Antidiabetic Properties of Dietary Chrysin: A Cellular Mechanism Review

Page: [1450 - 1457] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Diabetes mellitus is the most common chronic metabolic disorder and is considered one of the leading causes of morbidity and mortality. The improperly-treated chronic hyperglycemia of diabetes has been related to several long-term complications and multiple organ failures, including nephropathy, which can lead to kidney failure, retinopathy with the potential loss of vision, and cardiovascular symptoms. Current commercially available synthetic glucose-lowering agents have been reported to have several adverse effects. Therefore, the search for alternative remedies such as medicinal plants and their active compounds have attracted attention. Chrysin is an active flavonoid that exists widely in various plants and diets and has been reported to possess pharmacological properties, including antidiabetic activity. Many studies have been conducted to characterize the antidiabetic of chrysin, as well as its potential pathways, in in vitro and in vivo experiments. Chrysin has shown promise as an antidiabetic agent in animal studies, thus, demonstrating its potential to be developed as an antidiabetic drug. This review discussed the antidiabetic action of chrysin and its mechanisms, including targeting different mechanisms such as stimulation of insulin signaling, blockage of endoplasmic reticulum stress and oxidative damage, promotion of skeletal glucose uptake, as well as modulation of apoptosis and autophagy signaling. Additionally, this review would be useful for further studies regarding the mechanism of work of plant derived-compound as a potential antidiabetic agent.

Keywords: Chrysin, antidiabetic, insulin signaling, retinopathy, nephropathy, cellular mechanism.

Graphical Abstract

[1]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[2]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol., 2011, 8(4), 228-236.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[3]
International Diabetes Federation. Available from: www.idf.org/diabetesatlas
[4]
Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care, 2011, 34(6), 1249-1257.
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[5]
Mamatova, A.S.; Korona-Glowniak, I.; Skalicka-Woźniak, K.; Józefczyk, A.; Wojtanowski, K.K.; Baj, T.; Sakipova, Z.B.; Malm, A. Phytochemical composition of wormwood (Artemisia gmelinii) extracts in respect of their antimicrobial activity. BMC Complement. Altern. Med., 2019, 19(1), 288.
[http://dx.doi.org/10.1186/s12906-019-2719-x] [PMID: 31660943]
[6]
Pushpavalli, G.; Kalaiarasi, P.; Veeramani, C.; Pugalendi, K.V. Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. Eur. J. Pharmacol., 2010, 631(1-3), 36-41.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.031] [PMID: 20056116]
[7]
Zeinali, M.; Rezaee, S.A.; Hosseinzadeh, H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed. Pharmacother., 2017, 92, 998-1009.
[http://dx.doi.org/10.1016/j.biopha.2017.06.003] [PMID: 28609844]
[8]
Ramírez-Espinosa, J.J.; Saldaña-Ríos, J.; García-Jiménez, S.; Villalobos-Molina, R.; Ávila-Villarreal, G.; Rodríguez-Ocampo, A.N.; Bernal-Fernández, G.; Estrada-Soto, S. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules, 2017, 23(1), 67.
[http://dx.doi.org/10.3390/molecules23010067] [PMID: 29283418]
[9]
Farkhondeh, T.; Abedi, F.; Samarghandian, S. Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed. Pharmacother., 2019, 109, 1120-1125.
[http://dx.doi.org/10.1016/j.biopha.2018.10.059] [PMID: 30551362]
[10]
Satyanarayana, K.; Sravanthi, K.; Shaker, I.A.; Ponnulakshmi, R.; Selvaraj, J. Role of chrysin on expression of insulin signaling molecules. J. Ayurveda Integr. Med., 2015, 6(4), 248-258.
[http://dx.doi.org/10.4103/0975-9476.157951] [PMID: 26834424]
[11]
Ortiz-Andrade, R.R.; Sánchez-Salgado, J.C.; Navarrete-Vázquez, G.; Webster, S.P.; Binnie, M.; García-Jiménez, S.; León-Rivera, I.; Cigarroa-Vázquez, P.; Villalobos-Molina, R.; Estrada-Soto, S. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes. Metab., 2008, 10(11), 1097-1104.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00869.x] [PMID: 18355329]
[12]
El-Bassossy, H.M.; Abo-Warda, S.M.; Fahmy, A. Chrysin and luteolin alleviate vascular complications associated with insulin resistance mainly through PPAR-γ activation. Am. J. Chin. Med., 2014, 42(5), 1153-1167.
[http://dx.doi.org/10.1142/S0192415X14500724] [PMID: 25169908]
[13]
Marx, N.; Duez, H.; Fruchart, J-C.; Staels, B. Peroxisome proliferator-activated receptors and atherogenesis: Regulators of gene expression in vascular cells. Circ. Res., 2004, 94(9), 1168-1178.
[http://dx.doi.org/10.1161/01.RES.0000127122.22685.0A] [PMID: 15142970]
[14]
Feng, X.; Weng, D.; Zhou, F.; Owen, Y.D.; Qin, H.; Zhao, J. WenYu; Huang, Y.; Chen, J.; Fu, H.; Yang, N.; Chen, D.; Li, J.; Tan, R.; Shen, P. Activation of PPARγ by a natural flavonoid modulator, apigenin ameliorates obesity-related inflammation via regulation of ma-crophage polarization. E. Bio. Med., 2016, 9, 61-76.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.017] [PMID: 27374313]
[15]
Liang, Y.C.; Tsai, S.H.; Tsai, D.C.; Lin-Shiau, S.Y.; Lin, J.K. Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages. FEBS Lett., 2001, 496(1), 12-18.
[http://dx.doi.org/10.1016/S0014-5793(01)02393-6] [PMID: 11343698]
[16]
Ding, L.; Jin, D.; Chen, X. Luteolin enhances insulin sensitivity via activation of PPARγ transcriptional activity in adipocytes. J. Nutr. Biochem., 2010, 21(10), 941-947.
[http://dx.doi.org/10.1016/j.jnutbio.2009.07.009] [PMID: 19954946]
[17]
Anand, K.V.; Mohamed Jaabir, M.S.; Thomas, P.A.; Geraldine, P. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr. Gerontol. Int., 2012, 12(4), 741-750.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00843.x] [PMID: 22469068]
[18]
Diabetes: Managing Dyslipidaemia. BMJ Clin. Evid., 2008, 2008, 610.
[19]
Jialal, I.; Singh, G. Management of diabetic dyslipidemia: An update. World J. Diabetes, 2019, 10(5), 280-290.
[http://dx.doi.org/10.4239/wjd.v10.i5.280] [PMID: 31139315]
[20]
Hirano, T. Pathophysiology of diabetic dyslipidemia. J. Atheroscler. Thromb., 2018, 25(9), 771-782.
[http://dx.doi.org/10.5551/jat.RV17023] [PMID: 29998913]
[21]
Sirovina, D.; Orsolić, N.; Koncić, M.Z.; Kovacević, G.; Benković, V.; Gregorović, G. Quercetin vs chrysin: Effect on liver histopathology in diabetic mice. Hum. Exp. Toxicol., 2013, 32(10), 1058-1066.
[http://dx.doi.org/10.1177/0960327112472993] [PMID: 23357962]
[22]
Bhattacharya, D.; Mukhopadhyay, M.; Bhattacharyya, M.; Karmakar, P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J., 2018, 17, 709-720.
[PMID: 30190661]
[23]
Weir, G.C.; Bonner-Weir, S. Islet β cell mass in diabetes and how it relates to function, birth, and death. Ann. N. Y. Acad. Sci., 2013, 1281(1), 92-105.
[http://dx.doi.org/10.1111/nyas.12031] [PMID: 23363033]
[24]
Remedi, M.S.; Emfinger, C. Pancreatic β-Cell Identity in Diabetes. Diabetes Obes. Metab., 2016, 18(Suppl. 1), 110-116.
[http://dx.doi.org/10.1111/dom.12727]
[25]
Erion, D.M.; Shulman, G.I. Diacylglycerol-mediated insulin resistance. Nat. Med., 2010, 16(4), 400-402.
[http://dx.doi.org/10.1038/nm0410-400] [PMID: 20376053]
[26]
Lapidot, T.; Walker, M.D.; Kanner, J. Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. J. Agric. Food Chem., 2002, 50(25), 7220-7225.
[http://dx.doi.org/10.1021/jf020615a] [PMID: 12452635]
[27]
Back, S.H.; Kaufman, R.J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem., 2012, 81, 767-793.
[http://dx.doi.org/10.1146/annurev-biochem-072909-095555] [PMID: 22443930]
[28]
Walter, P.; Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science, 2011, 334(6059), 1081-1086.
[http://dx.doi.org/10.1126/science.1209038] [PMID: 22116877]
[29]
Cunard, R. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly. J. Clin. Med., 2015, 4(4), 715-740.
[http://dx.doi.org/10.3390/jcm4040715] [PMID: 26239352]
[30]
Kang, M.-K.; Park, S.-H.; Kim, Y.-H.; Lee, E.-J.; Antika, L.D.; Kim, D.Y.; Choi, Y.-J.; Kang, Y.-H. Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2α-ATF-CHOP pathway in diabetic mice. Acta Pharmacol. Sin., 2017, 38(8), 1129-1140.
[http://dx.doi.org/10.1038/aps.2017.30] [PMID: 28502979]
[31]
Kang, M-K.; Lee, E-J.; Kim, Y-H.; Kim, D.Y.; Oh, H.; Kim, S-I.; Kang, Y-H. Chrysin ameliorates malfunction of retinoid visual cycle through blocking activation of AGE-RAGE-ER stress in glucose-stimulated retinal pigment epithelial cells and diabetic eyes. Nutrients, 2018, 10(8), E1046.
[http://dx.doi.org/10.3390/nu10081046] [PMID: 30096827]
[32]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[33]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 8416763.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[34]
Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular death, Reactive Oxygen Species (ROS) and diabetic complications. Cell Death Dis., 2018, 9(2), 119.
[http://dx.doi.org/10.1038/s41419-017-0135-z] [PMID: 29371661]
[35]
Özbolat, S.N.; Ayna, A. Chrysin suppresses HT-29 cell death induced by diclofenac through apoptosis and oxidative damage. Nutr. Cancer, 2020, 1-10.
[PMID: 32757685]
[36]
Wojnar, W.; Zych, M.; Borymski, S.; Kaczmarczyk-Sedlak, I. Chrysin reduces oxidative stress but does not affect polyol pathway in the lenses of type 1 diabetic rats. Antioxidants, 2020, 9(2), 160.
[http://dx.doi.org/10.3390/antiox9020160] [PMID: 32079112]
[37]
Dalle-Donne, I.; Milzani, A.; Gagliano, N.; Colombo, R.; Giustarini, D.; Rossi, R. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal., 2008, 10(3), 445-473.
[http://dx.doi.org/10.1089/ars.2007.1716] [PMID: 18092936]
[38]
Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Farkhondeh, T. Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Cancer J. Physiol. Pharmacol., 2016, 94(4), 388-393.
[http://dx.doi.org/10.1139/cjpp-2014-0412] [PMID: 26863330]
[39]
Li, R.; Zang, A.; Zhang, L.; Zhang, H.; Zhao, L.; Qi, Z.; Wang, H. Chrysin ameliorates diabetes-associated cognitive deficits in Wistar rats. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol., 2014, 35(10), 1527-1532.
[http://dx.doi.org/10.1007/s10072-014-1784-7] [PMID: 24737349]
[40]
Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol., 2019, 33(6), e22313.
[http://dx.doi.org/10.1002/jbt.22313] [PMID: 30801880]
[41]
Cos, P.; Calomme, M.; Pieters, L.; Vlietinck, A.; Berghe, D.V. Structure-activity relationship of flavonoids as antioxidant and prooxidant compounds. Studies Nat. Prod. Chem., 2000, 22, pp. (PartC)307-341.
[http://dx.doi.org/10.1016/S1572-5995(00)80029-0]
[42]
Bryant, N.J.; Govers, R.; James, D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol., 2002, 3(4), 267-277.
[http://dx.doi.org/10.1038/nrm782] [PMID: 11994746]
[43]
Walle, T.; Otake, Y.; Brubaker, J.A.; Walle, U.K.; Halushka, P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol., 2001, 51(2), 143-146.
[PMID: 11259985]
[44]
Semalty, A.; Semalty, M.; Rawat, M.S.M.; Franceschi, F. Supramolecular phospholipids-polyphenolics interactions: The PHYTOSOME strategy to improve the bioavailability of phytochemicals. Fitoterapia, 2010, 81(5), 306-314.
[http://dx.doi.org/10.1016/j.fitote.2009.11.001] [PMID: 19919847]
[45]
Kim, S-M.; Jung, J-I.; Chai, C.; Imm, J-Y. Characteristics and glucose uptake promoting effect of chrysin-loaded phytosomes prepared with different phospholipid matrices. Nutrients, 2019, 11(10), E2549.
[http://dx.doi.org/10.3390/nu11102549] [PMID: 31652637]
[46]
Kalhotra, P.; Chittepu, V.C.S.R.; Osorio-Revilla, G.; Gallardo-Velazquez, T. Chrysin in combination with insulin promotes glucose uptake in skeletal muscle cell: Impact of combination therapy in diabetes myopathy (P01-031-19). Curr. Dev. Nutr., 2019, 3(Suppl 1), nzz028.P01-031-19.
[http://dx.doi.org/10.1093/cdn/nzz028.P01-031-19]
[47]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[48]
Hammes, H.P.; Alt, A.; Niwa, T.; Clausen, J.T.; Bretzel, R.G.; Brownlee, M.; Schleicher, E.D. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia, 1999, 42(6), 728-736.
[http://dx.doi.org/10.1007/s001250051221] [PMID: 10382593]
[49]
Zheng, F.; He, C.; Cai, W.; Hattori, M.; Steffes, M.; Vlassara, H. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab. Res. Rev., 2002, 18(3), 224-237.
[http://dx.doi.org/10.1002/dmrr.283] [PMID: 12112941]
[50]
Nicholl, I.D.; Stitt, A.W.; Moore, J.E.; Ritchie, A.J.; Archer, D.B.; Bucala, R. Increased levels of advanced glycation endproducts in the lenses and blood vessels of cigarette smokers. Mol. Med., 1998, 4(9), 594-601.
[http://dx.doi.org/10.1007/BF03401759] [PMID: 9848076]
[51]
Singh, J.; Chaudhari, B.P.; Kakkar, P. Baicalin and chrysin mixture imparts cyto-protection against methylglyoxal induced cytotoxicity and diabetic tubular injury by modulating RAGE, oxidative stress and inflammation. Environ. Toxicol. Pharmacol., 2017, 50, 67-75.
[http://dx.doi.org/10.1016/j.etap.2017.01.013] [PMID: 28135651]
[52]
El-Bassossy, H.M.; Abo-Warda, S.M.; Fahmy, A. Chrysin and luteolin attenuate diabetes-induced impairment in endothelial-dependent relaxation: effect on lipid profile, AGEs and NO generation. Phytother. Res., 2013, 27(11), 1678-1684.
[http://dx.doi.org/10.1002/ptr.4917] [PMID: 23296950]
[53]
Lee, E-J.; Kang, M-K.; Kim, Y-H.; Kim, D.Y.; Oh, H.; Kim, S-I.; Oh, S.Y.; Kang, Y-H. Dietary chrysin suppresses formation of actin cytoskeleton and focal adhesion in AGE-Exposed mesangial cells and diabetic kidney: Role of Autophagy. Nutrients, 2019, 11(1), E127.
[http://dx.doi.org/10.3390/nu11010127] [PMID: 30634545]
[54]
Rani, N.; Bharti, S.; Bhatia, J.; Nag, T.C.; Ray, R.; Arya, D.S. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Chem. Biol. Interact., 2016, 250, 59-67.
[http://dx.doi.org/10.1016/j.cbi.2016.03.015] [PMID: 26972669]
[55]
Qin, J-H.; Wang, L.; Li, Q-L.; Liang, Y.; Ke, Z-Y.; Wang, R-A. Epithelial-mesenchymal transition as strategic microenvironment mimicry for cancer cell survival and immune escape? Genes Dis., 2016, 4(1), 16-18.
[http://dx.doi.org/10.1016/j.gendis.2016.10.001] [PMID: 30258903]
[56]
Liang, H. Advanced glycation end products induce proliferation, invasion and epithelial-mesenchymal transition of human SW480 colon cancer cells through the PI3K/AKT signaling pathway. Oncol. Lett., 2020, 19(4), 3215-3222.
[http://dx.doi.org/10.3892/ol.2020.11413] [PMID: 32218866]
[57]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[58]
Kang, M-K.; Park, S-H.; Choi, Y-J.; Shin, D.; Kang, Y-H. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithe-lial to mesenchymal transition. J. Mol. Med. (Berl.), 2015, 93(7), 759-772.
[http://dx.doi.org/10.1007/s00109-015-1301-3] [PMID: 26062793]
[59]
Dong, W.; Chen, A.; Chao, X.; Li, X.; Cui, Y.; Xu, C.; Cao, J.; Ning, Y. Chrysin inhibits proinflammatory factor-induced EMT phenotype and cancer stem cell-like features in HeLa cells by blocking the NF-κB/twist axis. Cell. Physiol. Biochem., 2019, 52(5), 1236-1250.
[http://dx.doi.org/10.33594/000000084] [PMID: 31001962]
[60]
Krijnen, P.A.J.; Simsek, S.; Niessen, H.W.M. Apoptosis in diabetes. Apoptosis, 2009, 14(12), 1387-1388.
[http://dx.doi.org/10.1007/s10495-009-0419-6] [PMID: 19856207]
[61]
Reddy, G.R.; Kotlyarevska, K.; Ransom, R.F.; Menon, R.K. The podocyte and diabetes mellitus: Is the podocyte the key to the origins of diabetic nephropathy? Curr. Opin. Nephrol. Hypertens., 2008, 17(1), 32-36.
[http://dx.doi.org/10.1097/MNH.0b013e3282f2904d] [PMID: 18090667]
[62]
Ali, B.H.; Al Za’abi, M.; Adham, S.A.; Yasin, J.; Nemmar, A.; Schupp, N. Therapeutic effect of chrysin on adenine-induced chronic kidney disease in rats. Cell. Physiol. Biochem., 2016, 38(1), 248-257.
[http://dx.doi.org/10.1159/000438626] [PMID: 26784294]
[63]
Ali, B.H.; Al-Salam, S.; Al Za’abi, M.; Waly, M.I.; Ramkumar, A.; Beegam, S.; Al-Lawati, I.; Adham, S.A.; Nemmar, A. New model for adenine-induced chronic renal failure in mice, and the effect of gum acacia treatment thereon: Comparison with rats. J. Pharmacol. Toxicol. Methods, 2013, 68(3), 384-393.
[http://dx.doi.org/10.1016/j.vascn.2013.05.001] [PMID: 23669035]
[64]
Ali, B.H.; Alza’abi, M.; Ramkumar, A.; Al-Lawati, I.; Waly, M.I.; Beegam, S.; Nemmar, A.; Brand, S.; Schupp, N. The effect of activated charcoal on adenine-induced chronic renal failure in rats. Food Chem. Toxicol., 2014, 65, 321-328.
[http://dx.doi.org/10.1016/j.fct.2013.12.038] [PMID: 24412558]
[65]
Yao, Y.; Chen, L.; Xiao, J.; Wang, C.; Jiang, W.; Zhang, R.; Hao, J. Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. Int. J. Mol. Sci., 2014, 15(11), 20913-20926.
[http://dx.doi.org/10.3390/ijms151120913] [PMID: 25402649]
[66]
Liao, Z-Y.; Liang, I-C.; Li, H-J.; Wu, C-C.; Lo, H-M.; Chang, D-C.; Hung, C-F. Chrysin inhibits high glucose-induced migration on chorioretinal endothelial cells via VEGF and VEGFR down-regulation. Int. J. Mol. Sci., 2020, 21(15), 5541.
[http://dx.doi.org/10.3390/ijms21155541] [PMID: 32748894]
[67]
Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res., 2014, 24(1), 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[68]
Xu, Z.; Klionsky, D.J. Autophagy promotes cell motility by driving focal adhesion turnover. Autophagy, 2016, 12(10), 1685-1686.
[http://dx.doi.org/10.1080/15548627.2016.1212791] [PMID: 27483986]
[69]
Tuloup-Minguez, V.; Hamaï, A.; Greffard, A.; Nicolas, V.; Codogno, P.; Botti, J. Autophagy modulates cell migration and β1 integrin membrane recycling. Cell Cycle, 2013, 12(20), 3317-3328.
[http://dx.doi.org/10.4161/cc.26298] [PMID: 24036548]
[70]
Kenific, C.M.; Wittmann, T.; Debnath, J. Autophagy in adhesion and migration. J. Cell Sci., 2016, 129(20), 3685-3693.
[PMID: 27672021]
[71]
Roy, S.; Kern, T.S.; Song, B.; Stuebe, C. Mechanistic insights into pathological changes in the diabetic retina: Implications for targeting diabetic retinopathy. Am. J. Pathol., 2017, 187(1), 9-19.
[http://dx.doi.org/10.1016/j.ajpath.2016.08.022] [PMID: 27846381]
[72]
Arden, G.B.; Sivaprasad, S. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr. Diabetes Rev., 2011, 7(5), 291-304.
[http://dx.doi.org/10.2174/157339911797415620] [PMID: 21916837]
[73]
Eshaq, R.S.; Wright, W.S.; Harris, N.R. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy. Redox Biol., 2014, 2, 661-666.
[http://dx.doi.org/10.1016/j.redox.2014.04.006] [PMID: 24936440]
[74]
Shah, A.R.; Gardner, T.W. Diabetic retinopathy: Research to clinical practice. Clin. Diabetes Endocrinol., 2017, 3, 9.
[http://dx.doi.org/10.1186/s40842-017-0047-y] [PMID: 29075511]
[75]
Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers, 2016, 2, 16012.
[http://dx.doi.org/10.1038/nrdp.2016.12] [PMID: 27159554]
[76]
Kang, M-K.; Park, S-H.; Kim, Y-H.; Lee, E-J.; Antika, L.D.; Kim, D.Y.; Choi, Y-J.; Kang, Y-H. Dietary Compound chrysin inhibits retinal neovascularization with abnormal capillaries in db/db Mice. Nutrients, 2016, 8(12), E782.
[http://dx.doi.org/10.3390/nu8120782] [PMID: 27918469]
[77]
Calcutt, N.A.; Cooper, M.E.; Kern, T.S.; Schmidt, A.M. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nat. Rev. Drug Discov., 2009, 8(5), 417-429.
[http://dx.doi.org/10.1038/nrd2476] [PMID: 19404313]
[78]
Chan, T.S.; Galati, G.; Pannala, A.S.; Rice-Evans, C.; O’Brien, P.J. Simultaneous detection of the antioxidant and pro-oxidant activity of dietary polyphenolics in a peroxidase system. Free Radic. Res., 2003, 37(7), 787-794.
[http://dx.doi.org/10.1080/1071576031000094899] [PMID: 12911276]
[79]
Tsuji, P.A.; Walle, T. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line. Chem. Biol. Interact., 2008, 171(1), 37-44.
[http://dx.doi.org/10.1016/j.cbi.2007.08.007] [PMID: 17884029]
[80]
Saarinen, N.; Joshi, S.C.; Ahotupa, M.; Li, X.; Ammälä, J.; Mäkelä, S.; Santti, R. No evidence for the in vivo activity of aromatase-inhibiting flavonoids. J. Steroid Biochem. Mol. Biol., 2001, 78(3), 231-239.
[http://dx.doi.org/10.1016/S0960-0760(01)00098-X] [PMID: 11595503]
[81]
Gambelunghe, C.; Rossi, R.; Sommavilla, M.; Ferranti, C.; Rossi, R.; Ciculi, C.; Gizzi, S.; Micheletti, A.; Rufini, S. Effects of chrysin on urinary testosterone levels in human males. J. Med. Food, 2003, 6(4), 387-390.
[http://dx.doi.org/10.1089/109662003772519967] [PMID: 14977449]