Gisekia pharnaceoides Restores Colonic Mucosal Homeostasis by Regulating Antioxidant Enzyme System and Cytokines Signaling in Ulcerative Colitis Mice Model

Page: [133 - 142] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Gisekia pharnaceoides Linn. (Aizoaceae), traditionally known as baluka saag or sareli is commonly found in the deep Cholistan region of Pakistan. It is used by the native community for the mitigation of a range of diseases, including inflammatory disorders and gastric ulcers.

Objective: This study is designed to evaluate the defensive impact of G. pharnaceoides in acetic acid-induced ulcerative colitis in mice and to discover the mechanism for anti-inflammatory action.

Methods: The ethanolic crude extract of G. pharnaceoides (Gp.Cr) was prepared and evaluated for phytochemical substances by preliminary screening and HPLC analysis. Anti-inflammatory activity of Gp.Cr (300 and 500 mg/kg) was examined by administration of 200 μl of 7.5% acetic acid intra- rectally to induce ulcerative colitis and colonic mucosal injury, while mucosal homeostasis was evaluated by disease activity index, colonic ulcer score, and hematological parameters. The anti-inflammatory potential was quantified by assessing antioxidant enzymes (SOD, CAT, GPX-1), lipid peroxides, nitric oxide, and cytokines (IL-1β, IL-6, TNF-α) immunoassays and further analyzed by histological analysis of colon tissues.

Results: Phytochemical screening of Gp.Cr revealed the presence of alkaloids, phenols, flavonoids, steroids, tannins, and saponins, while HPLC analysis confirmed the presence of quercetin, gallic acid, coumaric and sinapic acid. In acetic acid-induced ulcerative colitis model, Gp.Cr (300 and 500 mg/kg) along with sulphasalazine (500 mg/kg) decreased disease activity index, ulcer scores, and hematological parameters. Gp.Cr showed a significant anti-inflammatory potential by increasing antioxidant enzymes and decreasing lipid peroxides, nitric oxide, and cytokines levels. Histopathological examination showed a significant decline in ulceration and tissue disruption.

Conclusion: Hence, the findings confirmed the effectiveness of G. pharnaceoides crude extract in the treatment of ulcerative colitis and might be a promising remedy to manage inflammatory disorders.

Keywords: Gisekia pharnaceoides, acetic acid, ulcerative colitis, cytokines, reactive oxygen species, inflammation.

Graphical Abstract

[1]
C., ; Lissoos, T.; Darr, U.; Luo, M. Risk of infection and types of infection among elderly patients with inflammatory bowel disease: a retrospective database analysis. Inflamm. Bowel Dis., 2020, 26(3), 462-468.
[PMID: 30980714]
[2]
Ryan, F.J.; Ahern, A.M.; Fitzgerald, R.S.; Laserna-Mendieta, E.J.; Power, E.M.; Clooney, A.G.; O’Donoghue, K.W.; McMurdie, P.J.; Iwai, S.; Crits-Christoph, A.; Sheehan, D.; Moran, C.; Flemer, B.; Zomer, A.L.; Fanning, A.; O’Callaghan, J.; Walton, J.; Temko, A.; Stack, W.; Jackson, L.; Joyce, S.A.; Melgar, S.; DeSantis, T.Z.; Bell, J.T.; Shanahan, F.; Claesson, M.J. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun., 2020, 11(1), 1512.
[http://dx.doi.org/10.1038/s41467-020-15342-5] [PMID: 32251296]
[3]
Valatas, V.; Bamias, G.; Kolios, G. Experimental colitis models: Insights into the pathogenesis of inflammatory bowel disease and translational issues. Eur. J. Pharmacol., 2015, 759, 253-264.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.017] [PMID: 25814256]
[4]
Bamias, G.; Kaltsa, G.; Ladas, S.D. Cytokines in the pathogenesis of ulcerative colitis. Discov. Med., 2011, 11(60), 459-467.
[PMID: 21616044]
[5]
Osafo, N.; Obiri, D.D.; Danquah, K.O.; Essel, L.B.; Antwi, A.O. Potential effects of xylopic acid on acetic acid-induced ulcerative colitis in rats. Turk. J. Gastroenterol., 2019, 30(8), 732-744.
[http://dx.doi.org/10.5152/tjg.2019.18389] [PMID: 31418418]
[6]
Charan, P.D.; Sharma, K.C. Medicinal flora of the Thar desert of Rajasthan: Therapeutic and antimicrobial importance. Microbsin. Action, 2015, 399-412.
[7]
Wariss, H.M.; Ahmad, S.; Anjum, S.; Alam, K. Ethnobotanical studies of dicotyledonous plants of Lal Suhanra national park, Bahawalpur, Pakistan. Int. J. Sci. Res., 2014, 3(6), 2452-2460.
[8]
Sadat-Hosseini, M.; Farajpour, M.; Boroomand, N.; Solaimani-Sardou, F. Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. J. Ethnopharmacol., 2017, 199(199), 194-204.
[http://dx.doi.org/10.1016/j.jep.2017.02.006] [PMID: 28167292]
[9]
Shaikh, J.R.; Patil, M.K. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud., 2020, 8(2), 603-608.
[http://dx.doi.org/10.22271/chemi.2020.v8.i2i.8834]
[10]
Parekh, J.; Chanda, S. In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turk. J. Biol., 2007, 31(1), 53-58.
[11]
George, V.C.; Kumar, D.R.; Suresh, P.K.; Kumar, R.A. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. J. Food Sci. Technol., 2015, 52(4), 2328-2335.
[http://dx.doi.org/10.1007/s13197-014-1289-7] [PMID: 25829616]
[12]
Javed, F.; Jabeen, Q.; Aslam, N.; Awan, A.M. Pharmacological evaluation of analgesic, anti-inflammatory and antipyretic activities of ethanolic extract of Indigofera argentea Burm. f. J. Ethnopharmacol., 2020, 259, 112966.
[http://dx.doi.org/10.1016/j.jep.2020.112966] [PMID: 32418900]
[13]
Wang, G.; Xu, B.; Shi, F.; Du, M.; Li, Y.; Yu, T.; Chen, L. Protective effect of methane-rich saline on acetic acid-induced ulcerative colitis via blocking the TLR4/NF-κB/MAPK pathway and promoting IL-10/JAK1/STAT3-mediated anti-inflammatory response. Oxid. Med. Cell. Longev., 2019, 2019, 7850324.
[14]
Niu, X.; Fan, T.; Li, W.; Huang, H.; Zhang, Y.; Xing, W. Protective effect of sanguinarine against acetic acid-induced ulcerative colitis in mice. Toxicol. Appl. Pharmacol., 2013, 267(3), 256-265.
[http://dx.doi.org/10.1016/j.taap.2013.01.009] [PMID: 23352506]
[15]
Jagtap, A.G.; Shirke, S.S.; Phadke, A.S. Effect of polyherbal formulation on experimental models of inflammatory bowel diseases. J. Ethnopharmacol., 2004, 90(2-3), 195-204.
[http://dx.doi.org/10.1016/j.jep.2003.09.042] [PMID: 15013181]
[16]
Thippeswamy, B.S.; Mahendran, S.; Biradar, M.I.; Raj, P.; Srivastava, K.; Badami, S.; Veerapur, V.P. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur. J. Pharmacol., 2011, 654(1), 100-105.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.012] [PMID: 21185828]
[17]
Gupta, R.A.; Motiwala, M.N.; Mahajan, U.N.; Sabre, S.G. Protective effect of Sesbania grandiflora on acetic acid induced ulcerative colitis in mice by inhibition of TNF-α and IL-6. J. Ethnopharmacol., 2018, 219, 222-232.
[http://dx.doi.org/10.1016/j.jep.2018.02.043] [PMID: 29530609]
[18]
Arunachalam, K.; Damazo, A.S.; Macho, A.; Lima, J.C.D.S.; Pavan, E.; Figueiredo, F.F.; Oliveira, D.M.; Cechinel-Filho, V.; Wagner, T.M.; Martins, D.T.O. Piper umbellatum L. (Piperaceae): Phytochemical profiles of the hydroethanolic leaf extract and intestinal anti-inflammatory mechanisms on 2,4,6 trinitrobenzene sulfonic acid induced ulcerative colitis in rats. J. Ethnopharmacol., 2020, 254, 112707.
[http://dx.doi.org/10.1016/j.jep.2020.112707] [PMID: 32112897]
[19]
Kondamudi, P.K.; Kovelamudi, H.; Mathew, G.; Nayak, P.G.; Rao, M.C.; Shenoy, R.R. Investigation of sesamol on myeloperoxidase and colon morphology in acetic acid-induced inflammatory bowel disorder in albino rats. ScientificWorldJournal., 2014, 2014, 802701.
[20]
Murad, H.A.; Abdallah, H.M.; Ali, S.S. Mentha longifolia protects against acetic-acid induced colitis in rats. J. Ethnopharmacol., 2016, 190(190), 354-361.
[http://dx.doi.org/10.1016/j.jep.2016.06.016] [PMID: 27282663]
[21]
V, Vinod Prabhu; C, Guruvayoorappan Protective effect of marine mangrove Rhizophora apiculata on acetic acid induced experimental colitis by regulating anti-oxidant enzymes, inflammatory mediators and nuclear factor-kappa B subunits. Int. Immunopharmacol., 2014, 18(1), 124-134.
[http://dx.doi.org/10.1016/j.intimp.2013.11.007] [PMID: 24269623]
[22]
Aleisa, A.M.; Al-Rejaie, S.S.; Abuohashish, H.M.; Ola, M.S.; Parmar, M.Y.; Ahmed, M.M. Pretreatment of Gymnema sylvestre revealed the protection against acetic acid-induced ulcerative colitis in rats. BMC Complement. Altern. Med., 2014, 14(1), 49.
[http://dx.doi.org/10.1186/1472-6882-14-49] [PMID: 24507431]
[23]
Bobin-Dubigeon, C.; Collin, X.; Grimaud, N.; Robert, J.M.; Le Baut, G.; Petit, J.Y. Effects of tumour necrosis factor-α synthesis inhibitors on rat trinitrobenzene sulphonic acid-induced chronic colitis. Eur. J. Pharmacol., 2001, 431(1), 103-110.
[http://dx.doi.org/10.1016/S0014-2999(01)01410-8] [PMID: 11716848]
[24]
Deshmukh, C.D.; Veeresh, B.; Pawar, A.T. Protective effect of Emblica officinalis fruit extract on acetic acid induced colitis in rats. J. Herb. Med. Toxicol, 2010, 4(2), 83-87.
[25]
Tanideh, N.; Nematollahi, S.L.; Hosseini, S.V.; Hosseinzadeh, M.; Mehrabani, D.; Safarpour, A.; Sepehrimanesh, M.; Koohi-Hosseinabadi, O.; Najibi, A. The healing effect of Hypericum perforatum extract on acetic acid-induced ulcerative colitis in rat. Ann. Colorectal. Res, 2014, 2(4), 25188.
[26]
Olamilosoye, K.P.; Akomolafe, R.O.; Akinsomisoye, O.S.; Adefisayo, M.A.; Alabi, Q.K. The aqueous extract of Ocimum gratissimum leaves ameliorates acetic acid-induced colitis via improving antioxidant status and hematological parameters in male Wistar rats. Egypt. J. Basic Appl. Sci., 2018, 5(3), 220-227.
[27]
Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur. J. Immunol., 2005, 35(2), 584-592.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[28]
Imtiaz, S.M.; Aleem, A.; Saqib, F.; Ormenisan, A.N.; Neculau, A.E.; Anastasiu, C.V. The Potential Involvement of an ATP-Dependent Potassium Channel-Opening Mechanism in the Smooth Muscle Relaxant Properties of Tamarix dioica Roxb. Biomolecules, 2019, 9(11), 722.
[http://dx.doi.org/10.3390/biom9110722] [PMID: 31717691]
[29]
Khodayar, B.; Farzaei, M.H.; Abdolghaffari, A.H.; Bahramsoltani, R.; Baeeri, M.; Sabbagh-Ziarani, F.; Mohammadi, M.; Rahimi, R.; Abdollahi, M. The protective effect of the gallic acid against TNBS-induced ulcerative colitis in rats: Role of inflammatory parameters. J. Iran. Med. Counc, 2018, 1(1), 34-42.
[30]
Zhu, H.; Liang, Q.H.; Xiong, X.G.; Wang, Y.; Zhang, Z.H.; Sun, M.J.; Wu, D. Anti-inflammatory effects of p-coumaric acid, a natural compound of Oldenlandia diffusa, on arthritis model rats. Evid. Based. Compl. Alt. Med., 2018, 2018, 5198594.
[31]
Lee, J.Y. Anti-inflammatory effects of sinapic acid on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. Arch. Pharm. Res., 2018, 41(2), 243-250.
[http://dx.doi.org/10.1007/s12272-018-1006-6] [PMID: 29392509]
[32]
Kandhare, A.D.; Ghosh, P.; Ghule, A.E.; Zambare, G.N.; Bodhankar, S.L. Protective effect of Phyllanthus amarus by modulation of endogenous biomarkers and DNA damage in acetic acid induced ulcerative colitis: Role of phyllanthin and hypophyllanthin. Apollo Medicine, 2013, 10(1), 87-97.
[http://dx.doi.org/10.1016/j.apme.2013.01.006]
[33]
Ghafari, H.; Yasa, N.; Mohammadirad, A.; Dehghan, G.; Zamani, M.J.; Nikfar, S.; Khorasani, R.; Minaie, B.; Abdollahi, M. Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity. Hum. Exp. Toxicol., 2006, 25(6), 325-332.
[http://dx.doi.org/10.1191/0960327105ht626oa] [PMID: 16866190]
[34]
Biradar, S.M.; Aswathanarayana, B.J.; Kulkarni, V.H.; Kulkarni, P.V.; Smita, D.M.; Tarak, K.C. Protective effects of ethanolic extract of Ageratum conyzoides on experimental induced inflammatory bowel disease. J. Pharmacol. Toxicol, 2011, 6, 664-678.
[http://dx.doi.org/10.3923/jpt.2011.664.678]
[35]
Zenlea, T.; Peppercorn, M.A. Immunosuppressive therapies for inflammatory bowel disease. World J. Gastroenterol., 2014, 20(12), 3146-3152.
[http://dx.doi.org/10.3748/wjg.v20.i12.3146] [PMID: 24696600]
[36]
Owusu, G.; Obiri, D.D.; Ainooson, G.K.; Osafo, N.; Antwi, A.O.; Duduyemi, B.M.; Ansah, C. Acetic acid-induced ulcerative colitis in sprague dawley rats is suppressed by hydroethanolic extract of Cordia vignei leaves through reduced serum levels of TNF-α and IL-6. Int. J. Chronic Dis., 2020, 2020
[37]
Adjadj, M.; Baghiani, A.; Boumerfeg, S.; Noureddine, C.; Khennouf, S.; Arrar, L.; Mubarak, M.S. Protective effect of Paronychia argentea L. on acetic acid induced ulcerative colitis in mice by regulating antioxidant parameters and inflammatory markers. Pharma Chem., 2016, 8(4), 207-218.
[38]
Niki, E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors, 2008, 34(2), 171-180.
[http://dx.doi.org/10.1002/biof.5520340208] [PMID: 19706982]
[39]
Perner, A.; Rask-Madsen, J. Review article: the potential role of nitric oxide in chronic inflammatory bowel disorders. Aliment. Pharmacol. Ther., 1999, 13(2), 135-144.
[http://dx.doi.org/10.1046/j.1365-2036.1999.00453.x] [PMID: 10102942]
[40]
Dejban, P.; Rahimi, N.; Takzare, N.; Dehpour, A.R. Biochemical and histopathological evidence for the beneficial effects of modafinil on the rat model of inflammatory bowel disease: involvement of nitric oxide pathway. Pharmacol. Rep., 2020, 72(1), 135-146.
[http://dx.doi.org/10.1007/s43440-019-00054-5] [PMID: 32016839]