Diabetes mellitus is the most common chronic metabolic disorder and is considered one of the leading causes of morbidity and mortality. The improperly-treated chronic hyperglycemia of diabetes has been related to several long-term complications and multiple organ failures, including nephropathy, which can lead to kidney failure, retinopathy with the potential loss of vision, and cardiovascular symptoms. Current commercially available synthetic glucose-lowering agents have been reported to have several adverse effects. Therefore, the search for alternative remedies such as medicinal plants and their active compounds have attracted attention. Chrysin is an active flavonoid that exists widely in various plants and diets and has been reported to possess pharmacological properties, including antidiabetic activity. Many studies have been conducted to characterize the antidiabetic of chrysin, as well as its potential pathways, in in vitro and in vivo experiments. Chrysin has shown promise as an antidiabetic agent in animal studies, thus, demonstrating its potential to be developed as an antidiabetic drug. This review discussed the antidiabetic action of chrysin and its mechanisms, including targeting different mechanisms such as stimulation of insulin signaling, blockage of endoplasmic reticulum stress and oxidative damage, promotion of skeletal glucose uptake, as well as modulation of apoptosis and autophagy signaling. Additionally, this review would be useful for further studies regarding the mechanism of work of plant derived-compound as a potential antidiabetic agent.
Keywords: Chrysin, antidiabetic, insulin signaling, retinopathy, nephropathy, cellular mechanism.