Profiling the HCV Immune Response in Patients with Chronic Liver Diseases and Hepatocellular Carcinoma by Peptide Microarray Analysis

Page: [2736 - 2747] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Chronic infection with hepatitis C virus (HCV) is among the major causes of hepatic fibrosis, cirrhosis, as well as hepatocellular carcinoma (HCC), and it is associated with a significant risk of developing lymphoproliferative disorders. The rate of clinical disease progression is variable depending on multiple host and viral factors, including immune response.

Methods: To perform a comprehensive epitope mapping of anti-HCV antibodies in patients suffering from HCV-related liver or lymphoproliferative diseases, we analyzed clinical samples on a peptide microarray platform made of 5952 overlapping 15-mer synthetic peptides derived from the whole HCV proteome. We evaluated the antibody profile of 71 HCV-positive patients diagnosed with HCC, mixed cryoglobulinemia (MC), and HCV chronic infection. Antibody reactivity against virus peptides was detected in all HCVpositive patients. Importantly, the signal amplitude varied significantly within and between diverse patient groups.

Results: Antibody reactivity against C peptides were found generally low in HCV chronically infected asymptomatic subjects and increasingly high in HCC and MC patients. Moreover, we found a statistically significant higher IgG response in HCC and MC patients against specific domains of HCV C, E2, NS3, NS4A, NS4B, NS5A, and p7 compared to HCV-positive subjects.

Conclusion: In conclusion, our data suggest that immune response against specific HCV protein domains may represent useful biomarkers of disease progression among HCVpositive patients and suggest that peptide microarrays are good tools for the screening of immunotherapy targets in preclinical HCV research.

Keywords: Hepatocellular carcinoma (HCC), Mixed cryoglobulinemia (MC), Hepatitis C virus (HCV), peptides microarray, antibodies, peptide biomarker, lymphoproliferative disorders.

[1]
Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol., 2014, 61(1)(Suppl.), S45-S57.
[http://dx.doi.org/10.1016/j.jhep.2014.07.027] [PMID: 25086286]
[2]
Mohd Hanafiah, K.; Groeger, J.; Flaxman, A.D.; Wiersma, S.T. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology, 2013, 57(4), 1333-1342.
[http://dx.doi.org/10.1002/hep.26141] [PMID: 23172780]
[3]
Razavi, H.; Sanchez Gonzalez, Y.; Yuen, C.; Cornberg, M. Global timing of hepatitis C virus elimination in high-income countries. Liver Int., 2020, 40(3), 522-529.
[http://dx.doi.org/10.1111/liv.14324] [PMID: 31815353]
[4]
Cox, A.L. MEDICINE. Global control of hepatitis C virus. Science, 2015, 349(6250), 790-791.
[http://dx.doi.org/10.1126/science.aad1302] [PMID: 26293940]
[5]
Thomas, D.L. Global elimination of chronic hepatitis. N. Engl. J. Med., 2019, 380(21), 2041-2050.
[http://dx.doi.org/10.1056/NEJMra1810477] [PMID: 31116920]
[6]
Sulkowski, M.S.; Gardiner, D.F.; Rodriguez-Torres, M.; Reddy, K.R.; Hassanein, T.; Jacobson, I.; Lawitz, E.; Lok, A.S.; Hinestrosa, F.; Thuluvath, P.J.; Schwartz, H.; Nelson, D.R.; Everson, G.T.; Eley, T.; Wind-Rotolo, M.; Huang, S.P.; Gao, M.; Hernandez, D.; McPhee, F.; Sherman, D.; Hindes, R.; Symonds, W.; Pasquinelli, C.; Grasela, D.M. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N. Engl. J. Med., 2014, 370(3), 211-221.
[http://dx.doi.org/10.1056/NEJMoa1306218] [PMID: 24428467]
[7]
Ahmed, K.T.; Almashhrawi, A.A.; Ibdah, J.A.; Tahan, V. Is the 25-year hepatitis C marathon coming to an end to declare victory? World J. Hepatol., 2017, 9(21), 921-929.
[http://dx.doi.org/10.4254/wjh.v9.i21.921] [PMID: 28824743]
[8]
Garcia, A.; Fernandez, S.; Toro, F.; De Sanctis, J.B. An overview of hepatitis C vaccines. Recent Pat. Inflamm. Allergy Drug Discov., 2014, 8(2), 85-91.
[http://dx.doi.org/10.2174/1872213X08666140704115149] [PMID: 25000932]
[9]
Tabata, K.; Neufeldt, C.J.; Bartenschlager, R.; Hepatitis, C. Virus replication. Cold Spring Harb. Perspect. Med., 2020, 10(3)a037093
[http://dx.doi.org/10.1101/cshperspect.a037093] [PMID: 31570388]
[10]
Saik, O.V.; Ivanisenko, T.V.; Demenkov, P.S.; Ivanisenko, V.A. Interactome of the hepatitis C virus: Literature mining with ANDSys-tem. Virus Res., 2016, 218, 40-48.
[http://dx.doi.org/10.1016/j.virusres.2015.12.003] [PMID: 26673098]
[11]
Banerjee, A.; Ray, R.B.; Ray, R. Oncogenic potential of hepatitis C virus proteins. Viruses, 2010, 2(9), 2108-2133.
[http://dx.doi.org/10.3390/v2092108] [PMID: 21994721]
[12]
Harris, H.J.; Davis, C.; Mullins, J.G.; Hu, K.; Goodall, M.; Farquhar, M.J.; Mee, C.J.; McCaffrey, K.; Young, S.; Drummer, H.; Balfe, P.; McKeating, J.A. Claudin association with CD81 defines hepatitis C virus entry. J. Biol. Chem., 2010, 285(27), 21092-21102.
[http://dx.doi.org/10.1074/jbc.M110.104836] [PMID: 20375010]
[13]
Major, M.E.; Dahari, H.; Mihalik, K.; Puig, M.; Rice, C.M.; Neumann, A.U.; Feinstone, S.M. Hepatitis C virus kinetics and host re-sponses associated with disease and outcome of infection in chimpanzees. Hepatology, 2004, 39(6), 1709-1720.
[http://dx.doi.org/10.1002/hep.20239] [PMID: 15185313]
[14]
Wieland, S.; Makowska, Z.; Campana, B.; Calabrese, D.; Dill, M.T.; Chung, J.; Chisari, F.V.; Heim, M.H. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology, 2014, 59(6), 2121-2130.
[http://dx.doi.org/10.1002/hep.26770] [PMID: 24122862]
[15]
Liang, Y.; Shilagard, T.; Xiao, S.Y.; Snyder, N.; Lau, D.; Cicalese, L.; Weiss, H.; Vargas, G.; Lemon, S.M. Visualizing hepatitis C virus infections in human liver by two-photon microscopy. Gastroenterology, 2009, 137(4), 1448-1458.
[http://dx.doi.org/10.1053/j.gastro.2009.07.050] [PMID: 19632233]
[16]
Netski, D.M.; Mosbruger, T.; Depla, E.; Maertens, G.; Ray, S.C.; Hamilton, R.G.; Roundtree, S.; Thomas, D.L.; McKeating, J.; Cox, A. Humoral immune response in acute hepatitis C virus infection. Clin. Infect. Dis., 2005, 41(5), 667-675.
[http://dx.doi.org/10.1086/432478] [PMID: 16080089]
[17]
Dustin, L.B.; Charles, E.D. Primary, post-primary and non-specific immunoglobulin M responses in HCV infection. Antivir. Ther., 2012, 17(7 Pt B), 1449-1452.
[http://dx.doi.org/10.3851/IMP2222] [PMID: 23322600]
[18]
Westbrook, R.H.; Dusheiko, G. Natural history of hepatitis C. J. Hepatol., 2014, 61(1)(Suppl.), S58-S68.
[http://dx.doi.org/10.1016/j.jhep.2014.07.012] [PMID: 25443346]
[19]
Cacoub, P.; Comarmond, C.; Domont, F.; Savey, L.; Desbois, A.C.; Saadoun, D. Extrahepatic manifestations of chronic hepatitis C virus infection. Ther. Adv. Infect. Dis., 2016, 3(1), 3-14.
[http://dx.doi.org/10.1177/2049936115585942] [PMID: 26862398]
[20]
Roccatello, D.; Saadoun, D.; Ramos-Casals, M.; Tzioufas, A.G.; Fervenza, F.C.; Cacoub, P.; Zignego, A.L.; Ferri, C. Cryoglobulinae-mia. Nat. Rev. Dis. Primers, 2018, 4(1), 11.
[http://dx.doi.org/10.1038/s41572-018-0009-4] [PMID: 30072738]
[21]
Brasher, N.A.; Eltahla, A.A.; Underwood, A.; Boo, I.; Rizzetto, S.; Walker, M.R.; Rodrigo, C.; Luciani, F.; Maher, L.; Drummer, H.E.; Tedla, N.; Lloyd, A.R.; Bull, R.A. B cell immunodominance in primary hepatitis C virus infection. J. Hepatol., 2020, 72(4), 670-679.
[http://dx.doi.org/10.1016/j.jhep.2019.11.011] [PMID: 31785346]
[22]
Edmondson, H.A.; Steiner, P.E. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer, 1954, 7(3), 462-503.
[http://dx.doi.org/10.1002/1097-0142(195405)7:3<462:AID-CNCR2820070308>3.0.CO;2-E] [PMID: 13160935]
[23]
Stephenson, K.E.; Neubauer, G.H.; Reimer, U.; Pawlowski, N.; Knaute, T.; Zerweck, J.; Korber, B.T.; Barouch, D.H. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development. J. Immunol. Methods, 2015, 416, 105-123.
[http://dx.doi.org/10.1016/j.jim.2014.11.006] [PMID: 25445329]
[24]
Frank, R. The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports--principles and applications. J. Immunol. Methods, 2002, 267(1), 13-26.
[http://dx.doi.org/10.1016/S0022-1759(02)00137-0] [PMID: 12135797]
[25]
Pezzuto, F.; Izzo, F.; Buonaguro, L.; Annunziata, C.; Tatangelo, F.; Botti, G.; Buonaguro, F.M.; Tornesello, M.L. Tumor specific muta-tions in TERT promoter and CTNNB1 gene in hepatitis B and hepatitis C related hepatocellular carcinoma. Oncotarget, 2016, 7(34), 54253-54262.
[http://dx.doi.org/10.18632/oncotarget.9801] [PMID: 27276713]
[26]
Pezzuto, F.I.F.; De Luca, P.; Biffali, E.; Buonaguro, L.; Tatangelo, F.; Buonaguro, F.M.; Tornesello, M.L. Clinical significance of te-lomerase reverse-transcriptase promoter mutations in hepatocellular carcinoma. Cancers (Basel), 2021, 15(13), 13.
[27]
Zhang, P.; Zhong, L.; Struble, E.B.; Watanabe, H.; Kachko, A.; Mihalik, K.; Virata, M.L.; Alter, H.J.; Feinstone, S.; Major, M. Deple-tion of interfering antibodies in chronic hepatitis C patients and vaccinated chimpanzees reveals broad cross-genotype neutralizing activi-ty. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7537-7541.
[http://dx.doi.org/10.1073/pnas.0902749106] [PMID: 19380744]
[28]
Keck, Z.; Wang, W.; Wang, Y.; Lau, P.; Carlsen, T.H.; Prentoe, J.; Xia, J.; Patel, A.H.; Bukh, J.; Foung, S.K. Cooperativity in virus neutralization by human monoclonal antibodies to two adjacent regions located at the amino terminus of hepatitis C virus E2 glycopro-tein. J. Virol., 2013, 87(1), 37-51.
[http://dx.doi.org/10.1128/JVI.01941-12] [PMID: 23097455]
[29]
Morin, T.J.; Broering, T.J.; Leav, B.A.; Blair, B.M.; Rowley, K.J.; Boucher, E.N.; Wang, Y.; Cheslock, P.S.; Knauber, M.; Olsen, D.B.; Ludmerer, S.W.; Szabo, G.; Finberg, R.W.; Purcell, R.H.; Lanford, R.E.; Ambrosino, D.M.; Molrine, D.C.; Babcock, G.J. Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. PLoS Pathog., 2012, 8(8)e1002895
[http://dx.doi.org/10.1371/journal.ppat.1002895] [PMID: 22952447]
[30]
Tarr, A.W.; Urbanowicz, R.A.; Ball, J.K. The role of humoral innate immunity in hepatitis C virus infection. Viruses, 2012, 4(1), 1-27.
[http://dx.doi.org/10.3390/v4010001] [PMID: 22355450]
[31]
Deng, Y.; Guan, J.; Wen, B.; Zhu, N.; Chen, H.; Song, J.; Yang, Y.; Wang, Y.; Tan, W. Induction of broadly neutralising HCV anti-bodies in mice by integration-deficient lentiviral vector-based pseudotyped particles. PLoS One, 2013, 8(4)e62684
[http://dx.doi.org/10.1371/journal.pone.0062684] [PMID: 23626846]
[32]
Courouce, A.M.; Bouchardeau, F.; Girault, A.; Le Marrec, N. Significance of NS3 and NS5 antigens in screening for HCV antibody. Lancet, 1994, 343(8901), 853-854.
[http://dx.doi.org/10.1016/S0140-6736(94)92054-0] [PMID: 7511195]
[33]
Grebely, J.; Raffa, J.D.; Lai, C.; Krajden, M.; Conway, B.; Tyndall, M.W. Factors associated with spontaneous clearance of hepatitis C virus among illicit drug users. Can. J. Gastroenterol., 2007, 21(7), 447-451.
[http://dx.doi.org/10.1155/2007/796325] [PMID: 17637948]
[34]
Ferroni, P.; Mascolo, G.; Zaninetti, M.; Colzani, D.; Pregliasco, F.; Pirisi, M.; Barbone, F.; Gasparini, V. Identification of four epitopes in hepatitis C virus core protein. J. Clin. Microbiol., 1993, 31(6), 1586-1591.
[http://dx.doi.org/10.1128/jcm.31.6.1586-1591.1993] [PMID: 7686184]
[35]
El Awady, M.K.; El-Demellawy, M.A.; Khalil, S.B.; Galal, D.; Goueli, S.A. Synthetic peptide-based immunoassay as a supplemental test for HCV infection. Clin. Chim. Acta, 2002, 325(1-2), 39-46.
[http://dx.doi.org/10.1016/S0009-8981(02)00245-0] [PMID: 12367764]
[36]
Sällberg, M.; Rudén, U.; Wahren, B.; Magnius, L.O. Antigenic regions within the hepatitis C virus envelope 1 and non-structural pro-teins: identification of an IgG3-restricted recognition site with the envelope 1 protein. Clin. Exp. Immunol., 1993, 91(3), 489-494.
[http://dx.doi.org/10.1111/j.1365-2249.1993.tb05929.x] [PMID: 7680297]
[37]
Sällberg, M.; Rudén, U.; Wahren, B.; Magnius, L.O. Immunodominant regions within the hepatitis C virus core and putative matrix proteins. J. Clin. Microbiol., 1992, 30(8), 1989-1994.
[http://dx.doi.org/10.1128/jcm.30.8.1989-1994.1992] [PMID: 1380007]
[38]
Gopal, R.; Jackson, K.; Tzarum, N.; Kong, L.; Ettenger, A.; Guest, J.; Pfaff, J.M.; Barnes, T.; Honda, A.; Giang, E.; Davidson, E.; Wil-son, I.A.; Doranz, B.J.; Law, M. Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput muta-genesis. PLoS Pathog., 2017, 13(12)e1006735
[http://dx.doi.org/10.1371/journal.ppat.1006735] [PMID: 29253863]
[39]
Atoom, A.M.; Taylor, N.G.; Russell, R.S. The elusive function of the hepatitis C virus p7 protein. Virology, 2014, 462-463, 377-387.
[http://dx.doi.org/10.1016/j.virol.2014.04.018] [PMID: 25001174]
[40]
Sakai, A.; Claire, M.S.; Faulk, K.; Govindarajan, S.; Emerson, S.U.; Purcell, R.H.; Bukh, J. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc. Natl. Acad. Sci. USA, 2003, 100(20), 11646-11651.
[http://dx.doi.org/10.1073/pnas.1834545100] [PMID: 14504405]
[41]
Liu, J.; Tang, W.; Budhu, A.; Forgues, M.; Hernandez, M.O.; Candia, J.; Kim, Y.; Bowman, E.D.; Ambs, S.; Zhao, Y.; Tran, B.; Wu, X.; Koh, C.; Surana, P.; Liang, T.J.; Guarnera, M.; Mann, D.; Rajaure, M.; Greten, T.F.; Wang, Z.; Yu, H.; Wang, X.W. A viral expo-sure signature defines early onset of hepatocellular carcinoma. Cell, 2020, 182(2), 317-328.
[http://dx.doi.org/10.1016/j.cell.2020.05.038] [PMID: 32526205]
[42]
Xu, G.J.; Kula, T.; Xu, Q.; Li, M.Z.; Vernon, S.D.; Ndung’u, T.; Ruxrungtham, K.; Sanchez, J.; Brander, C.; Chung, R.T.; O’Connor, K.C.; Walker, B.; Larman, H.B.; Elledge, S.J. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science, 2015, 348(6239), aaa0698.
[http://dx.doi.org/10.1126/science.aaa0698] [PMID: 26045439]