Apoptotic Effect of Gemini Curcumin on MDA-MB-468 Breast Cancer Cell Line

Page: [2181 - 2188] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Gemini Curcumin (Gemini-Cur) is the latest nanoformulation of curcumin with a significant apoptotic effect on cancer cell lines.

Objective: This in vitro study aims to evaluate the apoptotic effects of Gemini-Cur toward MDA-MB-468 breast cancer cell lines and further the related mechanism of apoptosis.

Methods: The cytotoxicity of Gemini-Cur toward MDA-MB-468 cell lines was tested using MTT assay. Furthermore, the expression ratio of Bax/Bcl-2 was evaluated by qRT-PCR. Consequently, the protein expression of Bax/Bcl-2, survivin, and caspase-3 was measured using western blotting.

Results: Having treated MDA-MB-468 cell lines with Gemini-Cur, the IC50 values were found to be 44.44 and 31.63 μM at 24 and 48 h, respectively. Our findings showed that Gemini-Cur significantly suppresses cancer cell proliferation in a time- and dose-dependent manner. Furthermore, the data revealed that curcumin nanoformulation induces apoptosis in MDA-MB-468 cells through modulation of the expression of Bax, Bcl-2, Survivin, and Caspase-3.

Conclusion: The data of the current study propose that Gemini-Cur can be considered a promising candidate against triple-negative breast cancer.

Keywords: Apoptosis, breast cancer, Bax/Bcl-2 ratio, gemini curcumin, MDA-MB-468, survivin, caspase-3.

Graphical Abstract

[1]
Braicu, C.; Zanoaga, O.; Zimta, A.-A.; Tigu, A.B.; Kilpatrick, K.L.; Bishayee, A.; Nabavi, S.M.; Berindan-Neagoe, I. Natural compounds modulate the crosstalk between apoptosis-and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells Semin. Cancer Biol., 2020. [A head of print]
[2]
Banik, U.; Parasuraman, S.; Adhikary, A.K.; Othman, N.H. Curcumin: the spicy modulator of breast carcinogenesis. J. Exp. Clin. Cancer Res., 2017, 36(1), 98.
[http://dx.doi.org/10.1186/s13046-017-0566-5] [PMID: 28724427]
[3]
Kundur, S.; Prayag, A.; Selvakumar, P.; Nguyen, H.; McKee, L.; Cruz, C.; Srinivasan, A.; Shoyele, S.; Lakshmikuttyamma, A. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J. Cell. Physiol., 2019, 234(7), 11103-11118.
[http://dx.doi.org/10.1002/jcp.27761] [PMID: 30478904]
[4]
Meena, R.; Kumar, S.; Kumar, R.; Gaharwar, U.S.; Rajamani, P. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomed. Pharmacother., 2017, 94, 944-954.
[http://dx.doi.org/10.1016/j.biopha.2017.07.151] [PMID: 28810532]
[5]
Menger, F.N.; Littau, C.A. Gemini surfactants: A new class of self-assembling molecules. J. Am. Chem. Soc., 1993, 115(22), 10083-10090.
[http://dx.doi.org/10.1021/ja00075a025]
[6]
Karimpour, M.; Feizi, M.A.H.; Mahdavi, M.; Krammer, B.; Verwanger, T.; Najafi, F.; Babaei, E. Development of curcumin-loaded gemini surfactant nanoparticles: Synthesis, characterization and evaluation of anticancer activity against human breast cancer cell lines. Phytomedicine, 2019, 57, 183-190.
[http://dx.doi.org/10.1016/j.phymed.2018.11.017] [PMID: 30776589]
[7]
Noel, B.; Singh, S.K.; Lillard, J.W., Jr; Singh, R. Role of natural compounds in preventing and treating breast cancer. Front. Biosci. (Schol. Ed.), 2020, 12, 137-160.
[http://dx.doi.org/10.2741/s544] [PMID: 32114452]
[8]
Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol., 2017, 9, 31-45.
[http://dx.doi.org/10.2147/JEP.S70568] [PMID: 28435333]
[9]
Salehi, B.; Zucca, P.; Sharifi-Rad, M.; Pezzani, R.; Rajabi, S.; Setzer, W.N.; Varoni, E.M.; Iriti, M.; Kobarfard, F.; Sharifi-Rad, J. Phytotherapeutics in cancer invasion and metastasis. Phytother. Res., 2018, 32(8), 1425-1449.
[http://dx.doi.org/10.1002/ptr.6087] [PMID: 29672977]
[10]
Grilo, A.L.; Mantalaris, A. Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol. Adv., 2019, 37(3), 459-475.
[http://dx.doi.org/10.1016/j.biotechadv.2019.02.012] [PMID: 30797096]
[11]
Mohamed, M.S.; Bishr, M.K.; Almutairi, F.M.; Ali, A.G. Inhibitors of apoptosis: clinical implications in cancer. Apoptosis, 2017, 22(12), 1487-1509.
[http://dx.doi.org/10.1007/s10495-017-1429-4] [PMID: 29067538]
[12]
Jung, K.H.; Lee, J.H.; Park, J.W.; Kim, D.H.; Moon, S.H.; Cho, Y.S.; Lee, K.H. Targeted therapy of triple negative MDA-MB-468 breast cancer with curcumin delivered by epidermal growth factor-conjugated phospholipid nanoparticles. Oncol. Lett., 2018, 15(6), 9093-9100.
[http://dx.doi.org/10.3892/ol.2018.8471] [PMID: 29805641]
[13]
Liu, T-Y.; Tan, Z-J.; Jiang, L.; Gu, J-F.; Wu, X-S.; Cao, Y.; Li, M-L.; Wu, K-J.; Liu, Y-B. Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells. Cancer Cell Int., 2013, 13(1), 64.
[http://dx.doi.org/10.1186/1475-2867-13-64] [PMID: 23802572]
[14]
Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031] [PMID: 18755156]
[15]
Mitra, T.; Bhattacharya, R. Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations. J. Cell. Physiol., 2020, 235(11), 7696-7708.
[http://dx.doi.org/10.1002/jcp.29703] [PMID: 32324275]
[16]
Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X. Curcumin in treating breast cancer: A review. J. Lab. Autom., 2016, 21(6), 723-731.
[http://dx.doi.org/10.1177/2211068216655524] [PMID: 27325106]
[17]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Sadri Nahand, J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R.; Micro, R.N.A. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[18]
Teles, R.H.G.; Moralles, H.F.; Cominetti, M.R. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis. Int. J. Nanomedicine, 2018, 13, 2321-2336.
[http://dx.doi.org/10.2147/IJN.S164355] [PMID: 29713164]
[19]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[20]
Yi, D.; Xu, L.; Wang, R.; Lu, X.; Sang, J. miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biol. Int., 2019, 43(1), 12-21.
[http://dx.doi.org/10.1002/cbin.11071] [PMID: 30444043]
[21]
Chen, D.; Dai, F.; Chen, Z.; Wang, S.; Cheng, X.; Sheng, Q.; Lin, J.; Chen, W. Dimethoxy curcumin induces apoptosis by suppressing survivin and inhibits invasion by enhancing E-cadherin in colon cancer cells. Med. Sci. Monit., 2016, 22, 3215-3222.
[http://dx.doi.org/10.12659/MSM.900802] [PMID: 27614381]
[22]
Babaei, E.; Sadeghizadeh, M.; Hassan, Z.M.; Feizi, M.A.H.; Najafi, F.; Hashemi, S.M. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int. Immunopharmacol., 2012, 12(1), 226-234.
[http://dx.doi.org/10.1016/j.intimp.2011.11.015] [PMID: 22155627]
[23]
Wong, K.E.; Ngai, S.C.; Chan, K-G.; Lee, L-H.; Goh, B-H.; Chuah, L-H. Curcumin nanoformulations for colorectal cancer: A review. Front. Pharmacol., 2019, 10, 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[24]
Wattanathamsan, O.; Hayakawa, Y.; Pongrakhananon, V. Molecular mechanisms of natural compounds in cell death induction and sensitization to chemotherapeutic drugs in lung cancer. Phytother. Res., 2019, 33(10), 2531-2547.
[http://dx.doi.org/10.1002/ptr.6422] [PMID: 31293008]
[25]
Mortezaee, K.; Salehi, E.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Najafi, M.; Farhood, B.; Rosengren, R.J.; Sahebkar, A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J. Cell. Physiol., 2019, 234(8), 12537-12550.
[http://dx.doi.org/10.1002/jcp.28122] [PMID: 30623450]
[26]
Zhou, Q-M.; Sun, Y.; Lu, Y-Y.; Zhang, H.; Chen, Q-L.; Su, S-B. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int., 2017, 17(1), 84.
[http://dx.doi.org/10.1186/s12935-017-0453-3] [PMID: 28959140]
[27]
Zhao, L.; Gu, Q.; Xiang, L.; Dong, X.; Li, H.; Ni, J.; Wan, L.; Cai, G.; Chen, G. Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Ther. Clin. Risk Manag., 2017, 13, 1099-1105.
[http://dx.doi.org/10.2147/TCRM.S141738] [PMID: 28894373]
[28]
Ebrahimi, M.; Babaei, E.; Neri, F.; Feizi, M.A.H. Anti-proliferative and apoptotic effect of gemini curcumin in p53-wild type and p53-mutant colorectal cancer cell lines. Int. J. Pharm., 2021, 601120592
[http://dx.doi.org/10.1016/j.ijpharm.2021.120592] [PMID: 33857585]
[29]
Zibaei, Z.; Babaei, E.; Zamani, A.R.N.; Rahbarghazi, R.; Azeez, H.J. Curcumin-enriched Gemini surfactant nanoparticles exhibited tumoricidal effects on human 3D spheroid HT-29 cells in vitro. Cancer Nanotechnol., 2021, 12(1), 1-15.
[http://dx.doi.org/10.1186/s12645-020-00074-4] [PMID: 33456622]
[30]
Ponder, K.G.; Boise, L.H. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov., 2019, 5(1), 56.
[http://dx.doi.org/10.1038/s41420-019-0142-1] [PMID: 30701088]