Expression of a Tagless Single-Chain Variable Fragment (scFv) of Anti-TNF-α by a Salt Inducible System and its Purification and Characterization

Page: [1272 - 1280] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Anti-TNF-α scFv is gaining acceptance as an effective drug for various diseases, such as rheumatoid arthritis and Crohn’s disease that involve elevated levels of TNF-α. The single-chain variable fragment (scFv) consists of variable regions of heavy and light chains of monoclonal antibodies (mAb). Due to its smaller size, it curbs the mAb’s auto-antibody effects and their limitation of penetration into the tissues during the neutralization of TNF-α.

Objective: In this work, a cDNA coding for anti-TNF-α scFv was successfully cloned into a pRSET-B vector and efficiently expressed in an E. coli strain GJ1158, a salt inducible system that uses sodium chloride instead of IPTG as an inducer.

Methods: The protein was expressed in the form of inclusion bodies (IB), solubilized using urea, and refolded by pulse dilution. Further, the amino acid sequence coverage of scFv was confirmed by ESI-Q-TOF MS/MS and MALDI-TOF. Further studies on scaling up the production of scFv and its application of scFv are being carried out.

Results: The soluble fraction of anti-TNF-α scFv was then purified in a single chromatographic step using CM-Sephadex chromatography, a weak cation exchanger with a yield of 10.3 mg/L. The molecular weight of the scFv was found to be ~ 28 kDa by SDS PAGE, and its presence was confirmed by western blot analysis and mass spectrometry.

Conclusion: Anti-TNF-α scFv has been successfully purified in a salt inducible system GJ1158. As per the best of our knowledge, this is the first report of purification of Anti-TNF-α scFv in a salt inducible system from soluble fractions as well as inclusion bodies.

Keywords: Anti-TNF-α scFv, recombinant DNA technology, tumor necrosis factor (TNF-α), salt inducible system, inclusion body, single-chain, variable fragment.

Graphical Abstract

[1]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), E2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[2]
Palladino, M.A.; Bahjat, F.R.; Theodorakis, E.A.; Moldawer, L.L. Anti-TNF-α therapies: the next generation. Nat. Rev. Drug Discov., 2003, 2(9), 736-746.
[http://dx.doi.org/10.1038/nrd1175] [PMID: 12951580]
[3]
Reddy, V.; Meier-Kriesche, H.U.; Greene, S.; Schold, J.D.; Wingard, J.R. Increased levels of tumor necrosis factor α are associated with an increased risk of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant., 2005, 11(9), 698-705.
[http://dx.doi.org/10.1016/j.bbmt.2005.05.013] [PMID: 16125640]
[4]
Vaidya, S.A.; Korner, C.; Sirignano, M.N.; Amero, M.; Bazner, S.; Rychert, J.; Allen, T.M.; Rosenberg, E.S.; Bosch, R.J.; Altfeld, M. Tumor necrosis factor α is associated with viral control and early disease progression in patients with HIV type 1 infection. J. Infect. Dis., 2014, 210(7), 1042-1046.
[http://dx.doi.org/10.1093/infdis/jiu206] [PMID: 24688071]
[5]
Tracey, K.J.; Cerami, A. Tumor necrosis factor in the malnutrition (cachexia) of infection and cancer. Am. J. Trop. Med. Hyg., 1992, 47(1 Pt 2), 2-7.
[6]
Farrugia, M.; Baron, B. The role of TNF-α in rheumatoid arthritis: a focus on regulatory T cells. J. Clin. Transl. Res., 2016, 2(3), 84-90.
[http://dx.doi.org/10.18053/jctres.02.201603.005] [PMID: 30873466]
[7]
Adegbola, S.O.; Sahnan, K.; Warusavitarne, J.; Hart, A.; Tozer, P. Anti-TNF therapy in Crohn’s disease. Int. J. Mol. Sci., 2018, 19(8), E2244.
[http://dx.doi.org/10.3390/ijms19082244] [PMID: 30065229]
[8]
Beutler, B.; Cerami, A. The common mediator of shock, cachexia, and tumor necrosis. Adv. Immunol., 1988, 42, 213-231.
[http://dx.doi.org/10.1016/S0065-2776(08)60846-9] [PMID: 2834923]
[9]
Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 2020, 54, 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[10]
Greig, N.H.; Giordano, T.; Zhu, X.; Yu, Q.S.; Perry, T.A.; Holloway, H.W.; Brossi, A.; Rogers, J.T.; Sambamurti, K.; Lahiri, D.K. Thalidomide-based TNF-α inhibitors for neurodegenerative diseases. Acta Neurobiol. Exp. (Warsz.), 2004, 64(1), 1-9.
[PMID: 15190675]
[11]
Taylor, P.C. Antibody therapy for rheumatoid arthritis. Curr. Opin. Pharmacol., 2003, 3(3), 323-328.
[http://dx.doi.org/10.1016/S1471-4892(03)00032-8] [PMID: 12810200]
[12]
van Schouwenburg, P.A.; Rispens, T.; Wolbink, G.J. Immun- ogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol., 2013, 9(3), 164-172.
[http://dx.doi.org/10.1038/nrrheum.2013.4] [PMID: 23399692]
[13]
Hussell, T.; Pennycook, A.; Openshaw, P.J.M. Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur. J. Immunol., 2001, 31(9), 2566-2573.
[http://dx.doi.org/10.1002/1521-4141(200109)31:9<2566::AID-IMMU2566>3.0.CO;2-L] [PMID: 11536154]
[14]
Tobinick, E. TNF-α inhibition for potential therapeutic modulation of SARS coronavirus infection. Curr. Med. Res. Opin., 2004, 20(1), 39-40.
[http://dx.doi.org/10.1185/030079903125002757] [PMID: 14741070]
[15]
Yokota, T.; Milenic, D.E.; Whitlow, M.; Schlom, J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res., 1992, 52(12), 3402-3408.
[PMID: 1596900]
[16]
Huston, J.S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M.S.; Novotný, J.; Margolies, M.N.; Ridge, R.J.; Bruccoleri, R.E.; Haber, E.; Crea, R. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1988, 85(16), 5879-5883.
[http://dx.doi.org/10.1073/pnas.85.16.5879] [PMID: 3045807]
[17]
Sushma, K.; Vijayalakshmi, M.A.; Krishnan, V.; Satheeshkumar, P.K. Cloning, expression, purification and characterization of a single chain variable fragment specific to tumor necrosis factor alpha in Escherichia coli. J. Biotechnol., 2011, 156(4), 238-244.
[http://dx.doi.org/10.1016/j.jbiotec.2011.06.039] [PMID: 21763363]
[18]
Balaji, P.; Satheeshkumar, P.K.; Venkataraman, K.; Vijayalakshmi, M.A. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens. Biotechnol. Appl. Biochem., 2016, 63(3), 354-361.
[http://dx.doi.org/10.1002/bab.1373] [PMID: 25786575]
[19]
Dvorak, P.; Chrast, L.; Nikel, P.I.; Fedr, R.; Soucek, K.; Sedlackova, M.; Chaloupkova, R.; de Lorenzo, V.; Prokop, Z.; Damborsky, J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb. Cell Fact., 2015, 14, 201.
[http://dx.doi.org/10.1186/s12934-015-0393-3] [PMID: 26691337]
[20]
Kosinski, M.J.; Rinas, U.; Bailey, J.E. Isopropyl-β-d- thiogalactopyranoside influences the metabolism of Escherichia coli. Appl. Microbiol. Biotechnol., 1992, 36, 782-784.
[http://dx.doi.org/10.1007/BF00172194]
[21]
Bhandari, P.; Gowrishankar, J. An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J. Bacteriol., 1997, 179(13), 4403-4406.
[http://dx.doi.org/10.1128/jb.179.13.4403-4406.1997] [PMID: 9209061]
[22]
Azevedo, F.; Pereira, H.; Johansson, B. Colony PCR. In: Methods Mol. Biol; , 2017; 1620, pp. 129-139.
[23]
Singh, S.M.; Panda, A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng., 2005, 99(4), 303-310.
[http://dx.doi.org/10.1263/jbb.99.303] [PMID: 16233795]
[24]
Hahn, R.; Schulz, P.M.; Schaupp, C.; Jungbauer, A. Bovine whey fractionation based on cation-exchange chromatography. J. Chromatogr. A, 1998, 795(2), 277-287.
[http://dx.doi.org/10.1016/S0021-9673(97)01030-3] [PMID: 9528103]
[25]
Padmanabha, V.; Govind, G.A.; Kamalanath, A.S. Extraction of antigenic membrane proteins from salmonella using detergent and phase partition method. Res. J. Microbiol., 2017, 13, 47-52.
[http://dx.doi.org/10.3923/jm.2018.47.52]
[26]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology, 1992, 24, 145-149.
[PMID: 1422008]
[27]
Kalathinathan, P.; Pulicherla, K.; Sain, A.; Gomathinayagam, S.; Jayaraj, R.; Thangaraj, S.; Kodiveri Muthukaliannan, G. New alkali tolerant β-galactosidase from Paracoccus marcusii KGP - A promising biocatalyst for the synthesis of oligosaccharides derived from lactulose (OsLu), the new generation prebiotics. Bioorg. Chem., 2021, 115, 105207.
[http://dx.doi.org/10.1016/j.bioorg.2021.105207] [PMID: 34333422]
[28]
Shevchenko, A.; Tomas, H.; Havliš, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc., 2006, 1(6), 2856-2860.
[http://dx.doi.org/10.1038/nprot.2006.468] [PMID: 17406544]
[29]
Reddy, B.C.; Noor, A.; Sabareesh, V.; Vijayalakshmi, M.A. Preliminary screening of potential flavonoid-subclasses in Myristica fragrans and Cordyline terminalis by LC-ESI-MS. J. Pharmacogn. Phytochem., 2016, 5(6), 437-450.
[30]
Mandal, A.K.; Ramasamy, M.R.S.; Sabareesh, V.; Openshaw, M.E.; Krishnan, K.S.; Balaram, P. Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry. J. Am. Soc. Mass Spectrom., 2007, 18(8), 1396-1404.
[http://dx.doi.org/10.1016/j.jasms.2007.04.009] [PMID: 17544293]
[31]
Carswell, E.A.; Old, L.J.; Kassel, R.L.; Green, S.; Fiore, N.; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA, 1975, 72(9), 3666-3670.
[http://dx.doi.org/10.1073/pnas.72.9.3666] [PMID: 1103152]
[32]
Asatsuma-Okumura, T.; Ito, T.; Handa, H. Molecular mechanisms of the teratogenic effects of thalidomide. Pharmaceuticals (Basel), 2020, 13(5), E95.
[http://dx.doi.org/10.3390/ph13050095] [PMID: 32414180]
[33]
Knight, D.M.; Trinh, H.; Le, J.; Siegel, S.; Shealy, D.; McDonough, M.; Scallon, B.; Moore, M.A.; Vilcek, J.; Daddona, P. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol., 1993, 30(16), 1443-1453.
[http://dx.doi.org/10.1016/0161-5890(93)90106-L] [PMID: 8232330]
[34]
Humanized Monoclonal Antibody. , 2011.
[http://dx.doi.org/10.1007/SpringerReference_32338]
[35]
Houde, D.; Peng, Y.; Berkowitz, S.A.; Engen, J.R. Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol. Cell. Proteomics, 2010, 9(8), 1716-1728.
[http://dx.doi.org/10.1074/mcp.M900540-MCP200] [PMID: 20103567]
[36]
Sarker, A.; Rathore, A.S.; Gupta, R.D. Evaluation of scFv protein recovery from E. coli by in vitro refolding and mild solubilization process. Microb. Cell Fact., 2019, 18(1), 5.
[http://dx.doi.org/10.1186/s12934-019-1053-9] [PMID: 30642336]
[37]
Kim, D.J.; Chung, J.H.; Ryu, Y.S.; Rhim, J.H.; Kim, C.W.; Suh, Y.; Chung, H.K. Production and characterisation of a recombinant scFv reactive with human gastrointestinal carcinomas. Br. J. Cancer, 2002, 87(4), 405-413.
[http://dx.doi.org/10.1038/sj.bjc.6600365] [PMID: 12177777]
[38]
Larentis, A.L.; Nicolau, J.F.M.Q.; Esteves, Gdos.S.; Vareschini, D.T.; de Almeida, F.V.; dos Reis, M.G.; Galler, R.; Medeiros, M.A. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res. Notes, 2014, 7, 671.
[http://dx.doi.org/10.1186/1756-0500-7-671] [PMID: 25252618]
[39]
Blackwell, J.R.; Horgan, R. A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett., 1991, 295(1-3), 10-12.
[http://dx.doi.org/10.1016/0014-5793(91)81372-F] [PMID: 1765138]
[40]
Csonka, L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 1989, 53(1), 121-147.
[http://dx.doi.org/10.1128/mr.53.1.121-147.1989] [PMID: 2651863]
[41]
Islam, M.R.; Kwak, J.W.; Lee, J.S.; Hong, S.W.; Khan, M.R.I.; Lee, Y.; Lee, Y.; Lee, S.W.; Hwang, I. Cost-effective production of tag-less recombinant protein in Nicotiana benthamiana. Plant Biotechnol. J., 2019, 17(6), 1094-1105.
[http://dx.doi.org/10.1111/pbi.13040] [PMID: 30468023]
[42]
Schein, C.H. Production of soluble recombinant proteins in bacteria. Nat. Biotechnol., 1989, 7, 1141-1149.
[http://dx.doi.org/10.1038/nbt1189-1141]
[43]
Singh, A.; Upadhyay, V.; Upadhyay, A.K.; Singh, S.M.; Panda, A.K. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb. Cell Fact., 2015, 14, 41.
[http://dx.doi.org/10.1186/s12934-015-0222-8] [PMID: 25889252]
[44]
Kalathinathan, P.; Kodiveri Muthukaliannan, G. A statistical approach for enhanced production of β-galactosidase from Paracoccus sp. and synthesis of galacto-oligosaccharides. Folia Microbiol. (Praha), 2020, 65(5), 811-822.
[http://dx.doi.org/10.1007/s12223-020-00791-8] [PMID: 32394298]