Recent Trends in Rationally Designed Molecules as Kinase Inhibitors

Page: [1529 - 1567] Pages: 39

  • * (Excluding Mailing and Handling)

Abstract

Protein kinases modulate the structure and function of proteins by adding phosphate groups to threonine, tyrosine, and serine residues. The phosphorylation process mediated by the kinases regulates several physiological processes, while their overexpression results in the development of chronic diseases, including cancer. Targeting of receptor tyrosine kinase pathways results in the inhibition of angiogenesis and cell proliferation that validates kinases as a key target in the management of aggressive cancers. As such, the identification of protein kinase inhibitors revolutionized the contemporary anticancer therapy by inducing a paradigm shift in the management of disease pathogenesis. Contemporary drug design programs focus on a broad range of kinase targets for the development of novel pharmacophores to manage the overexpression of kinases and their pathophysiology in cancer pathogenesis. In this review, we present the emerging trends in the development of rationally designed molecular inhibitors of kinases over the last five years (2016-2021) and their incipient role in the development of impending anticancer pharmaceuticals.

Keywords: Kinases, cancer, pharmacophore, inhibitors, GPCR kinase, VEGFR-2, RAF-kinase, MAP kinase, cyclic dependent kinase.

[1]
U.S. Food & Drug Administration. New drugs at FDA: CDER’s new molecular entities and new therapeutic biological products. FDA. 2017. Available from: https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnova-tion/default.htm
[2]
Ferguson, F.M.; Gray, N.S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov., 2018, 17(5), 353-377.
[http://dx.doi.org/10.1038/nrd.2018.21] [PMID: 29545548]
[3]
National Institutes of Health. Understudied Proteins. 2017 Available from; https://commonfund.nih.gov/idg/
[4]
Yuan, X.; Wu, H.; Bu, H.; Zhou, J.; Zhang, H. Targeting the immunity protein kinases for immuno-oncology. Eur. J. Med. Chem., 2019, 163, 413-427.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.072] [PMID: 30530193]
[5]
Gerada, C.; Ryan, K.M. Autophagy, the innate immune response and cancer. Mol. Oncol., 2020, 14(9), 1913-1929.
[http://dx.doi.org/10.1002/1878-0261.12774] [PMID: 32745353]
[6]
Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569.
[http://dx.doi.org/10.1038/s41573-021-00195-4] [PMID: 34002056]
[7]
Patterson, H.; Nibbs, R.; McInnes, I.; Siebert, S. Protein kinase inhibitors in the treatment of inflammatory and auto-immune diseases. Clin. Exp. Immunol., 2014, 176(1), 1-10.
[http://dx.doi.org/10.1111/cei.12248] [PMID: 24313320]
[8]
Goswami, D.; Gurule, S.; Lahiry, A.; Anand, A.; Khuroo, A.; Monif, T. Clinical development of imatinib: An anti-cancer drug. Future Sci. OA, 2016, 2(1), FSO92.
[http://dx.doi.org/10.4155/fso.15.92] [PMID: 28031942]
[9]
Redin, E.; Garmendia, I.; Lozano, T.; Serrano, D.; Senent, Y.; Redrado, M.; Villalba, M.; De Andrea, C.E.; Exposito, F.; Ajona, D.; Ortiz-Espinosa, S.; Remirez, A.; Bertolo, C.; Sainz, C.; Garcia-Pedrero, J.; Pio, R.; Lasarte, J.; Agorreta, J.; Montuenga, L.M.; Calvo, A. SRC family kinase (SFK) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation. J. Immunother. Cancer, 2021, 9(3), e001496.
[http://dx.doi.org/10.1136/jitc-2020-001496] [PMID: 33658304]
[10]
Blay, J-Y.; von Mehren, M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin. Oncol., 2011, 38(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1053/j.seminoncol.2011.01.016] [PMID: 21419934]
[11]
Vansteenkiste, J. Gefitinib (Iressa): a novel treatment for non-small cell lung cancer. Expert Rev. Anticancer Ther., 2004, 4(1), 5-17.
[http://dx.doi.org/10.1586/14737140.4.1.5] [PMID: 14748652]
[12]
Cortes, J.E.; Kim, D-W.; Kantarjian, H.M.; Brümmendorf, T.H.; Dyagil, I.; Griskevicius, L.; Malhotra, H.; Powell, C.; Gogat, K.; Countouriotis, A.M.; Gambacorti-Passerini, C. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J. Clin. Oncol., 2012, 30(28), 3486-3492.
[http://dx.doi.org/10.1200/JCO.2011.38.7522] [PMID: 22949154]
[13]
Tan, F.H.; Putoczki, T.L.; Stylli, S.S.; Luwor, R.B. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. OncoTargets Ther., 2019, 12, 635-645.
[http://dx.doi.org/10.2147/OTT.S189391] [PMID: 30705592]
[14]
Gridelli, C.; Bareschino, M.A.; Schettino, C.; Rossi, A.; Maione, P.; Ciardiello, F. Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist, 2007, 12(7), 840-849.
[http://dx.doi.org/10.1634/theoncologist.12-7-840] [PMID: 17673615]
[15]
Jain, P.; Khanal, R.; Sharma, A.; Yan, F.; Sharma, N. Afatinib and lung cancer. Expert Rev. Anticancer Ther., 2014, 14(12), 1391-1406.
[http://dx.doi.org/10.1586/14737140.2014.983083] [PMID: 25417728]
[16]
Gao, X.; Le, X.; Costa, D.B. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer. Expert Rev. Anticancer Ther., 2016, 16(4), 383-390.
[http://dx.doi.org/10.1586/14737140.2016.1162103] [PMID: 26943236]
[17]
Yip, A.Y-S.; Tse, L-A.; Ong, E.Y-Y.; Chow, L.W-C. Survival benefits from lapatinib therapy in women with HER2-overexpressing breast cancer: a systematic review. Anticancer Drugs, 2010, 21(5), 487-493.
[http://dx.doi.org/10.1097/CAD.0b013e3283388eaf] [PMID: 20220514]
[18]
Wani, T.A.; Bakheit, A.H.; Abounassif, M.A.; Zargar, S. Study of interactions of an anticancer drug neratinib with bovine serum albumin: spectroscopic and molecular docking approach. Front Chem., 2018, 6, 47.
[http://dx.doi.org/10.3389/fchem.2018.00047] [PMID: 29564326]
[19]
Jäger, D.; Ma, J.H.; Mardiak, J.; Ye, D.W.; Korbenfeld, E.; Zemanova, M.; Ahn, H.; Guo, J.; Leonhartsberger, N.; Stauch, K.; Böckenhoff, A.; Yu, J.; Escudier, B. Sorafenib treatment of advanced renal cell carcinoma patients in daily practice: the large international PREDICT study. Clin. Genitourin. Cancer, 2015, 13(2), 156-164.
[http://dx.doi.org/10.1016/j.clgc.2014.07.007] [PMID: 25444666]
[20]
Motzer, R.J.; Rini, B.I.; Bukowski, R.M.; Curti, B.D.; George, D.J.; Hudes, G.R.; Redman, B.G.; Margolin, K.A.; Merchan, J.R.; Wilding, G.; Ginsberg, M.S.; Bacik, J.; Kim, S.T.; Baum, C.M.; Michaelson, M.D. Sunitinib in patients with metastatic renal cell carcinoma. JAMA, 2006, 295(21), 2516-2524.
[http://dx.doi.org/10.1001/jama.295.21.2516] [PMID: 16757724]
[21]
Wang, B.; Song, J-W.; Chen, H-Q. First-line pazopanib treatment in metastatic renal cell carcinoma: real world data from a single Chinese center. Front. Pharmacol., 2020, 11, 517672.
[http://dx.doi.org/10.3389/fphar.2020.517672] [PMID: 33192500]
[22]
Umeyama, Y.; Shibasaki, Y.; Akaza, H. Axitinib in metastatic renal cell carcinoma: beyond the second-line setting. Future Oncol., 2017, 13(21), 1839-1852.
[http://dx.doi.org/10.2217/fon-2017-0104] [PMID: 28707479]
[23]
Študentová, H.; Vitásková, D.; Melichar, B. Lenvatinib for the treatment of kidney cancer. Expert Rev. Anticancer Ther., 2018, 18(6), 511-518.
[http://dx.doi.org/10.1080/14737140.2018.1470506] [PMID: 29737893]
[24]
Abdelaziz, A.; Vaishampayan, U. Cabozantinib for the treatment of kidney cancer. Expert Rev. Anticancer Ther., 2017, 17(7), 577-584.
[http://dx.doi.org/10.1080/14737140.2017.1344553] [PMID: 28633552]
[25]
Hu, M.I.; Elisei, R.; Dedecjus, M.; Popovtzer, A.; Druce, M.; Kapiteijn, E.; Pacini, F.; Locati, L.; Krajewska, J.; Weiss, R.; Gagel, R.F. Safety and efficacy of two starting doses of vandetanib in advanced medullary thyroid cancer. Endocr. Relat. Cancer, 2019, 26(2), 241-250.
[http://dx.doi.org/10.1530/ERC-18-0258] [PMID: 30557850]
[26]
Dhillon, S. Regorafenib: a review in metastatic colorectal cancer. Drugs, 2018, 78(11), 1133-1144.
[http://dx.doi.org/10.1007/s40265-018-0938-y] [PMID: 29943375]
[27]
Brose, M.S.; Cabanillas, M.E.; Cohen, E.E.W.; Wirth, L.J.; Riehl, T.; Yue, H.; Sherman, S.I.; Sherman, E.J. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol., 2016, 17(9), 1272-1282.
[http://dx.doi.org/10.1016/S1470-2045(16)30166-8] [PMID: 27460442]
[28]
Khunger, A.; Khunger, M.; Velcheti, V. Dabrafenib in combination with trametinib in the treatment of patients with BRAF V600-positive advanced or metastatic non-small cell lung cancer: clinical evidence and experience. Ther. Adv. Respir. Dis., 2018, 12, 1753466618767611.
[http://dx.doi.org/10.1177/1753466618767611] [PMID: 29595366]
[29]
Dhillon, S. Dabrafenib plus Trametinib: a review in advanced melanoma with a BRAF (V600) mutation. Target. Oncol., 2016, 11(3), 417-428.
[http://dx.doi.org/10.1007/s11523-016-0443-8] [PMID: 27246822]
[30]
Ascierto, P.A.; McArthur, G.A.; Dréno, B.; Atkinson, V.; Liszkay, G.; Di Giacomo, A.M.; Mandalà, M.; Demidov, L.; Stroyakovskiy, D.; Thomas, L.; de la Cruz-Merino, L.; Dutriaux, C.; Garbe, C.; Yan, Y.; Wongchenko, M.; Chang, I.; Hsu, J.J.; Koralek, D.O.; Rooney, I.; Ribas, A.; Larkin, J. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol., 2016, 17(9), 1248-1260.
[http://dx.doi.org/10.1016/S1470-2045(16)30122-X] [PMID: 27480103]
[31]
Bowles, D.W.; Weickhardt, A.J.; Doebele, R.C.; Camidge, D.R.; Jimeno, A. Crizotinib for the treatment of patients with advanced non-small cell lung cancer. Drugs Today (Barc), 2012, 48(4), 271-282.
[http://dx.doi.org/10.1358/dot.2012.48.4.1769835] [PMID: 22536569]
[32]
Landi, L.; Cappuzzo, F. Ceritinib for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer. Expert Rev. Clin. Pharmacol., 2016, 9(2), 203-214.
[http://dx.doi.org/10.1586/17512433.2016.1122518] [PMID: 26582431]
[33]
Muller, I.B.; de Langen, A.J.; Giovannetti, E.; Peters, G.J. Anaplastic lymphoma kinase inhibition in metastatic non-small cell lung cancer: clinical impact of alectinib. OncoTargets Ther., 2017, 10, 4535-4541.
[http://dx.doi.org/10.2147/OTT.S109493] [PMID: 28979145]
[34]
Camidge, D.R.; Kim, D-W.; Tiseo, M.; Langer, C.J.; Ahn, M-J.; Shaw, A.T.; Huber, R.M.; Hochmair, M.J.; Lee, D.H.; Bazhenova, L.A.; Gold, K.A.; Ou, S.I.; West, H.L.; Reichmann, W.; Haney, J.; Clackson, T.; Kerstein, D.; Gettinger, S.N. Exploratory analysis of Brigatinib activity in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer and brain metastases in two clinical trials. J. Clin. Oncol., 2018, 36(26), 2693-2701.
[http://dx.doi.org/10.1200/JCO.2017.77.5841] [PMID: 29768119]
[35]
Yang, J.; Gong, W. Lorlatinib for the treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer. Expert Rev. Clin. Pharmacol., 2019, 12(3), 173-178.
[http://dx.doi.org/10.1080/17512433.2019.1570846] [PMID: 30657349]
[36]
Da Roit, F.; Engelberts, P.J.; Taylor, R.P.; Breij, E.C.W.; Gritti, G.; Rambaldi, A.; Introna, M.; Parren, P.W.H.I.; Beurskens, F.J.; Golay, J. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy. Haematologica, 2015, 100(1), 77-86.
[http://dx.doi.org/10.3324/haematol.2014.107011] [PMID: 25344523]
[37]
Izutsu, K.; Ando, K.; Ennishi, D.; Shibayama, H.; Suzumiya, J.; Yamamoto, K.; Ichikawa, S.; Kato, K.; Kumagai, K.; Patel, P.; Iizumi, S.; Hayashi, N.; Kawasumi, H.; Murayama, K.; Nagai, H. Safety and antitumor activity of acalabrutinib for relapsed/refractory B-cell malignancies: a Japanese phase I study. Cancer Sci., 2021, 112(6), 2405-2415.
[http://dx.doi.org/10.1111/cas.14886] [PMID: 33728735]
[38]
Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; Lo-Coco, F.; Klisovic, R.B.; Wei, A.; Sierra, J.; Sanz, M.A.; Brandwein, J.M.; de Witte, T.; Niederwieser, D.; Appelbaum, F.R.; Medeiros, B.C.; Tallman, M.S.; Krauter, J.; Schlenk, R.F.; Ganser, A.; Serve, H.; Ehninger, G.; Amadori, S.; Larson, R.A.; Döhner, H. Midostaurin plus chemotherapy for acute myeloid leukemia with FLT3 mutation. N. Engl. J. Med., 2017, 377(5), 454-464.
[http://dx.doi.org/10.1056/NEJMoa1614359] [PMID: 28644114]
[39]
Daver, N.; Cortes, J.; Newberry, K.; Jabbour, E.; Zhou, L.; Wang, X.; Pierce, S.; Kadia, T.; Sasaki, K.; Borthakur, G.; Ravandi, F.; Pemmaraju, N.; Kantarjian, H.; Verstovsek, S. Ruxolitinib in combination with lenalidomide as therapy for patients with myelofibrosis. Haematologica, 2015, 100(8), 1058-1063.
[http://dx.doi.org/10.3324/haematol.2015.126821] [PMID: 26088933]
[40]
Graf, S.A.; Gopal, A.K. Idelalisib for the treatment of non-Hodgkin lymphoma. Expert Opin. Pharmacother., 2016, 17(2), 265-274.
[http://dx.doi.org/10.1517/14656566.2016.1135130] [PMID: 26818003]
[41]
Kumar, A.; Bhatia, R.; Chawla, P.; Anghore, D.; Saini, V.; Rawal, R.K. Copanlisib: novel PI3K inhibitor for the treatment of lymphoma. Anticancer. Agents Med. Chem., 2020, 20(10), 1158-1172.
[http://dx.doi.org/10.2174/1871520620666200317105207] [PMID: 32183683]
[42]
Ettl, J.; Harbeck, N. The safety and efficacy of palbociclib in the treatment of metastatic breast cancer. Expert Rev. Anticancer Ther., 2017, 17(8), 661-668.
[http://dx.doi.org/10.1080/14737140.2017.1347506] [PMID: 28649895]
[43]
Neven, P.; Sonke, G.S.; Jerusalem, G. Ribociclib plus fulvestrant in the treatment of breast cancer. Expert Rev. Anticancer Ther., 2021, 21(1), 93-106.
[http://dx.doi.org/10.1080/14737140.2021.1840360] [PMID: 33085548]
[44]
El Hachem, G.; Gombos, A.; Awada, A. Abemaciclib, a third CDK 4/6 inhibitor for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer. Expert Rev. Anticancer Ther., 2021, 21(1), 81-92.
[http://dx.doi.org/10.1080/14737140.2020.1834385] [PMID: 33054442]
[45]
Markham, A. Selpercatinib: first approval. Drugs, 2020, 80(11), 1119-1124.
[http://dx.doi.org/10.1007/s40265-020-01343-7] [PMID: 32557397]
[46]
Markham, A. Pralsetinib: first approval. Drugs, 2020, 80(17), 1865-1870.
[http://dx.doi.org/10.1007/s40265-020-01427-4] [PMID: 33136236]
[47]
Dhillon, S. Capmatinib: first approval. Drugs, 2020, 80(11), 1125-1131.
[http://dx.doi.org/10.1007/s40265-020-01347-3] [PMID: 32557339]
[48]
Markham, A. Tepotinib: first approval. Drugs, 2020, 80(8), 829-833.
[http://dx.doi.org/10.1007/s40265-020-01317-9] [PMID: 32361823]
[49]
Markham, A. Erdafitinib: first global approval. Drugs, 2019, 79(9), 1017-1021.
[http://dx.doi.org/10.1007/s40265-019-01142-9] [PMID: 31161538]
[50]
Scott, L.J. Larotrectinib: first global approval. Drugs, 2019, 79(2), 201-206.
[http://dx.doi.org/10.1007/s40265-018-1044-x] [PMID: 30635837]
[51]
Al-Salama, Z.T.; Keam, S.J. Entrectinib: first global approval. Drugs, 2019, 79(13), 1477-1483.
[http://dx.doi.org/10.1007/s40265-019-01177-y] [PMID: 31372957]
[52]
Markham, A.; Dhillon, S. Acalabrutinib: first global approval. Drugs, 2018, 78(1), 139-145.
[http://dx.doi.org/10.1007/s40265-017-0852-8] [PMID: 29209955]
[53]
Syed, Y.Y. Zanubrutinib: first approval. Drugs, 2020, 80(1), 91-97.
[http://dx.doi.org/10.1007/s40265-019-01252-4] [PMID: 31933167]
[54]
Usman, S.; Khawer, M.; Rafique, S.; Naz, Z.; Saleem, K. The current status of anti-GPCR drugs against different cancers. J. Pharm. Anal., 2020, 10(6), 517-521.
[http://dx.doi.org/10.1016/j.jpha.2020.01.001] [PMID: 33425448]
[55]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[56]
Sun, W-Y.; Wu, J-J.; Peng, W-T.; Sun, J-C.; Wei, W. The role of G protein-coupled receptor kinases in the pathology of malignant tumors. Acta Pharmacol. Sin., 2018, 39(11), 1699-1705.
[http://dx.doi.org/10.1038/s41401-018-0049-z] [PMID: 29921886]
[57]
Yu, S.; Sun, L.; Jiao, Y.; Lee, L.T.O. The role of G protein-coupled receptor kinases in cancer. Int. J. Biol. Sci., 2018, 14(2), 189-203.
[http://dx.doi.org/10.7150/ijbs.22896] [PMID: 29483837]
[58]
Xu, G.; Gaul, M.D.; Liu, Z.; DesJarlais, R.L.; Qi, J.; Wang, W.; Krosky, D.; Petrounia, I.; Milligan, C.M.; Hermans, A.; Lu, H-R.; Huang, D.Z.; Xu, J.Z.; Spurlino, J.C. Hit-to-lead optimization and discovery of a potent, and orally bioavailable G protein coupled receptor kinase 2 (GRK2) inhibitor. Bioorg. Med. Chem. Lett., 2020, 30(23), 127602.
[http://dx.doi.org/10.1016/j.bmcl.2020.127602] [PMID: 33038544]
[59]
Waldschmidt, H.V.; Bouley, R.; Kirchhoff, P.D.; Lee, P.; Tesmer, J.J.G.; Larsen, S.D. Utilizing a structure-based docking approach to develop potent G protein-coupled receptor kinase (GRK) 2 and 5 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(9), 1507-1515.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.082] [PMID: 29627263]
[60]
Waldschmidt, H.V.; Homan, K.T.; Cato, M.C.; Cruz-Rodríguez, O.; Cannavo, A.; Wilson, M.W.; Song, J.; Cheung, J.Y.; Koch, W.J.; Tesmer, J.J.G.; Larsen, S.D. Structure-based design of highly selective and potent G protein-coupled receptor kinase 2 inhibitors based on Paroxetine. J. Med. Chem., 2017, 60(7), 3052-3069.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00112] [PMID: 28323425]
[61]
Waldschmidt, H.V.; Homan, K.T.; Cruz-Rodríguez, O.; Cato, M.C.; Waninger-Saroni, J.; Larimore, K.M.; Cannavo, A.; Song, J.; Cheung, J.Y.; Kirchhoff, P.D.; Koch, W.J.; Tesmer, J.J.G.; Larsen, S.D. Structure-based design, synthesis, and biological evaluation of highly selective and potent G protein-coupled receptor kinase 2 inhibitors. J. Med. Chem., 2016, 59(8), 3793-3807.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02000] [PMID: 27050625]
[62]
Jeltsch, M.; Leppänen, V-M.; Saharinen, P.; Alitalo, K. Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a009183.
[http://dx.doi.org/10.1101/cshperspect.a009183] [PMID: 24003209]
[63]
Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell, 2019, 176(6), 1248-1264.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[64]
Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol., 2019, 12(1), 27.
[http://dx.doi.org/10.1186/s13045-019-0718-5] [PMID: 30866992]
[65]
Cheng, K.; Liu, C-F.; Rao, G-W. Anti-angiogenic agents: A review on vascular growth factor receptor-2 (VEGFR-2) inhibitors. Curr. Med. Chem., 2021, 28(13), 2540-2564.
[http://dx.doi.org/10.2174/0929867327666200514082425] [PMID: 32407259]
[66]
Zaware, N.; Kisliuk, R.; Bastian, A.; Ihnat, M.A.; Gangjee, A. Synthesis and evaluation of 5-(arylthio)-9H-pyrimido[4,5-b]indole-2,4-diamines as receptor tyrosine kinase and thymidylate synthase inhibitors and as antitumor agents. Bioorg. Med. Chem. Lett., 2017, 27(7), 1602-1607.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.018] [PMID: 28258797]
[67]
Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo[2,3-d]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.001] [PMID: 30248512]
[68]
Sun, W.; Hu, S.; Fang, S.; Yan, H. Design, synthesis and biological evaluation of pyrimidine-based derivatives as VEGFR-2 tyrosine kinase inhibitors. Bioorg. Chem., 2018, 78, 393-405.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.005] [PMID: 29677483]
[69]
Sana, S.; Reddy, V.G.; Bhandari, S.; Reddy, T.S.; Tokala, R.; Sakla, A.P.; Bhargava, S.K.; Shankaraiah, N. Exploration of carbamide derived pyrimidine-thioindole conjugates as potential VEGFR-2 inhibitors with anti-angiogenesis effect. Eur. J. Med. Chem., 2020, 200, 112457.
[http://dx.doi.org/10.1016/j.ejmech.2020.112457] [PMID: 32422489]
[70]
Roaiah, H.M.; Ghannam, I.A.Y.; Ali, I.H.; El Kerdawy, A.M.; Ali, M.M.; Abbas, S.E.; El-Nakkady, S.S. Design, synthesis, and molecular docking of novel indole scaffold-based VEGFR-2 inhibitors as targeted anticancer agents. Arch. Pharm. (Weinheim), 2018, 351(2), 1700299.
[http://dx.doi.org/10.1002/ardp.201700299] [PMID: 29323750]
[71]
Al-Wahaibi, L.H.; Gouda, A.M.; Abou-Ghadir, O.F.; Salem, O.I.A.; Ali, A.T.; Farghaly, H.S.; Abdelrahman, M.H.; Trembleau, L.; Abdu-Allah, H.H.M.; Youssif, B.G.M. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAFV600E dual inhibitors. Bioorg. Chem., 2020, 104, 104260.
[http://dx.doi.org/10.1016/j.bioorg.2020.104260] [PMID: 32920363]
[72]
Mohamed, F.A.M.; Gomaa, H.A.M.; Hendawy, O.M.; Ali, A.T.; Farghaly, H.S.; Gouda, A.M.; Abdelazeem, A.H.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg. Chem., 2021, 112, 104960.
[http://dx.doi.org/10.1016/j.bioorg.2021.104960] [PMID: 34020242]
[73]
Holderfield, M.; Deuker, M.M.; McCormick, F.; McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer, 2014, 14(7), 455-467.
[http://dx.doi.org/10.1038/nrc3760] [PMID: 24957944]
[74]
Maurer, G.; Tarkowski, B.; Baccarini, M. Raf kinases in cancer-roles and therapeutic opportunities. Oncogene, 2011, 30(32), 3477-3488.
[http://dx.doi.org/10.1038/onc.2011.160] [PMID: 21577205]
[75]
Jiao, Y.; Xin, B-T.; Zhang, Y.; Wu, J.; Lu, X.; Zheng, Y.; Tang, W.; Zhou, X. Design, synthesis and evaluation of novel 2-(1H-imidazol-2-yl) pyridine Sorafenib derivatives as potential BRAF inhibitors and anti-tumor agents. Eur. J. Med. Chem., 2015, 90, 170-183.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.008] [PMID: 25461318]
[76]
El-Damasy, A.K.; Lee, J-H.; Seo, S.H.; Cho, N-C.; Pae, A.N.; Keum, G. Design and synthesis of new potent anti-cancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-Raf(V600E) and C-Raf kinase inhibitory activities. Eur. J. Med. Chem., 2016, 115, 201-216.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.039] [PMID: 27017549]
[77]
Abdelatef, S.A.; El-Saadi, M.T.; Amin, N.H.; Abdelazeem, A.H.; Omar, H.A.; Abdellatif, K.R.A. Design, synthesis and anticancer evaluation of novel spirobenzo[h]chromene and spirochromane derivatives with dual EGFR and B-RAF inhibitory activities. Eur. J. Med. Chem., 2018, 150, 567-578.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.001] [PMID: 29549841]
[78]
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: an overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168.
[http://dx.doi.org/10.2174/1871520620666200705214917] [PMID: 32628593]
[79]
Wang, Y.; Wan, S.; Li, Z.; Fu, Y.; Wang, G.; Zhang, J.; Wu, X. Design, synthesis, biological evaluation and molecular modeling of novel 1H-pyrazolo[3,4-d]pyrimidine derivatives as BRAFV600E and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2018, 155, 210-228.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.054] [PMID: 29886324]
[80]
Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; Ionescu, C.; Neagoe, I.B. A comprehensive review on MAPK: A promising therapeutic target in cancer. Cancers (MDPI), 2019, 11Article 1618.
[http://dx.doi.org/10.3390/cancers11101618]
[81]
Lee, S.; Rauch, J.; Kolch, W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int. J. Mol. Sci. (MDPI), 2020, 21Article 1102.
[82]
Peluso, I.; Yarla, N.S.; Ambra, R.; Pastore, G.; Perry, G. MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Semin. Cancer Biol., 2019, 56, 185-195.
[http://dx.doi.org/10.1016/j.semcancer.2017.09.002] [PMID: 28912082]
[83]
Prasher, P.; Sharma, M. Tailored therapeutics based on 1,2,3-1H-triazoles: a mini review. MedChemComm, 2019, 10(8), 1302-1328.
[http://dx.doi.org/10.1039/C9MD00218A] [PMID: 31534652]
[84]
Prasher, P.; Sharma, M.; Zacconi, F.; Gupta, G.; Aljabali, A.A.; Mishra, V.; Tambuwala, M.M.; Kapoor, D.N.; Negi, P.; Pinto, T.J.A.; Singh, I.; Chellappan, D.K.; Dua, K. Synthesis and anticancer properties of ‘Azole’ based chemotherapeutics as emerging chemical moieties: a comprehensive review. Curr. Org. Chem., 2021, 25, 654-668.
[http://dx.doi.org/10.2174/1385272824999200820152501]
[85]
Prasher, P.; Sharma, M.; Aljabali, A.A.A.; Gupta, G.; Negi, P.; Kapoor, D.N.; Singh, I.; Zacconi, F.C.; de Jesus Andreoli Pinto, T.; da Silva, M.W.; Bakshi, H.A.; Chellappan, D.K.; Tambuwala, M.M.; Dua, K. Hybrid molecules based on 1,3,5-triazine as potential therapeutics: a focused review. Drug Dev. Res., 2020, 81(7), 837-858.
[http://dx.doi.org/10.1002/ddr.21704] [PMID: 32579723]
[86]
Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81, 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[87]
Prasher, P.; Mudila, H.; Sharma, M.; Khati, B. Developmental perspective of the drugs targeting enzyme-instigated inflammation: a mini review. Med. Chem. Res., 2019, 28, 417-449.
[http://dx.doi.org/10.1007/s00044-019-02315-7]
[88]
Tariq, S.; Alam, O.; Amir, M. Synthesis, anti-inflammatory, p38α MAP kinase inhibitory activities and molecular docking studies of quinoxaline derivatives containing triazole moiety. Bioorg. Chem., 2018, 76, 343-358.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.003] [PMID: 29227918]
[89]
Tariq, S.; Alam, O.; Amir, M. Synthesis, p38α MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Arch. Pharm, 2018, 351, 1700304.
[http://dx.doi.org/10.1002/ardp.201700304]
[90]
Walter, N.M.; Wentsch, H.K.; Bührmann, M.; Bauer, S.M.; Döring, E.; Mayer-Wrangowski, S.; Sievers-Engler, A.; Willemsen-Seegers, N.; Zaman, G.; Buijsman, R.; Lämmerhofer, M.; Rauh, D.; Laufer, S.A. Design, synthesis, and biological evaluation of novel type I1/2 p38α MAP kinase inhibitors with excellent selectivity, high potency, and prolonger target resident time by interfering with the R-spine. J. Med. Chem., 2017, 60(19), 8027-8054.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00745] [PMID: 28834431]
[91]
Pedreira, J.G.B.; Nahidino, P.; Kudolo, M.; Pantsar, T.; Berger, B.T.; Forster, M.; Knapp, S.; Laufer, S.; Barreiro, E.J. Bioisosteric replacement of arylamide linked spine residues with N-acylhydrazones and Selenophenes as a design strategy to novel dibenzosuberone derivatives as Type I1/2 p38α MAP kinase inhibitors. J. Med. Chem., 2020, 63(13), 7347-7354.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00508] [PMID: 32462866]
[92]
Musumeci, D.; Roviello, G.N.; Rigione, G.; Capasso, D.; Di Gaetano, S.; Riccardi, C.; Roviello, V.; Montesarchio, D. Benzofuran derivatives as potential antiproliferative agents: possible correlation between their bioactivity and aggregation properties. ChemPlusChem, 2017, 82(2), 251-260.
[http://dx.doi.org/10.1002/cplu.201600547] [PMID: 31961558]
[93]
Vicidomini, C.; Cioffi, F.; Broersen, K.; Roviello, V.; Riccardi, C.; Montesarchio, D.; Capasso, D.; Di Gaetano, S.; Musumeci, D.; Roviello, G.N. Benzofurans for biomedical applications: BZ4, a selective anti-proliferative and antiamyloid lead compound. Future Med. Chem. , 2019, 11, Article 0473.
[94]
Kaieda, A.; Takahashi, M.; Takai, T.; Goto, M.; Miyazaki, T.; Hori, Y.; Unno, S.; Kawamoto, T.; Tanaka, T.; Itono, S.; Takagi, T.; Hamada, T.; Shirasaki, M.; Okada, K.; Snell, G.; Bragstad, K.; Sang, B-C.; Uchikawa, O.; Miwatashi, S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg. Med. Chem., 2018, 26(3), 647-660.
[http://dx.doi.org/10.1016/j.bmc.2017.12.031] [PMID: 29291937]
[95]
Amin, K.M.; Syam, Y.M.; Anwar, M.M.; Ali, H.I.; Abdel-Ghani, T.M.; Serry, A.M. Synthesis and molecular docking study of new benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorg. Chem., 2018, 76, 487-500.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.029] [PMID: 29310080]
[96]
Heider, F.; Ansideri, F.; Tesch, R.; Pantsar, T.; Haun, U.; Döring, E.; Kudolo, M.; Poso, A.; Albrecht, W.; Laufer, S.A.; Koch, P. Pyridinylimidazoles as dual glycogen synthase kinase 3β/p38α mitogen-activated protein kinase inhibitors. Eur. J. Med. Chem., 2019, 175, 309-329.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.035] [PMID: 31096153]
[97]
Somakala, K.; Tariq, S.; Amir, M. Synthesis, evaluation and docking of novel pyrazolo pyrimidines as potent p38α MAP kinase inhibitors with improved anti-inflammatory, ulcerogenic and TNF-α inhibitory properties. Bioorg. Chem., 2019, 87, 550-559.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.037] [PMID: 30928877]
[98]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[99]
Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase-2 inhibitors in cancer therapy: an update. J. Med. Chem., 2019, 62(9), 4233-4251.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[100]
Galbraith, M.D.; Bender, H.; Espinosa, J.M. Therapeutic targeting of transcriptional cyclin-dependent kinases. Transcription, 2019, 10(2), 118-136.
[http://dx.doi.org/10.1080/21541264.2018.1539615] [PMID: 30409083]
[101]
Ding, L.; Cao, J.; Lin, W.; Chen, H.; Xiong, X.; Ao, H.; Yu, M.; Lin, J.; Cui, Q. The roles of cyclin-dependent kinases in cell cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci. (MDPI), 2020, 21 Article 1960.
[http://dx.doi.org/10.3390/ijms21061960]
[102]
Alsfouk, A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 693-706.
[http://dx.doi.org/10.1080/14756366.2021.1890726] [PMID: 33632038]
[103]
Lv, X.; Tian, Y.; Li, S.; Cheng, K.; Huang, X.; Kong, H.; Liao, C.; Xie, Z. Discovery and development of cyclin-dependent kinase 8 inhibitors. Curr. Med. Chem., 2020, 27(32), 5429-5443.
[http://dx.doi.org/10.2174/0929867326666190402110528] [PMID: 30947649]
[104]
Whittaker, S.R.; Mallinger, A.; Workman, P.; Clarke, P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther., 2017, 173, 83-105.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.008] [PMID: 28174091]
[105]
Marak, B.N.; Dowarah, J.; Khiangte, L.; Singh, V.P. A comprehensive insight on the recent development of Cyclic Dependent Kinase inhibitors as anticancer agents. Eur. J. Med. Chem., 2020, 203, 112571.
[http://dx.doi.org/10.1016/j.ejmech.2020.112571] [PMID: 32707525]
[106]
Kishbaugh, T.L. Tara. Pyridines and Imidazopyridines with medicinal significance. Curr. Top. Med. Chem., 2016, 16(28), 3274-3302.
[http://dx.doi.org/10.2174/1568026616666160506145141] [PMID: 27150370]
[107]
Wu, Y-Z.; Ying, H.Z.; Xu, L.; Cheng, G.; Chen, J.; Hu, Y-Z.; Liu, T.; Dong, X-W. Design, synthesis, and molecular docking study of 3H-imidazole[4,5-c]pyridine derivatives as CDK2 inhibitors. Arch. Pharm. (Weinheim), 2018, 351(6), e1700381.
[http://dx.doi.org/10.1002/ardp.201700381] [PMID: 29708285]
[108]
Ghanem, N.M.; Farouk, F.; George, R.F.; Abbas, S.E.S.; El-Badry, O.M. Design and synthesis of novel imidazo[4,5-b]pyridine based compounds as potent anticancer agents with CDK9 inhibitory activity. Bioorg. Chem., 2018, 80, 565-576.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.006] [PMID: 30025343]
[109]
Wang, Y.; Liu, W-J.; Yin, L.; Li, H.; Chen, Z.H.; Zhu, D.X.; Song, X.Q.; Cheng, Z.Z.; Song, P.; Wang, Z.; Li, Z.G. Design and synthesis of 4-(2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazol-7-yl)-N-(5-(piperazin-1-ylmethyl)pyridine-2-yl)pyrimidin-2-amine as a highly potent and selective cyclin-dependent kinases 4 and 6 inhibitors and the discovery of structure-activity relationships. Bioorg. Med. Chem. Lett., 2018, 28(5), 974-978.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.068] [PMID: 29429832]
[110]
Li, Y.; Guo, Q.; Zhang, C.; Huang, Z.; Wang, T.; Wang, X.; Wang, X.; Xu, G.; Liu, Y.; Yang, S.; Fan, Y.; Xiang, R. Discovery of a highly potent, selective and novel CDK9 inhibitor as an anticancer drug candidate. Bioorg. Med. Chem. Lett., 2017, 27(15), 3231-3237.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.041] [PMID: 28651979]
[111]
Park, S.J.; Kim, E.; Yoo, M.; Lee, J-Y.; Park, C.H.; Hwang, J.Y.; Ha, J.D. Synthesis and biological evaluation of N9-cis-cyclobutylpurine derivatives for use as cyclin-dependent kinase (CDK) inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(18), 4399-4404.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.018] [PMID: 28827110]
[112]
Abdeldayem, A.; Raouf, Y.S.; Constantinescu, S.N.; Moriggl, R.; Gunning, P.T. Advances in covalent kinase inhibitors. Chem. Soc. Rev., 2020, 49(9), 2617-2687.
[http://dx.doi.org/10.1039/C9CS00720B] [PMID: 32227030]
[113]
Ghosh, A.K.; Samanta, I.; Mondal, A.; Liu, W.R. Covalent inhibition in drug discovery. ChemMedChem, 2019, 14(9), 889-906.
[http://dx.doi.org/10.1002/cmdc.201900107] [PMID: 30816012]
[114]
Muth, F.; El-Gokha, A.; Ansideri, F.; Eitel, M.; Döring, E.; Sievers-Engler, A.; Lange, A.; Boeckler, F.M.; Lämmerhofer, M.; Koch, P.; Laufer, S.A. Tri-and tetrasubstituted pyridinylimidazoles as covalent inhibitors of c-Jun N-terminal kinase 3. J. Med. Chem., 2017, 60(2), 594-607.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01180] [PMID: 27977190]
[115]
Tomassi, S.; Lategahn, J.; Engel, J.; Keul, M.; Tumbrink, H.L.; Ketzer, J.; Mühlenberg, T.; Baumann, M.; Schultz-Fademrecht, C.; Bauer, S.; Rauh, D. Indazole-based covalent inhibitors to target drug-resistant epidermal growth factor receptor. J. Med. Chem., 2017, 60(6), 2361-2372.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01626] [PMID: 28225269]
[116]
Knoepfel, T.; Furet, P.; Mah, R.; Buschmann, N.; Leblanc, C.; Ripoche, S.; Graus-Porta, D.; Wartmann, M.; Galuba, I.; Fairhurst, R.A. 2-formylpyridyl ureas as highly selective reversible covalent inhibitors of fibroblast growth factor receptor 4. ACS Med. Chem. Lett., 2018, 9(3), 215-220.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00485] [PMID: 29541363]
[117]
Jia, C-C.; Chen, W.; Feng, Z-L.; Liu, Z-P. Recent developments of RET protein kinase inhibitors with diverse scaffolds as hinge binders. Future Med. Chem., 2021, 13(1), 45-62.
[http://dx.doi.org/10.4155/fmc-2020-0170] [PMID: 33242992]
[118]
Wang, C.; Liu, H.; Song, Z.; Ji, Y.; Xing, L.; Peng, X.; Wang, X.; Ai, J.; Geng, M.; Zhang, A. Synthesis and structure-activity relationship study of pyrazolo[3,4-d]pyrimidines as tyrosine kinase RET inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(11), 2544-2548.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.088] [PMID: 28404375]
[119]
Lakkaniga, N.R.; Gunaganti, N.; Zhang, L.; Belachew, B.; Frett, B.; Leung, Y-K.; Li, H-Y. Pyrrolo[2,3-d]pyrimidine derivatives as inhibitors of RET: design, synthesis and biological evaluation. Eur. J. Med. Chem., 2020, 206, 112691.
[http://dx.doi.org/10.1016/j.ejmech.2020.112691] [PMID: 32823007]
[120]
Golkowski, M.; Vidadala, R.S.R.; Lombard, C.K.; Suh, H.W.; Maly, D.J.; Ong, S-E. Kinobead and single-shot LC-MS profiling identifies selective PKD inhibitors. J. Proteome Res., 2017, 16(3), 1216-1227.
[http://dx.doi.org/10.1021/acs.jproteome.6b00817] [PMID: 28102076]
[121]
Eberl, H.C.; Werner, T.; Reinhard, F.B.; Lehmann, S.; Thomson, D.; Chen, P.; Zhang, C.; Rau, C.; Muelbaier, M.; Drewes, G.; Drewry, D.; Bantscheff, M. Chemical proteomics reveals target selectivity of clinical Jak inhibitors in human primary cells. Sci. Rep., 2019, 9(1), 14159.
[http://dx.doi.org/10.1038/s41598-019-50335-5] [PMID: 31578349]
[122]
Médard, G.; Pachl, F.; Ruprecht, B.; Klaeger, S.; Heinzlmeir, S.; Helm, D.; Qiao, H.; Ku, X.; Wilhelm, M.; Kuehne, T.; Wu, Z.; Dittmann, A.; Hopf, C.; Kramer, K.; Kuster, B. Optimized chemical proteomics assay for kinase inhibitor profiling. J. Proteome Res., 2015, 14(3), 1574-1586.
[http://dx.doi.org/10.1021/pr5012608] [PMID: 25660469]
[123]
Dittus, L.; Werner, T.; Muelbaier, M.; Bantscheff, M. Differential kinobeads profiling for target identification of irreversible kinase inhibitors. ACS Chem. Biol., 2017, 12(10), 2515-2521.
[http://dx.doi.org/10.1021/acschembio.7b00617] [PMID: 28876896]