodegradable polymers: In vitro and In vivo studies. J Pharm Sci 2010; 99(8): 3552-60.
[http://dx.doi.org/10.1002/jps.22113] [PMID: 20564384]
[127]
Win KY, Feng SS. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials 2006; 27(10): 2285-91.
[http://dx.doi.org/10.1016/j.biomaterials.2005.11.008] [PMID: 16313953]
[128]
Janib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010; 62(11): 1052-63.
[http://dx.doi.org/10.1016/j.addr.2010.08.004] [PMID: 20709124]
[129]
Ye Y, Chen X. Integrin targeting for tumor optical imaging. Theranostics 2011; 1: 102-26.
[http://dx.doi.org/10.7150/thno/v01p0102] [PMID: 21546996]
[130]
Santra S. The potential clinical impact of quantum dots. Nanomedicine (Lond) 2012; 7(5): 623-6.
[http://dx.doi.org/10.2217/nnm.12.45] [PMID: 22630145]
[131]
Yong KT, Wang Y, Roy I, et al. Preparation of quantum dot/drug nanoparticle formulations for traceable targeted delivery and therapy. Theranostics 2012; 2(7): 681-94.
[http://dx.doi.org/10.7150/thno.3692] [PMID: 22896770]
[132]
Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 2012; 4(2): 330-42.
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[133]
Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005; 26(15): 2713-22.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.050] [PMID: 15585275]
[134]
Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-Dependent endocytosis of nanoparticles. Adv Mater 2009; 21: 419-24.
[http://dx.doi.org/10.1002/adma.200801393] [PMID: 19606281]
[135]
Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 2007; 28(18): 2915-22.
[http://dx.doi.org/10.1016/j.biomaterials.2007.02.013] [PMID: 17363051]
[136]
Tan GR, Feng SS, Leong DT. The reduction of anti-cancer drug antagonism by the spatial protection of drugs with PLA-TPGS nanoparticles. Biomaterials 2014; 35(9): 3044-51.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.033] [PMID: 24439415]
[137]
Gan CW, Chien S, Feng SS. Nanomedicine: enhancement of chemotherapeutical efficacy of docetaxel by using a biodegradable nanoparticle formulation. Curr Pharm Des 2010; 16(21): 2308-20.
[http://dx.doi.org/10.2174/138161210791920487] [PMID: 20618152]
[138]
Zhao J, Feng SS. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs. Biomaterials 2014; 35(10): 3340-7.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.003] [PMID: 24461325]
[139]
McCarthy JR, Jaffer FA, Weissleder R. A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2006; 2(8-9): 983-7.
[http://dx.doi.org/10.1002/smll.200600139] [PMID: 17193154]
[140]
Ding H, Wu F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics 2012; 2(11): 1040-53.
[http://dx.doi.org/10.7150/thno.4652] [PMID: 23227121]
[141]
Muthu MS, Kulkarni SA, Raju A, Feng SS. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 2012; 33(12): 3494-501.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.036] [PMID: 22306020]
[142]
Shuhendler AJ, Prasad P, Leung M, Rauth AM, Dacosta RS, Wu XY. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword. Adv Healthc Mater 2012; 1(5): 600-8.
[http://dx.doi.org/10.1002/adhm.201200006] [PMID: 23184795]
[143]
Chandrasekharan P, Maity D, Yong CX, et al. Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 2011; 32(24): 5663-72.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.037] [PMID: 21550654]
[144]
Yuan J, Zhang H, Kaur H, Oupicky D, Peng F. Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography. Mol Imaging 2013; 12(3): 203-12.
[http://dx.doi.org/10.2310/7290.2012.00038] [PMID: 23490439]
[145]
Pan J, Liu Y, Feng SS. Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine (Lond) 2010; 5(3): 347-60.
[http://dx.doi.org/10.2217/nnm.10.13] [PMID: 20394529]
[146]
Kim K, Kim JH, Park H, et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: Simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 2010; 146(2): 219-27.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.004] [PMID: 20403397]
[147]
Liu P, Qin L, Wang Q, et al. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer. Biomaterials 2012; 33(28): 6739-47.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.008] [PMID: 22763223]
[148]
Edelman R, Assaraf YG, Slavkin A, Dolev T, Shahar T, Livney YD. Developing body-components-based theranostic nanoparticles for targeting ovarian cancer. Pharmaceutics 2019; 11(5): 216.
[http://dx.doi.org/10.3390/pharmaceutics11050216] [PMID: 31060303]
[149]
Taratula O, Schumann C, Naleway MA, Pang AJ, Chon KJ, Taratula O. A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 2013; 10(10): 3946-58.
[http://dx.doi.org/10.1021/mp400397t] [PMID: 24020847]
[150]
Robinson JT, Welsher K, Tabakman SM, et al. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 2010; 3(11): 779-93.
[http://dx.doi.org/10.1007/s12274-010-0045-1] [PMID: 21804931]
[151]
Chen WH, Xu XD, Jia HZ, et al. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials 2013; 34(34): 8798-807.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.084] [PMID: 23932289]
[152]
Pan C, Liu Y, Zhou M, et al. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int J Nanomedicine 2018; 13: 1119-37.
[http://dx.doi.org/10.2147/IJN.S147464] [PMID: 29520140]
[153]
Wang Z, Yu N, Yu W, et al. In situ growth of Au nanoparticles on natural melanin as biocompatible and multifunctional nanoagent for efficient tumor theranostics. J Mater Chem B Mater Biol Med 2019; 7(1): 133-42.
[http://dx.doi.org/10.1039/C8TB02724B] [PMID: 32254957]
[154]
Mansouri H, Gholibegloo E, Mortezazadeh T, et al. A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: In vitro and In vivo studies. Carbohydr Polym 2021; 254: 117262.
[http://dx.doi.org/10.1016/j.carbpol.2020.117262] [PMID: 33357850]
[155]
Nikolopoulou SG, Boukos N, Sakellis E, Efthimiadou EK. Synthesis of biocompatible silver nanoparticles by a modified polyol method for theranostic applications: Studies on red blood cells, internalization ability and antibacterial activity. J Inorg Biochem 2020; 211: 111177.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111177] [PMID: 32795713]
[156]
Kabanov AV, Batrakova EV. New technologies for drug delivery across the blood brain barrier. Curr Pharm Des 2004; 10(12): 1355-63.
[http://dx.doi.org/10.2174/1381612043384826] [PMID: 15134486]
[157]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in Alzheimer’s disease management: current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[http://dx.doi.org/10.2174/1567205014666170508121031] [PMID: 28482786]
[158]
Alam Q, ZubairAlam M, Karim S, et al. A nanotechnological approach to the management of Alzheimer disease and type 2 diabetes. CNS Neurol Disord Drug Targets 2014; 13(3): 478-86.
[http://dx.doi.org/10.2174/18715273113126660159] [PMID: 24059303]
[159]
Arumugam K, Subramanian GS, Mallayasamy SR, Averineni RK, Reddy MS, Udupa N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm 2008; 58(3): 287-97.
[http://dx.doi.org/10.2478/v10007-008-0014-3] [PMID: 19103565]
[160]
Mutlu NB, DeÄŸim Z, Yilmaz Åž, EÅŸsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37(7): 775-89.
[http://dx.doi.org/10.3109/03639045.2010.541262] [PMID: 21231901]
[161]
Ismail MF, Elmeshad AN, Salem NA. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int J Nanomedicine 2013; 8: 393-406.
[http://dx.doi.org/10.2147/IJN.S39232] [PMID: 23378761]
[162]
Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[163]
Tanifum EA, Dasgupta I, Srivastava M, et al. Intravenous delivery of targeted liposomes to amyloid-β pathology in APP/PSEN1 transgenic mice. PLoS One 2012; 7(10): e48515.
[http://dx.doi.org/10.1371/journal.pone.0048515] [PMID: 23119043]
[164]
Baum L, Lam CWK, Cheung SK-K, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008; 28(1): 110-3.
[http://dx.doi.org/10.1097/jcp.0b013e318160862c] [PMID: 18204357]
[165]
Lazar AN, Mourtas S, Youssef I, et al. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: possible applications to Alzheimer disease. Nanomedicine 2013; 9(5): 712-21.
[http://dx.doi.org/10.1016/j.nano.2012.11.004] [PMID: 23220328]
[166]
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11: 5381-414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[167]
Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AH, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 2013; 15(2): 324-36.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[168]
Papadia K, Giannou AD, Markoutsa E, et al. Multifunctional LUV liposomes decorated for BBB and amyloid targeting - B. In vivo brain targeting potential in wild-type and APP/PS1 mice. Eur J Pharm Sci 2017; 102: 180-7.
[http://dx.doi.org/10.1016/j.ejps.2017.03.010] [PMID: 28285172]
[169]
Rotman M, Welling MM, Bunschoten A, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J Control Release 2015; 203: 40-50.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.012] [PMID: 25668771]
[170]
Wen C-J, Zhang L-W, Al-Suwayeh SA, Yen T-C, Fang J-Y. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 2012; 7: 1599-611.
[PMID: 22619515]
[171]
Indoria S, Singh V, Hsieh M-F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int J Pharm 2020; 582: 119314.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119314] [PMID: 32283197]
[172]
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm 2010; 7(3): 815-25.
[http://dx.doi.org/10.1021/mp900306x] [PMID: 20230014]
[173]
Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 2012; 30(2): 377-92.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[174]
Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3): e32616.
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[175]
Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces 2016; 148: 116-29.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.052] [PMID: 27591943]
[176]
Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015; 93: 134-45.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[177]
Amanzadeh E, Esmaeili A, Abadi REN, Kazemipour N, Pahlevanneshan Z, Beheshti S. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP. Sci Rep 2019; 9(1): 6876.
[http://dx.doi.org/10.1038/s41598-019-43345-w] [PMID: 31053743]
[178]
Nazir N, Karim N, Abdel-Halim H, Khan I, Wadood SF, Nisar M. Phytochemical analysis, molecular docking and antiamnesic effects of methanolic extract of Silybum marianum (L.) Gaertn seeds in scopolamine induced memory impairment in mice. J Ethnopharmacol 2018; 210: 198-208.
[http://dx.doi.org/10.1016/j.jep.2017.08.026] [PMID: 28842342]
[179]
Cui N, Lu H, Li M. Magnetic nanoparticles associated PEG/PLGA block copolymer targeted with anti-transferrin receptor antibodies for Alzheimer’s disease. J Biomed Nanotechnol 2018; 14(5): 1017-24.
[http://dx.doi.org/10.1166/jbn.2018.2512] [PMID: 29883571]
[180]
Wasiak T, Ionov M, Nieznanski K, et al. Phosphorus dendrimers affect Alzheimer’s (Aβ1-28) peptide and MAP-Tau protein aggregation. Mol Pharm 2012; 9(3): 458-69.
[http://dx.doi.org/10.1021/mp2005627] [PMID: 22206488]
[181]
Liu D, Li W, Jiang X, et al. Using near-infrared enhanced thermozyme and scFv dual-conjugated Au nanorods for detection and targeted photothermal treatment of Alzheimer’s disease. Theranostics 2019; 9(8): 2268-81.
[http://dx.doi.org/10.7150/thno.30649] [PMID: 31149043]
[182]
Li M, Guan Y, Zhao A, Ren J, Qu X. Using multifunctional peptide conjugated au nanorods for monitoring β-amyloid aggregation and chemo-photothermal treatment of Alzheimer’s disease. Theranostics 2017; 7(12): 2996-3006.
[http://dx.doi.org/10.7150/thno.18459] [PMID: 28839459]
[183]
Yin T, Xie W, Sun J, Yang L, Liu J. Penetratin peptide-functionalized gold nanostars: enhanced BBB permeability and nir photothermal treatment of Alzheimer’s disease using ultralow irradiance. ACS Appl Mater Interfaces 2016; 8(30): 19291-302.
[http://dx.doi.org/10.1021/acsami.6b05089] [PMID: 27411476]
[184]
Hirschberg H, Madsen SJ. Cell mediated photothermal therapy of brain tumors. J Neuroimmune Pharmacol 2017; 12: 99-106.
[http://dx.doi.org/10.1007/s11481-016-9690-9]
[185]
Liu Y, Xu M, Chen Q, et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int J Nanomedicine 2015; 10: 4747-61.
[http://dx.doi.org/10.2147/IJN.S82940] [PMID: 26251596]
[186]
Wang C, Wang X, Chan H-N, et al. Amyloid-β oligomer-targeted gadolinium-based NIR/MR dual-modal theranostic nanoprobe for Alzheimer’s disease. Adv Funct Mater 2020; 30: 1909529.
[http://dx.doi.org/10.1002/adfm.201909529]
[187]
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 2015; 21(2): 829-35.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[188]
Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 2016; 46: 177-90.
[http://dx.doi.org/10.1016/j.actbio.2016.09.010] [PMID: 27619837]
[189]
Cui Z, Bu W, Fan W, et al. Sensitive imaging and effective capture of Cu(2+): Towards highly efficient theranostics of Alzheimer’s disease. Biomaterials 2016; 104: 158-67.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.056] [PMID: 27454062]
[190]
Ruff J, Hüwel S, Kogan MJ, Simon U, Galla H-J. The effects of gold nanoparticles functionalized with ß-amyloid specific peptides on an in vitro model of blood-brain barrier. Nanomedicine 2017; 13(5): 1645-52.
[http://dx.doi.org/10.1016/j.nano.2017.02.013] [PMID: 28285163]
[191]
Chung YJ, Kim K, Lee BI, Park CB. Carbon nanodot-sensitized modulation of Alzheimer’s β-amyloid self-assembly, disassembly, and toxicity. Small 2017; 13(34): 1700983.
[http://dx.doi.org/10.1002/smll.201700983] [PMID: 28714246]
[192]
Sharma M, Tiwari V, Shukla S, Panda JJ. Fluorescent dopamine-tryptophan nanocomposites as dual-imaging and antiaggregation agents: new generation of amyloid theranostics with trimeric effects. ACS Appl Mater Interfaces 2020; 12(39): 44180-94.
[http://dx.doi.org/10.1021/acsami.0c13223] [PMID: 32870652]
[193]
Gao W, Wang W, Dong X, Sun Y. Nitrogen-doped carbonized polymer dots: a potent scavenger and detector targeting Alzheimer’s β-Amyloid plaques. Small 2020; 16(43): e2002804.
[http://dx.doi.org/10.1002/smll.202002804] [PMID: 33006250]
[194]
Costa PM, Wang JT-W, Morfin J-F, et al. Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting pittsburgh compound B (PiB)-derived ligands. Nanotheranostics 2018; 2(2): 168-83.
[http://dx.doi.org/10.7150/ntno.23125] [PMID: 29577020]
[195]
Sun H, Zhong Y, Zhu X, et al. A tauopathy-homing and autophagy-activating nanoassembly for specific clearance of pathogenic tau in Alzheimer’s disease. ACS Nano 2021; 15(3): 5263-75.
[http://dx.doi.org/10.1021/acsnano.0c10690] [PMID: 33683854]
[196]
Pansieri J, Plissonneau M, Stransky-Heilkron N, et al. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine (Lond) 2017; 12(14): 1675-87.
[http://dx.doi.org/10.2217/nnm-2017-0079] [PMID: 28635419]
[197]
He C, Ahmed T, Abbasi AZ, et al. Multifunctional bioreactive-nanoconstructs for sensitive and accurate MRI of cerebrospinal fluid pathology and intervention of Alzheimer’s disease. Nano Today 2020; 35: 100965.
[http://dx.doi.org/10.1016/j.nantod.2020.100965]
[198]
Sharma B, Grandjean J, Phillips M, et al. Conjugates of neuroprotective chaperone L-PGDS provide MRI contrast for detection of amyloid β-rich regions in live Alzheimer’s Disease mouse model brain bioRxiv 2020; 2020.03.08.982363.
[http://dx.doi.org/10.1101/2020.03.08.982363]
[199]
Zhen Z, Tang W, Chuang YJ, et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014; 8(6): 6004-13.
[http://dx.doi.org/10.1021/nn501134q] [PMID: 24806291]
[200]
Bhuniya S, Maiti S, Kim EJ, et al. An activatable theranostic for targeted cancer therapy and imaging. Angew Chem Int Ed Engl 2014; 53(17): 4469-74.
[http://dx.doi.org/10.1002/anie.201311133] [PMID: 24644015]