CNS & Neurological Disorders - Drug Targets

Author(s): S. Gayathri, Chandrashekar H. Raghu and S.M. Fayaz*

DOI: 10.2174/1871527320666210920120612

Phytotherapeutics against Alzheimer’s Disease: Mechanism, Molecular Targets and Challenges for Drug Development

Page: [409 - 426] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Alzheimer’s disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl- D-aspartate receptors. Most of the clinical trials in progress are focused on developing disease-modifying agents that aim at single targets. The ‘one drug-one target’ approach is failing in the case of Alzheimer’s disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like Ayurveda use a holistic approach encompassing the legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of Ayurveda, specifically in identifying plants with potent anti-Alzheimer’s disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer’s disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer’s disease potential and about 500 phytochemicals from medicinal plants have been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants, such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera, have been reviewed with respect to their multidimensional property, such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition, and memory-enhancing activity. In addition, the strengths and challenges in ayurvedic medicine that limit its use as mainstream therapy are discussed, and a framework for the development of herbal medicine has been proposed.

Keywords: Phytopharmaceuticals, molecular targets, ayurvedic medicine, alzheimer’s disease, medicinal plants, clinical trials, neuroprotection, memory enhancers.

Graphical Abstract

[1]
United Nations. Economic and Social Affairs Population Division. World Population Ageing. Econ. Soc. Aff. Popul. Div. 2019. Highlights. ST/ESA/SER.A/423. Available from: https://population.un.org/wpp/Publications/ [cited:25th Dec 2020]
[2]
Jaul E, Barron J. Age-related diseases, and clinical and public health implications for the 85 years old and over population. Front Public Health 2017; 5: 335.
[http://dx.doi.org/10.3389/fpubh.2017.00335] [PMID: 29312916]
[3]
WHO. Fact sheets. Dementia 19. 2020; 1-5. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia[cited:25th Dec 2020]
[4]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[5]
Grundke-Iqbal I, Iqbal K, Tung YC. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1987; 1(3): 202.
[PMID: 3088567]
[6]
Kocahan S, Doğan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-Aspartate receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci 2017; 15(1): 1-8.
[http://dx.doi.org/10.9758/cpn.2017.15.1.1] [PMID: 28138104]
[7]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[8]
Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener 2018; 7(2): 2.
[http://dx.doi.org/10.1186/s40035-018-0107-y] [PMID: 29423193]
[9]
Zhang M, Schmitt-Ulms G, Sato C, et al. Drug repositioning for Alzheimer’s disease based on systematic “omics” data mining. PLoS One 2016; 11(12): e0168812.
[http://dx.doi.org/10.1371/journal.pone.0168812] [PMID: 28005991]
[10]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: An update. J Cent Nerv Syst Dis 2020; 12: 1179573520907397.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[11]
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 2018; 4: 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[12]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[13]
Ketter N, Brashear HR, Bogert J, et al. Central review of amyloid-related imaging abnormalities in two phase III clinical trials of bapineuzumab in mild-to-moderate Alzheimer’s disease patients. J Alzheimers Dis 2017; 57(2): 557-73.
[http://dx.doi.org/10.3233/JAD-160216] [PMID: 28269765]
[14]
Carlson C, Siemers E, Hake A, et al. Amyloid-related imaging abnormalities from trials of solanezumab for Alzheimer’s disease. Alzheimers Dement (Amst) 2016; 2(1): 75-85.
[http://dx.doi.org/10.1016/j.dadm.2016.02.004] [PMID: 27239538]
[15]
Spencer B, Masliah E. Immunotherapy for Alzheimer’s disease: past, present and future. Front Aging Neurosci 2014; 6(114): 114.
[PMID: 24959143]
[16]
Mo JJ, Li JY, Yang Z, Liu Z, Feng JS. Efficacy and safety of anti-amyloid-β immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 2017; 4(12): 931-42.
[http://dx.doi.org/10.1002/acn3.469] [PMID: 29296624]
[17]
Salloway S, Sperling R, Keren R, et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011; 77(13): 1253-62.
[http://dx.doi.org/10.1212/WNL.0b013e3182309fa5] [PMID: 21917766]
[18]
Panza F, Lozupone M, Solfrizzi V, et al. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18(11): 847-57.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[19]
Kimberly WT, Esler WP, Ye W, et al. Notch and the amyloid precursor protein are cleaved by similar γ-secretase(s). Biochemistry 2003; 42(1): 137-44.
[http://dx.doi.org/10.1021/bi026888g] [PMID: 12515548]
[20]
Penninkilampi R, Brothers HM, Eslick GD. Pharmacological agents targeting γ-secretase increase risk of cancer and cognitive decline in Alzheimer’s disease patients: A systematic review and meta-Analysis. 2016; 53(4): 1395-404.
[http://dx.doi.org/10.3233/JAD-160275]
[21]
Vellas B, Sol O, Snyder PJ, et al. EHT0202 in Alzheimer’s disease: A 3-month, randomized, placebo-controlled, double-blind study. Curr Alzheimer Res 2011; 8(2): 203-12.
[http://dx.doi.org/10.2174/156720511795256053] [PMID: 21222604]
[22]
Chauhan A, Semwal DK, Mishra SP, Semwal RB. Ayurvedic research and methodology: Present status and future strategies. Ayu 2015; 36(4): 364-9.
[http://dx.doi.org/10.4103/0974-8520.190699] [PMID: 27833362]
[23]
Mukherjee A, Banerjee M, Mandal V, Shukla AC, Mandal SC. Modernization of Ayurveda: a brief overview of Indian initiatives. Nat Prod Commun 2014; 9(2): 287-90.
[http://dx.doi.org/10.1177/1934578X1400900239] [PMID: 24689312]
[24]
Semwal DK, Chauhan A, Kumar A, Aswal S, Semwal RB, Kumar A. Status of Indian medicinal plants in the International Union for Conservation of Nature and the future of Ayurvedic drugs: Shouldn’t think about Ayurvedic fundamentals? J Integr Med 2019; 17(4): 238-43.
[http://dx.doi.org/10.1016/j.joim.2019.04.008] [PMID: 31076374]
[25]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30.
[PMID: 28197471]
[26]
Choudhary N, Singh V. Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: integrated computational studies on drug-target and protein-protein interaction networks. Sci Rep 2019; 9(1): 10565.
[http://dx.doi.org/10.1038/s41598-019-46715-6] [PMID: 31332210]
[27]
Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001; 109(Suppl. 1): 69-75.
[PMID: 11250806]
[28]
Braidy N, Behzad S, Habtemariam S, et al. Neuroprotective effects of citrus fruit-derived flavonoids, nobiletin and tangeretin in Alzheimer’s and Parkinson’s disease. CNS Neurol Disord Drug Targets 2017; 16(4): 387-97.
[http://dx.doi.org/10.2174/1871527316666170328113309] [PMID: 28474543]
[29]
Bookheimer SY, Renner BA, Ekstrom A, et al. Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evid Based Complement Alternat Med 2013; 2013: 946298.
[http://dx.doi.org/10.1155/2013/946298] [PMID: 23970941]
[30]
Subash S, Essa MM, Al-Adawi S, Memon MA, Manivasagam T, Akbar M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen Res 2014; 9(16): 1557-66.
[http://dx.doi.org/10.4103/1673-5374.139483] [PMID: 25317174]
[31]
Mairuae N, Connor JR, Lee SY, Cheepsunthorn P, Tongjaroenbuangam W. The effects of okra (Abelmoschus esculentus Linn.) on the cellular events associated with Alzheimer’s disease in a stably expressed HFE neuroblastoma SH-SY5Y cell line. Neurosci Lett 2015; 603: 6-11.
[http://dx.doi.org/10.1016/j.neulet.2015.07.011] [PMID: 26170247]
[32]
Tiwari RS, Tripathi JS. A critical appraisal of dementia with special reference to Smritibuddhihrass. Ayu 2013; 34(3): 235-42.
[http://dx.doi.org/10.4103/0974-8520.123102] [PMID: 24501515]
[33]
Ansari OA, Tripathi JS, Ansari S. Evidence based anti- dementing activity of Saraswata Ghrita: A nootropic compound from ayurveda. Int J Pharm Sci Res 2013; 4(11): 4194-202.
[34]
Uma S, Kavimani KVR. Effect of saraswatarishta on learning and memory. Int J Phytopharm 2010; 1(1): 15-9.
[35]
Singh N, Chaudhary A. A comparative review study of Sneha Kalpana (Paka) vis-a-vis liposome. Ayu 2011; 32(1): 103-8.
[http://dx.doi.org/10.4103/0974-8520.85740] [PMID: 22131767]
[36]
Srikantha MKR. Vagbhata’s Astanga Hrdayam. Varanasi: Chaukhamba Orientalia 2000; Vol. 1-3.
[37]
Prabhakara RG. Bhaishajya Ratnavali.Volume 1-2 of Kaniraj Shri Govind Das Sen, Chaukhamba Orientalia. Varanasi 2014.
[38]
Narayanan G, Prabhu K, Chaudhuri A, Rao MRK, Kalai SVS, Balaji TK, et al. Neuro-protective effect of ayurveda formulation, saraswatharishtam, on scopolamine induced memory impairment in animal model. Pharmacogn J 2020; 12(1): 465-72.
[http://dx.doi.org/10.5530/pj.2020.12.72]
[39]
Jai P, Jayakumari S, Prabhu K, Jyothi AK, Manickam S. Kavimani. Saraswatarishta reverses neuronal Injury in brain tissues of scopalamine-induced rat model. J Anat Soc India 2019; 68(4): 68-73.
[40]
Raghu KS, Shamprasad BR, Kabekkodu SP, et al. Age dependent neuroprotective effects of medhya rasayana prepared from Clitoria ternatea Linn. in stress induced rat brain. J Ethnopharmacol 2017; 197: 173-83.
[http://dx.doi.org/10.1016/j.jep.2016.07.068] [PMID: 27469198]
[41]
Thirunavukkarasu SV, Venkataraman S, Raja S, Upadhyay L. Neuroprotective effect of Manasamitra vatakam against aluminium induced cognitive impairment and oxidative damage in the cortex and hippocampus of rat brain. Drug Chem Toxicol 2012; 35(1): 104-15.
[http://dx.doi.org/10.3109/01480545.2011.589442] [PMID: 21787249]
[42]
Thirunavukkarasu SV, Venkataraman S, Nadu T. Effect of aluminum induced toxicity on behavioral and hematological parameters under the influence of manasamitra vatakam (An Ayurvedic Formulation) in rats. Pharmacologyonline 2011; 594-603.
[43]
Thirunavukkarasu SV, Upadhyay L, Venkataraman S. Effect of manasamitra vatakam, an ayurvedic formulation, on aluminium-induced neurotoxicity in rats. Trop J Pharm Res 2012; 11: 75-83.
[http://dx.doi.org/10.4314/tjpr.v11i1.10]
[44]
Sivakumaran G, Rao MRK, Prabhu K, Kalaiselvi VS, Jones S, Johnson WM, et al. Preliminary GC-MS analysis and antioxidant study of one ayurvedic medicine manasamitra vatakam. Int J Pharm Sci Rev Res 2016; 37(1): 190-9.
[45]
Srikalyani V, Ilango K. Chemical fingerprint by HPLC-DAD-ESI-MS, GC-MS analysis and anti-oxidant activity of manasamitra vatakam: A herbomineral formulation. Pharmacogn J 2020; 12(1): 115-23.
[http://dx.doi.org/10.5530/pj.2020.12.18]
[46]
Rao MRK, Prabhu K. Identification of active biomolecules in saraswararishtam (An Ayurvedic Preparation) by GC-MS Analysis. Int J Pharm Sci Rev Res 2015; 33(2): 58-62.
[47]
Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 2017; 197(2): 92-100.
[http://dx.doi.org/10.1016/j.jep.2016.07.073] [PMID: 27473605]
[48]
Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci 2017; 24(2): 111-22.
[http://dx.doi.org/10.1159/000475900] [PMID: 28588366]
[49]
Kizhakke P A, Olakkaran S, Antony A, Tilagul K S, Hunasanahally P G. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. J Chem Neuroanat 2019; 95(1): 115-22.
[http://dx.doi.org/10.1016/j.jchemneu.2017.10.002] [PMID: 29051039]
[50]
Moharana D, Moharana S. A clinical trial of mentat in patients with various types of epilepsy. Probe 1994; 33(XXXIII): 160-2.
[51]
Dave UP, Chauvan V, Dalvi J. Evaluation of BR-16 A (Mentat) in cognitive and behavioural dysfunction of mentally retarded children-a placebo-controlled study. Indian J Pediatr 1993; 60(3): 423-8.
[http://dx.doi.org/10.1007/BF02751207] [PMID: 8253492]
[52]
Majumdar R, Bagade A, Phadke MA, Kulkarni DKS. Seizure control and pattern of behaviour in children with simple febrile convulsions – Effect of mentat syrup. Indian Pract 2001; 54(10): 729.
[53]
Upadhyay SK, Kulkarni KS. Evaluation of the efficacy of mentat in children with learning disability: A placebo-controlled double-blind clinical trial. Neurosci Today 2002; 3: 184-8.
[54]
Agrawal A, Dixit SP, Dubey GP. Role of Mentat in the Management of Post-Stroke Aphasia. Indian Pract 1994; XLVII(3): 211-4.
[55]
Bhattacharya SK, Kumar A, Jaiswal AK. Effect of mentat, a herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. Fitoterapia 1995; LXVI(3): 216.
[56]
Preeti T, Patil PA. Majagi, Suneel I. Effect of mentat and its selected ingredients on 3-nitropropionic acid Induced neuronal damage in wistar rats. Pharmacologyonline 2010; 1: 856-63.
[57]
Bhattacharya SK, Kumar A. Effect of Trasina, an ayurvedic herbal formulation, on experimental models of Alzheimer’s disease and central cholinergic markers in rats. J Altern Complement Med 1997; 3(4): 327-36.
[http://dx.doi.org/10.1089/acm.1997.3.327] [PMID: 9449054]
[58]
Andrade C, Gowda S, Chaturvedi SK. Treatment of age-related cognitive decline with a herbal formulation : a double-blind study. Indian J Psychiatry 1998; 40(3): 240-6.
[PMID: 21494479]
[59]
Indian Council of Medical Research. National Institute of Medical Statistics. Clinical Trials Registry-India. Available from: http://ctri.nic.in/Clinicaltrials/publications.php[cited:10th Jan 2021]
[60]
Ghadage P, Gupta K. Niranjan, Trivedi. Role of medhya rasayana Alzheimer’s type. Int Ayurvedic Med J 2018; 6(6): 1228-33.
[61]
Raut SB, Parekar RR, Jadhav KS, Marathe PA, Rege NN. Effect of Jyotiṣmatī seed oil on spatial and fear memory using scopolamine induced amnesia in mice. Anc Sci Life 2015; 34(3): 130-3.
[http://dx.doi.org/10.4103/0257-7941.157149] [PMID: 26120226]
[62]
Tripathi R, Tripathi PJS. Brahmi ghrita: a potential drug for treatment of mild cognitive impairment due to Alzheimer’s disease. World J Pharm Life Sci 2018; 4: 138-41.
[63]
Obed AA, Tripathi JS, Sayema A. Evidence based anti-dementing activity of saraswata ghrita a nootropic compound from Ayurveda. Int J Pharm Sci Res 2013; 4(11): 4194-02.
[64]
Sridharan K, Sivaramakrishnan G. Clinical trials in Ayurveda: Analysis of clinical trial registry of India. J Ayurveda Integr Med 2016; 7(3): 141-3.
[http://dx.doi.org/10.1016/j.jaim.2016.08.009] [PMID: 27658912]
[65]
Narayana DBA, Durg S. Ayurveda: (W)here is the evidence. J Ayurveda Integr Med 2021; 12(2): 408-11.
[http://dx.doi.org/10.1016/j.jaim.2020.07.001] [PMID: 32951967]
[66]
World Health Organization. International Clinical Trials Registry Platform. Available from: https://apps.who.int/trialsearch/[cited:20th Sep 2020].
[67]
U.S. National Library of Medicine: Clinical Trials. Available from: https://www.clinicaltrials.gov/[cited:20th Sep 2020].
[68]
Yue S, He T, Li B, et al. Effectiveness of Yi-Zhi-An-Shen granules on cognition and sleep quality in older adults with amnestic mild cognitive impairment: protocol for a randomized, double-blind, placebo-controlled trial. Trials 2019; 20(1): 518.
[http://dx.doi.org/10.1186/s13063-019-3607-x] [PMID: 31429790]
[69]
Ren J, Wei D, An H, Zhang J, Zhang Z. Shenqi Yizhi granules protect hippocampus of AD transgenic mice by modulating on multiple pathological processes. J Ethnopharmacol 2020; 263: 112869.
[http://dx.doi.org/10.1016/j.jep.2020.112869] [PMID: 32315734]
[70]
Li P, Wu Q, Li X, Hu B, Wen W, Xu S. Shenqi Yizhi Granule attenuates Aβ1-42 induced cognitive dysfunction via inhibiting JAK2/STAT3 activated astrocyte reactivity. Exp Gerontol 2021; 151: 111400.
[http://dx.doi.org/10.1016/j.exger.2021.111400] [PMID: 33974937]
[71]
Liu H, Ye M, Guo H. An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer’s patients. Front Pharmacol 2020; 10: 1688.
[http://dx.doi.org/10.3389/fphar.2019.01688] [PMID: 32153388]
[72]
Maurer K, Ihl R, Dierks T, Frölich L. Clinical efficacy of Ginkgo biloba special extract EGb 761 in dementia of the Alzheimer type. J Psychiatr Res 1997; 31(6): 645-55.
[http://dx.doi.org/10.1016/S0022-3956(97)00022-8] [PMID: 9447569]
[73]
Liu X, Hao W, Qin Y, et al. Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav Immun 2015; 46: 121-31.
[http://dx.doi.org/10.1016/j.bbi.2015.01.011] [PMID: 25637484]
[74]
Ide K, Matsuoka N, Yamada H, Furushima D, Kawakami K. Effects of tea catechins on Alzheimer’s disease: Recent updates and perspectives. Molecules 2018; 23(9): 2357.
[http://dx.doi.org/10.3390/molecules23092357] [PMID: 30223480]
[75]
D’Onofrio G, Nabavi SM, Sancarlo D, Greco A, Pieretti S. Crocus sativus L. (Saffron) in Alzheimer’s disease treatment: bioactive effects on cognitive impairment. Curr Neuropharmacol 2021. [Online ahead of print].
[http://dx.doi.org/10.2174/1570159X19666210113144703] [PMID: 33441068]
[76]
Özbeyli D, Yarimbaş G, Ertaş B, Şen A, Şakarcan S, Şener G. Myrtus communis extract ameliorates high-fat diet induced brain damage and cognitive function. J Res Pharm 2020; 24(6): 86-873.
[77]
Aykac A, Ozbeyli D, Uncu M, et al. Evaluation of the protective effect of Myrtus communis in scopolamine-induced Alzheimer model through cholinergic receptors. Gene 2019; 689: 194-201.
[http://dx.doi.org/10.1016/j.gene.2018.12.007] [PMID: 30553998]
[78]
Kadıoğlu Yaman B, Çevik Ö, Yalman K, Ertaş B, Şen A, Şener G. Myrtus communis subsp. communis improved cognitive functions in ovariectomized diabetic rats. Gene 2020; 744: 144616.
[http://dx.doi.org/10.1016/j.gene.2020.144616] [PMID: 32222531]
[79]
Seo JS, Kim TK, Leem YH, et al. SK-PC-B70M confers anti-oxidant activity and reduces Abeta levels in the brain of Tg2576 mice. Brain Res 2009; 1261: 100-8.
[http://dx.doi.org/10.1016/j.brainres.2009.01.019] [PMID: 19401163]
[80]
Tajadini H, Saifadini R, Choopani R, Mehrabani M, Kamalinejad M, Haghdoost AA. Herbal medicine Davaie Loban in mild to moderate Alzheimer’s disease: A 12-week randomized double-blind placebo-controlled clinical trial. Complement Ther Med 2015; 23(6): 767-72.
[http://dx.doi.org/10.1016/j.ctim.2015.06.009] [PMID: 26645514]
[81]
Iram F, Khan SA, Husain A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac J Trop Biomed 2017; 513-23.
[http://dx.doi.org/10.1016/j.apjtb.2017.05.001]
[82]
Beheshti S, Aghaie R. Therapeutic effect of frankincense in a rat model of Alzheimer’s disease. Avicenna J Phytomed 2016; 6(4): 468-75.
[PMID: 27516988]
[83]
Gomaa AA, Makboul RM, Al-Mokhtar MA, Nicola MA. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed Pharmacother 2019; 109: 281-92.
[http://dx.doi.org/10.1016/j.biopha.2018.10.056] [PMID: 30396086]
[84]
Zhang S, Zhu Q, Chen JY, OuYang D, Lu JH. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer’s disease animal model: A systematic review. Phytomedicine 2020; 79: 153316.
[http://dx.doi.org/10.1016/j.phymed.2020.153316] [PMID: 32942205]
[85]
Cascella M, Bimonte S, Muzio MR, Schiavone V, Cuomo A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer 2017; 12: 36.
[http://dx.doi.org/10.1186/s13027-017-0145-6] [PMID: 28642806]
[86]
Chen M, Du ZY, Zheng X, Li DL, Zhou RP, Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 2018; 13(4): 742-52.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[87]
Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C. The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res 2019; 1725: 146476.
[http://dx.doi.org/10.1016/j.brainres.2019.146476] [PMID: 31560864]
[88]
Sánchez-Hidalgo M, León-González AJ, Gálvez-Peralta M, González-Mauraza NH, Martin-Cordero C. d-Pinitol: a cyclitol with versatile biological and pharmacological activities. Phytochem Rev 2021; 211-24.
[http://dx.doi.org/10.1007/s11101-020-09677-6]
[89]
Wang J, Ho L, Pasinetti GM. [P-167]: The Development of NIC5-15, a natural anti-diabetic agent, in the treatment of Alzheimer’s disease. Alzheimers Dement 2005; 1: S62-2.
[http://dx.doi.org/10.1016/j.jalz.2005.06.228]
[90]
Calapai G, Bonina F, Bonina A, et al. A randomized, double-blinded, clinical trial on effects of a Vitis vinifera extract on cognitive function in healthy older adults. Front Pharmacol 2017; 8: 776.
[http://dx.doi.org/10.3389/fphar.2017.00776] [PMID: 29163162]
[91]
Rapaka D, Bitra VR, Vishala TC, Akula A. Vitis vinifera acts as anti-Alzheimer’s agent by modulating biochemical parameters implicated in cognition and memory. J Ayurveda Integr Med 2019; 10(4): 241-7.
[http://dx.doi.org/10.1016/j.jaim.2017.06.013] [PMID: 30337026]
[92]
Cho WH, Park JC, Kim DH, et al. ID1201, the ethanolic extract of the fruit of Melia toosendan ameliorates impairments in spatial learning and reduces levels of amyloid beta in 5XFAD mice. Neurosci Lett 2014; 583: 170-5.
[http://dx.doi.org/10.1016/j.neulet.2014.09.036] [PMID: 25281546]
[93]
Park H, Yoo JS, Kim JY, et al. Anti-amyloidogenic effects of ID1201, the ethanolic extract of the fruits of Melia toosendan, through activation of the phosphatidylinositol 3-kinase/Akt pathway. Environ Toxicol Pharmacol 2014; 37(2): 513-20.
[http://dx.doi.org/10.1016/j.etap.2014.01.008] [PMID: 24566006]
[94]
Yu JCH, Min ZD, Ip NY. Melia toosendan regulates PC12 Cell differentiation via the activation of protein kinase A and extracellular signal-regulated kinases. Neurosignals 2004; 13(5): 248-57.
[http://dx.doi.org/10.1159/000079339] [PMID: 15305092]
[95]
Bisong SA, Nku CO, Sanya OA, Ita SO, Fischer VA, Abuo FE. Long-term consumption of virgin coconut (Cocos nucifera) oil diet impairs learning and memory in CD1 mice. Chin Herb Med 2020; 12: 414-20.
[http://dx.doi.org/10.1016/j.chmed.2020.03.008]
[96]
Guang Q, Xiao-qiong W, Xue-gang L. Chinese 2006; 31(2): 194-9. [Effect of polygonum multiflorum thunb on BDNF expression in rat hippocampus induced by amyloid beta-protein (Abeta) 1-40].
[97]
Hou DR, Wang Y, Xue L, et al. Effect of polygonum multiflorum on the fluidity of the mitochondria membrane and activity of COX in the hippocampus of rats with Abeta 1-40-induced Alzheimer’s disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2008; 33(11): 987-92.
[PMID: 19060365]
[98]
Hase T, Shishido S, Yamamoto S, et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep 2019; 9(1): 8711.
[http://dx.doi.org/10.1038/s41598-019-45168-1] [PMID: 31213631]
[99]
Cornejo A, Aguilar Sandoval F, Caballero L, et al. Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer’s disease. J Enzyme Inhib Med Chem 2017; 32(1): 945-53.
[http://dx.doi.org/10.1080/14756366.2017.1347783] [PMID: 28701064]
[100]
Mirza FJ, Amber S, Sumera , Hassan D, Ahmed T, Zahid S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer’s disease. Phytomedicine 2021; 83: 153490.
[http://dx.doi.org/10.1016/j.phymed.2021.153490] [PMID: 33601255]
[101]
Uță G, Manolescu DȘ, Avram S. Ștefania, Avram S. Therapeutic properties of several chemical compounds from Salvia officinalis L. in Alzheimer’s Disease. Mini-Reviews. Mini Rev Med Chem 2021; 21(12): 1421-30.
[http://dx.doi.org/10.2174/1389557521999201230200209] [PMID: 33390133]
[102]
Lopresti AL. Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs 2017; 17(1): 53-64.
[http://dx.doi.org/10.1007/s40268-016-0157-5] [PMID: 27888449]
[103]
Razgonova MP, Veselov VV, Zakharenko AM, et al. Panax ginseng components and the pathogenesis of Alzheimer’s disease (Review). Mol Med Rep 2019; 19(4): 2975-98.
[http://dx.doi.org/10.3892/mmr.2019.9972] [PMID: 30816465]
[104]
Kim HJ, Jung SW, Kim SY, et al. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res 2018; 42(4): 401-11.
[http://dx.doi.org/10.1016/j.jgr.2017.12.008] [PMID: 30337800]
[105]
Mukherjee PK, Kumar V, Mal M, Peter J, Mukherjee PK, Kumar V, et al. Acorus calamus: Scientific validation of ayurvedic tradition from natural resources. Pharm Biol 2008; 45(8): 651-66.
[http://dx.doi.org/10.1080/13880200701538724]
[106]
Khwairakpam AD, Damayenti YD, Deka A, et al. Acorus calamus: a bio-reserve of medicinal values. J Basic Clin Physiol Pharmacol 2018; 29(2): 107-22.
[http://dx.doi.org/10.1515/jbcpp-2016-0132] [PMID: 29389665]
[107]
Li J, Zhao J, Wang W, et al. New acorane-type sesquiterpene from Acorus calamus L. Molecules 2017; 22(4): 2-8.
[http://dx.doi.org/10.3390/molecules22040529] [PMID: 28346359]
[108]
Li J, Li Z-X, Zhao JP, et al. A novel tropoloisoquinoline alkaloid, neotatarine, from Acorus calamus L. Chem Biodivers 2017; 14(10): e1700201.
[http://dx.doi.org/10.1002/cbdv.201700201] [PMID: 28695650]
[109]
Liu SJ, Yang C, Zhang Y, et al. Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des Devel Ther 2016; 10: 1461-9.
[http://dx.doi.org/10.2147/DDDT.S93559] [PMID: 27143853]
[110]
Yang QQ, Xue WZ, Zou RX, et al. β-Asarone rescues Pb-induced impairments of spatial memory and synaptogenesis in rats. PLoS One 2016; 11(12): e0167401.
[http://dx.doi.org/10.1371/journal.pone.0167401] [PMID: 27936013]
[111]
Yang Y, Xuan L, Chen H, Dai S, Ji L, Bao Y, et al. Neuroprotective effects and mechanism of β-Asarone against Aβ 1-42 induced injury in astrocytes. Evid Based Complement Alternat Med 2017; 8916518: 1-14.
[112]
Radhakrishnan A, Jayakumari N, Kumar VM, Gulia KK. Sleep promoting potential of low dose α-Asarone in rat model. Neuropharmacology 2017; 125: 13-29.
[http://dx.doi.org/10.1016/j.neuropharm.2017.07.003] [PMID: 28694098]
[113]
Tian J, Tian Z, Qin SL, Zhao PY, Jiang X, Tian Z. Anxiolytic-like effects of α-asarone in a mouse model of chronic pain. Metab Brain Dis 2017; 32(6): 2119-29.
[http://dx.doi.org/10.1007/s11011-017-0108-z] [PMID: 28913780]
[114]
Ning B, Zhang Q, Wang N, Deng M, Fang Y. β-asarone regulates ER stress and autophagy via inhibition of the PERK/CHOP/Bcl-2/Beclin-1 pathway in 6-OHDA-induced parkinsonian rats. Neurochem Res 2019; 44(5): 1159-66.
[http://dx.doi.org/10.1007/s11064-019-02757-w] [PMID: 30796752]
[115]
Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide- induced neuroinflammation rat models. Int J Prev Med 2018; 9(85): 85.
[PMID: 30450168]
[116]
Lam KYC, Yao P, Wang H, Duan R, Dong TTX, Tsim KWK. Asarone from Acori Tatarinowii Rhizome prevents oxidative stress-induced cell injury in cultured astrocytes: A signaling triggered by Akt activation. PLoS One 2017; 12(6): e0179077.
[http://dx.doi.org/10.1371/journal.pone.0179077] [PMID: 28598994]
[117]
Chellian R, Pandy V. Protective effect of α-asarone against nicotine-induced seizures in mice, but not by its interaction with nicotinic acetylcholine receptors. Biomed Pharmacother 2018; 108: 1591-5.
[http://dx.doi.org/10.1016/j.biopha.2018.09.137] [PMID: 30372861]
[118]
Bai Y, Sun Y, Xie J, et al. The asarone-derived phenylpropanoids from the rhizome of Acorus calamus var. angustatus Besser. Phytochemistry 2020; 170: 112212.
[http://dx.doi.org/10.1016/j.phytochem.2019.112212] [PMID: 31785552]
[119]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2(6): 1101-13.
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[120]
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer’s disease. Transl Res 2017; 183: 26-40.
[http://dx.doi.org/10.1016/j.trsl.2016.12.005] [PMID: 28034760]
[121]
El Khoury NB, Gratuze M, Papon M-A, Bretteville A, Planel E. Insulin dysfunction and Tau pathology. Front Cell Neurosci 2014; 8: 22.
[http://dx.doi.org/10.3389/fncel.2014.00022] [PMID: 24574966]
[122]
Khan JAMG. Impaired Glucose Metabolism in Alzheimer’s disease and diabetes. Enzyme Eng 2014; 42(4): 1-4.
[123]
Pardeshi R, Bolshette N, Gadhave K, et al. Insulin signaling: An opportunistic target to minify the risk of Alzheimer’s disease. Psychoneuroendocrinol 2017; 83: 159-71.
[http://dx.doi.org/10.1016/j.psyneuen.2017.05.004] [PMID: 28624654]
[124]
Chellian R, Pandy V, Mohamed Z. Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. Phytomedicine 2017; 32: 41-58.
[http://dx.doi.org/10.1016/j.phymed.2017.04.003] [PMID: 28732807]
[125]
Saini N, Singh D, Sandhir R. Bacopa monnieri prevents colchicine-induced dementia by anti-inflammatory action. Metab Brain Dis 2019; 34(2): 505-18.
[http://dx.doi.org/10.1007/s11011-018-0332-1] [PMID: 30604025]
[126]
Bhatia G, Dhuna V, Dhuna K, Kaur M, Singh J. Bacopa monnieri extracts prevent hydrogen peroxide-induced oxidative damage in a cellular model of neuroblastoma IMR32 cells. Chin J Nat Med 2017; 15(11): 834-46.
[http://dx.doi.org/10.1016/S1875-5364(18)30017-7] [PMID: 29329610]
[127]
Promsuban C, Limsuvan S, Akarasereenont P, Tilokskulchai K, Tapechum S, Pakaprot N. Bacopa monnieri extract enhances learning-dependent hippocampal long-term synaptic potentiation. Neuroreport 2017; 28(16): 1031-5.
[http://dx.doi.org/10.1097/WNR.0000000000000862] [PMID: 28885486]
[128]
Abdul Manap AS, Vijayabalan S, Madhavan P, et al. Bacopa monnieri, a neuroprotective lead in Alzheimer disease: A review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights 2019; 13: 1177392819866412.
[http://dx.doi.org/10.1177/1177392819866412] [PMID: 31391778]
[129]
Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R. Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 2017; 8(4): 884-91.
[http://dx.doi.org/10.1021/acschemneuro.6b00438] [PMID: 28094495]
[130]
Cho SJ, Yun SM, Jo C, et al. Altered expression of Notch1 in Alzheimer’s disease. PLoS One 2019; 14(11): e0224941.
[http://dx.doi.org/10.1371/journal.pone.0224941] [PMID: 31770379]
[131]
Aithal MGS, Rajeswari N. Bacoside A induced Sub-G0 arrest and early apoptosis in human glioblastoma cell line U-87 MG through Notch signaling pathway. Brain Tumor Res Treat 2019; 7(1): 25-32.
[http://dx.doi.org/10.14791/btrt.2019.7.e21] [PMID: 31062528]
[132]
Woo HN, Park JS, Gwon AR, Arumugam TV, Jo DG. Alzheimer’s disease and Notch signaling. Biochem Biophys Res Commun 2009; 390(4): 1093-7.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.093] [PMID: 19853579]
[133]
Hazra S, Kumar S, Saha GK, Mondal AC. Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: Effects of phytochemical, Bacopa monnieri. Psychiatry Investig 2017; 14(1): 74-80.
[http://dx.doi.org/10.4306/pi.2017.14.1.74] [PMID: 28096878]
[134]
Das DN, Naik PP, Nayak A, et al. Bacopa monnieri-induced protective autophagy inhibits benzo[a]pyrene-mediated apoptosis. Phytother Res 2016; 30(11): 1794-801.
[http://dx.doi.org/10.1002/ptr.5682] [PMID: 27432245]
[135]
Ganie SH, Ali Z, Das S, Srivastava PS, Sharma MP. Genetic diversity and chemical profiling of different populations of Convolvulus pluricaulis (convolvulaceae): An important herb of ayurvedic medicine. 3 Biotech 2015; 5(3): 295-302.
[136]
Rachitha P, Krupashree K, Jayashree GV, et al. Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis. J Tradit Complement Med 2018; 8(4): 483-96.
[http://dx.doi.org/10.1016/j.jtcme.2017.11.002] [PMID: 30302329]
[137]
Garg G, Patil A, Singh J, et al. Pharmacological evaluation of Convolvulus pluricaulis as hypolipidaemic agent in Triton WR-1339-induced hyperlipidaemia in rats. J Pharm Pharmacol 2018; 70(11): 1572-80.
[http://dx.doi.org/10.1111/jphp.13004] [PMID: 30182365]
[138]
Gupta GL, Fernandes J. Protective effect of Convolvulus pluricaulis against neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Biomed Pharmacother 2019; 109: 1698-708.
[http://dx.doi.org/10.1016/j.biopha.2018.11.046] [PMID: 30551424]
[139]
Verma S, Sinha R, Kumar P, Amin F, Jain J, Tanwar S. Study of Convolvulus pluricaulis for antioxidant and anticonvulsant activity. Cent Nerv Syst Agents Med Chem 2012; 12(1): 55-9.
[http://dx.doi.org/10.2174/187152412800229161] [PMID: 22280406]
[140]
Bihaqi SW, Singh AP, Tiwari M. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J Pharmacol 2011; 43(5): 520-5.
[http://dx.doi.org/10.4103/0253-7613.84958] [PMID: 22021993]
[141]
Malik J, Karan M, Vasisht K. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice. Nat Prod Res 2016; 30(5): 578-82.
[http://dx.doi.org/10.1080/14786419.2015.1025398] [PMID: 25828605]
[142]
Choudhary N, Sddiqui M, Azmat S, Khatoon S. Tinospora cordifolia: ethnobotany, phytopharmacology and phytochemistry aspects. Int J Pharm Sci Res 2013; 4: 891-9.
[143]
Singh D, Chaudhuri PK. Chemistry and pharmacology of Tinospora cordifolia. Nat Prod Commun 2017; 12(2): 299-308.
[http://dx.doi.org/10.1177/1934578X1701200240] [PMID: 30428235]
[144]
Albinjose J, Jasmine E, Selvankumar T. Bioactive compounds of Tinospora cordifolia by gas chromatography-mass spectrometry (GC-MS). Int J Res Dev 2015; 2(1): 88-97.
[145]
Sharma P, Dwivedee BP, Bisht D, Dash AK, Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019; 5(9): e02437.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02437] [PMID: 31701036]
[146]
Reddi KK, Tetali SD. Dry leaf extracts of Tinospora cordifolia (Willd.) Miers attenuate oxidative stress and inflammatory condition in human monocytic (THP-1) cells. Phytomedicine 2019; 61: 152831.
[http://dx.doi.org/10.1016/j.phymed.2019.152831] [PMID: 31035042]
[147]
Birla H, Rai SN, Singh SS, et al. Tinospora cordifolia suppresses neuroinflammation in Parkinsonian mouse model. Neuromolecular Med 2019; 21(1): 42-53.
[http://dx.doi.org/10.1007/s12017-018-08521-7] [PMID: 30644041]
[148]
Balkrishna A, Pokhrel S, Tomer M, et al. Anti-acetylcholinesterase activities of mono-herbal extracts and exhibited synergistic effects of the phytoconstituents: A biochemical and computational study. Molecules 2019; 24(22): 4175.
[http://dx.doi.org/10.3390/molecules24224175] [PMID: 31752124]
[149]
Philip S, Tom G, Vasumathi AV. Evaluation of the anti-inflammatory activity of Tinospora cordifolia (Willd.) Miers chloroform extract - a preclinical study. J Pharm Pharmacol 2018; 70(8): 1113-25.
[http://dx.doi.org/10.1111/jphp.12932] [PMID: 29770441]
[150]
Lumsden AL, Rogers JT, Majd S, et al. Dysregulation of neuronal iron homeostasis as an alternative unifying effect of mutations causing familial Alzheimer’s disease. Front Neurosci 2018; 12: 533.
[http://dx.doi.org/10.3389/fnins.2018.00533] [PMID: 30150923]
[151]
Ghatpande NS, Misar AV, Waghole RJ, Jadhav SH, Kulkarni PP. Tinospora cordifolia protects against inflammation associated anemia by modulating inflammatory cytokines and hepcidin expression in male Wistar rats. Sci Rep 2019; 9(1): 10969.
[http://dx.doi.org/10.1038/s41598-019-47458-0] [PMID: 31358831]
[152]
Sharma A, Kaur G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: an In vitro perspective. BMC Complement Altern Med 2018; 18(1): 268.
[http://dx.doi.org/10.1186/s12906-018-2330-6] [PMID: 30285727]
[153]
Mishra R, Manchanda S, Gupta M, et al. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci Rep 2016; 6: 25564.
[http://dx.doi.org/10.1038/srep25564] [PMID: 27146164]
[154]
Gaurav N, Kumar A, Tyagi M, Kumar D, Chauhan UK, Singh PAP. Morphology of Withania somnifera (Distribution, Morphology, Phytosociology of Withania somnifera L. Dunal). Int J Cur Sci Res 2015; 7(1): 164-73.
[155]
Singh M, Ramassamy C. In vitro screening of neuroprotective activity of Indian medicinal plant Withania somnifera. J Nutr Sci 2017; 6(e54): e54.
[http://dx.doi.org/10.1017/jns.2017.48] [PMID: 29152258]
[156]
Kumar S, Harris RJ, Seal CJ, Okello EJ. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation In vitro. Phytother Res 2012; 26(1): 113-7.
[http://dx.doi.org/10.1002/ptr.3512] [PMID: 21567509]
[157]
Gupta M, Kaur G. Withania somnifera as a potential anxiolytic and anti-inflammatory candidate against systemic lipopolysaccharide-Induced neuroinflammation. Neuromolecular Med 2018; 20(3): 343-62.
[http://dx.doi.org/10.1007/s12017-018-8497-7] [PMID: 29846872]
[158]
Atluri VSR, Tiwari S, Rodriguez M, et al. Inhibition of amyloid- beta production, associated neuroinflammation, and histone deacetylase 2-mediated epigenetic modifications prevent neuropathology in Alzheimer’s disease In vitro model. Front Aging Neurosci 2020; 11: 342.
[http://dx.doi.org/10.3389/fnagi.2019.00342] [PMID: 32009938]
[159]
Pandey A, Bani S, Dutt P, Kumar Satti N, Avtar Suri K, Nabi Qazi G. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 2018; 102: 211-21.
[http://dx.doi.org/10.1016/j.cyto.2017.10.019] [PMID: 29108796]
[160]
Konar A, Gupta R, Shukla RK, et al. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep 2019; 9(1): 13990.
[http://dx.doi.org/10.1038/s41598-019-48238-6] [PMID: 31570736]
[161]
Tohda C, Joyashiki E. Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET. Br J Pharmacol 2009; 157(8): 1427-40.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00313.x] [PMID: 19594760]
[162]
Sehgal N, Gupta A, Valli RK, et al. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci USA 2012; 109(9): 3510-5.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[163]
Vareed SK, Bauer AK, Nair KM, Liu Y, Jayaprakasam B, Nair MG. Blood-brain barrier permeability of bioactive withanamides present in Withania somnifera fruit extract. Phytother Res 2014; 28(8): 1260-4.
[http://dx.doi.org/10.1002/ptr.5118] [PMID: 24458838]
[164]
Ning B, Deng M, Zhang Q, Wang N, Fang Y. β-Asarone Inhibits IRE1/XBP1 endoplasmic reticulum stress pathway in 6-OHDA-induced parkinsonian rats. Neurochem Res 2016; 41(8): 2097-101.
[http://dx.doi.org/10.1007/s11064-016-1922-0] [PMID: 27097550]
[165]
Qiu G, Chen S, Guo J, Wu J, Yi YH. Alpha-asarone improves striatal cholinergic function and locomotor hyperactivity in Fmr1 knockout mice. Behav Brain Res 2016; 312: 212-8.
[http://dx.doi.org/10.1016/j.bbr.2016.06.024] [PMID: 27316341]
[166]
Bihaqi SW, Singh AP, Tiwari M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain. Indian J Pharmacol 2012; 44(5): 593-8.
[http://dx.doi.org/10.4103/0253-7613.100383] [PMID: 23112420]
[167]
Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol 2009; 124(3): 409-15.
[http://dx.doi.org/10.1016/j.jep.2009.05.038] [PMID: 19505562]
[168]
Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm Biol 2011; 49(12): 1234-42.
[http://dx.doi.org/10.3109/13880209.2011.584539] [PMID: 21846173]
[169]
Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: A mechanistic study. J Neuroinflammation. J Neuroinflam 2016; 13: 1-17.
[http://dx.doi.org/10.1186/s12974-016-0650-3]
[170]
Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur J Neurosci 2006; 23(6): 1417-26.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04664.x] [PMID: 16553605]
[171]
Panossian A, Seo EJ, Efferth T. Effects of anti-inflammatory and adaptogenic herbal extracts on gene expression of eicosanoids signaling pathways in isolated brain cells. Phytomedicine 2019; 60: 152881.
[http://dx.doi.org/10.1016/j.phymed.2019.152881] [PMID: 30987861]
[172]
Vattakaven T, George RM, Balasubramanian D, et al. India Biodiversity Portal: An integrated, interactive and participatory biodiversity informatics platform. Biodivers Data J 2016; 4(4): e10279.
[http://dx.doi.org/10.3897/BDJ.4.e10279] [PMID: 27932923]
[173]
POWO (2019). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available from: http://www.plantsoftheworldonline.org/[cited:7th Oct 2020].
[174]
Mirmosayyeb O, Tanhaei A, Sohrabi HR, et al. Possible role of common spices as a preventive and therapeutic agent for Alzheimer’s disease. Int J Prev Med 2017; 8: 5.
[http://dx.doi.org/10.4103/2008-7802.199640] [PMID: 28250905]
[175]
Sahoo N, Manchikanti P. Herbal drug regulation and commercialization: an Indian industry perspective. J Altern Complement Med 2013; 19(12): 957-63.
[http://dx.doi.org/10.1089/acm.2012.0275] [PMID: 23829812]
[176]
Tanko H, Carrier DJ, Duan L, Clausen E. Pre- and post-harvest processing of medicinal plants. Plant Genet Resour 2005; 3: 304-13.
[http://dx.doi.org/10.1079/PGR200569]
[177]
Pandey AK. Savita. Harvesting and post-harvest processing of medicinal plants: problems and prospects. Pharma Innov J 2017; 6(12): 229-35.
[178]
Sethiya NK, Nahata A, Singh PK, Mishra SH. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J Ayurveda Integr Med 2019; 10(1): 25-31.
[http://dx.doi.org/10.1016/j.jaim.2017.08.012] [PMID: 29530454]
[179]
Pin KY, Chuah TG, Rashih AA, Law CL, Rasadah MA, Choong TSY. Drying of betel leaves (Piper betle L.): Quality and drying kinetics. Dry Technol 2009; 27(1): 149-55.
[http://dx.doi.org/10.1080/07373930802566077]
[180]
Rocha RP, Melo EC, Radünz LL. Influence of drying process on the quality of medicinal plants: A review. J Med Plants Res 2011; 5(33): 7076-84.
[http://dx.doi.org/10.5897/JMPRX11.001]
[181]
Arendse E, Fawole OA, Opara UL. Effects of postharvest storage conditions on phytochemical and radical-scavenging activity of pomegranate fruit (cv. Wonderful). Sci Hortic (Amsterdam) 2014; 169: 125-9.
[http://dx.doi.org/10.1016/j.scienta.2014.02.012]
[182]
Shirolkar A, Gahlaut A, Hooda V, Dabur R. Phytochemical composition changes in untreated stem juice of Tinospora cordifolia (W) Mier during refrigerated storage. J Pharm Res 2013; 7(1): 1-6.
[http://dx.doi.org/10.1016/j.jopr.2013.01.018]
[183]
Fancello F, Petretto G, Sanna ML, Pintore G, Lage M, Zara S. Isolation and characterization of microorganisms and volatiles associated with Moroccan saffron during different processing treatments. Int J Food Microbiol 2018; 273: 43-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2018.03.014] [PMID: 29574333]
[184]
Sun J, Wu Y, Dong S, Li X, Gao W. Influence of the drying method on the bioactive compounds and pharmacological activities of rhubarb. J Sci Food Agric 2018; 98(9): 3551-62.
[http://dx.doi.org/10.1002/jsfa.8871] [PMID: 29315599]
[185]
Chua LYW, Chua BL, Figiel A, et al. Antioxidant activity, and volatile and phytosterol contents of Strobilanthes crispus dehydrated using conventional and vacuum microwave drying methods. Molecules 2019; 24(7): 1397.
[http://dx.doi.org/10.3390/molecules24071397] [PMID: 30970652]
[186]
Kong M, Liu HH, Wu J, et al. Effects of sulfur-fumigation on the pharmacokinetics, metabolites and analgesic activity of Radix Paeoniae Alba. J Ethnopharmacol 2018; 212: 95-105.
[http://dx.doi.org/10.1016/j.jep.2017.10.023] [PMID: 29080828]
[187]
Bansal M, Reddy MS, Kumar A. Seasonal variations in harvest index and bacoside A contents amongst accessions of Bacopa monnieri (L.) Wettst. collected from wild populations. Physiol Mol Biol Plants 2016; 22(3): 407-13.
[http://dx.doi.org/10.1007/s12298-016-0366-y] [PMID: 27729727]
[188]
Kumar S, Yadav A, Yadav M, Yadav JP. Effect of climate change on phytochemical diversity, total phenolic content and In vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res Notes 2017; 10(1): 60.
[http://dx.doi.org/10.1186/s13104-017-2385-3] [PMID: 28118858]
[189]
Takshak S, Agrawal SB. The role of supplemental ultraviolet-B radiation in altering the metabolite profile, essential oil content and composition, and free radical scavenging activities of Coleus forskohlii, an indigenous medicinal plant. Environ Sci Pollut Res Int 2016; 23(8): 7324-37.
[http://dx.doi.org/10.1007/s11356-015-5965-6] [PMID: 26681329]
[190]
Jan S, Mir JI, Singh DB, et al. Effect of environmental variables on phytonutrients of Origanum vulgare L. in the sub-humid region of the northwestern Himalayas. Environ Monit Assess 2018; 190(10): 571.
[http://dx.doi.org/10.1007/s10661-018-6951-5] [PMID: 30187208]
[191]
Piri E, Mahmoodi Sourestani M, Khaleghi E, et al. Chemo-diversity and antiradical potential of twelve Matricaria chamomilla L. populations from Iran: Proof of ecological effects. Molecules 2019; 24(7): 1-14.
[http://dx.doi.org/10.3390/molecules24071315] [PMID: 30987223]
[192]
Gad HA, Ayoub IM, Wink M. Phytochemical profiling and seasonal variation of essential oils of three Callistemon species cultivated in Egypt. PLoS One 2019; 14(7): e0219571.
[http://dx.doi.org/10.1371/journal.pone.0219571] [PMID: 31295290]
[193]
Maurya SK, Seth A, Laloo D, Singh NK, Gautam DN, Singh AK. Śodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants. Anc Sci Life 2015; 34(4): 188-97.
[http://dx.doi.org/10.4103/0257-7941.160862] [PMID: 26283803]
[194]
Jain R, Venkatasubramanian P. Proposed correlation of modern processing principles for Ayurvedic herbal drug manufacturing: A systematic review. Anc Sci Life 2014; 34(1): 8-15.
[http://dx.doi.org/10.4103/0257-7941.150768] [PMID: 25737605]
[195]
Mishra A, Mishra AK, Tiwari OP, Jha S. Studies on metals and pesticide content in some Ayurvedic formulations containing Bacopa monnieri L. J Integr Med 2016; 14(1): 44-50.
[http://dx.doi.org/10.1016/S2095-4964(16)60241-8] [PMID: 26778228]
[196]
Bolan S, Kunhikrishnan A, Seshadri B, et al. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environ Int 2017; 108: 103-18.
[http://dx.doi.org/10.1016/j.envint.2017.08.005] [PMID: 28843139]
[197]
Huang H zhou, Zhao S yu, Ke X mei, Lin J zhi, Huang S sen, Xu R chun. Study on the stability control strategy of Triphala solution based on the balance of physical stability and chemical stabilities. J Pharm Biomed Anal 2018; 158: 247-56.
[198]
Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin Med. BioMed Central 2016; 11(37): 1-10.
[http://dx.doi.org/10.1186/s13020-016-0108-7]
[199]
Cunningham AB, Brinckmann JA, Yang X, He J. Introduction to the special issue: Saving plants, saving lives: Trade, sustainable harvest and conservation of traditional medicinals in Asia. J Ethnopharmacol 2019; 229: 288-92.
[http://dx.doi.org/10.1016/j.jep.2018.10.006] [PMID: 30326261]
[200]
Bajpai V, Kumar S, Singh A, et al. Chemometric based identification and validation of specific chemical markers for geographical, seasonal and gender variations in Tinospora cordifolia stem using HPLC-ESI-QTOF-MS analysis. Phytochem Anal 2017; 28(4): 277-88.
[http://dx.doi.org/10.1002/pca.2673] [PMID: 28111813]
[201]
Yadav K, Aggarwal A, Singh N. Evaluation of genetic fidelity among micropropagated plants of Gloriosa superba L. using DNA-based markers-a potential medicinal plant. Fitoterapia 2013; 89: 265-70.
[http://dx.doi.org/10.1016/j.fitote.2013.06.009] [PMID: 23811099]
[202]
Shinde S, Sebastian JK, Jain JR, Hanamanthagouda MS, Murthy HN. Efficient In vitro propagation of Artemisia nilagirica var. nilagirica (Indian wormwood) and assessment of genetic fidelity of micropropagated plants. Physiol Mol Biol Plants 2016; 22(4): 595-603.
[http://dx.doi.org/10.1007/s12298-016-0379-6] [PMID: 27924132]
[203]
Rohela GK, Jogam P, Bylla P, Reuben C. Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT. ISSR, and RAPD markers in Rauwolfia tetraphylla l.: An endangered medicinal plant. BioMed Res Int 2019; 2019: 3698742.
[http://dx.doi.org/10.1155/2019/3698742] [PMID: 31111050]
[204]
Wang J, Li J, Wu X, Liu S, Li H, Gao W. Assessment of genetic fidelity and composition: Mixed elicitors enhance triterpenoid and flavonoid biosynthesis of Glycyrrhiza uralensis Fisch. tissue cultures. Biotechnol Appl Biochem 2017; 64(2): 211-7.
[http://dx.doi.org/10.1002/bab.1485] [PMID: 26872048]
[205]
Fu Y, Zhao W. Polyesterified sesquiterpenoids from the seeds of Celastrus paniculatus as lifespan-extending agents for the nematode Caenorhabditis elegans. J Nat Prod 2020; 83(2): 505-15.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01199] [PMID: 32031809]
[206]
Balmus IM, Ciobica A. Main plant extracts’ active properties effective on scopolamine-induced memory loss. Am J Alzheimers Dis Other Demen 2017; 32(7): 418-28.
[http://dx.doi.org/10.1177/1533317517715906] [PMID: 28643520]
[207]
Ashokkumar K, Murugan M, Dhanya MK, Raj S, Kamaraj D. Phytochemical variations among four distinct varieties of Indian cardamom Elettaria cardamomum (L.) Maton. Nat Prod Res 2020; 34(13): 1919-22.
[http://dx.doi.org/10.1080/14786419.2018.1561687] [PMID: 30663385]
[208]
Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem 2017; 10: 1193-9.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.015]
[209]
Chakraborty S, Ramachandran B, Basu S. Encompassing receptor flexibility in virtual screening using ensemble docking-based hybrid QSAR: discovery of novel phytochemicals for BACE1 inhibition. Mol Biosyst 2014; 10(10): 2684-92.
[http://dx.doi.org/10.1039/C4MB00307A] [PMID: 25088750]
[210]
Fotis C, Antoranz A, Hatziavramidis D, Sakellaropoulos T, Alexopoulos LG. Network-based technologies for early drug discovery. Drug Discov Today 2018; 23(3): 626-35.
[http://dx.doi.org/10.1016/j.drudis.2017.12.001] [PMID: 29294361]
[211]
Patel CN, Georrge JJ, Modi KM, et al. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer’s disease. J Biomol Struct Dyn 2018; 36(15): 3938-57.
[http://dx.doi.org/10.1080/07391102.2017.1404931] [PMID: 29281938]
[212]
Fayaz SM, Suvanish Kumar VS, Rajanikant KG. Finding needles in a haystack: application of network analysis and target enrichment studies for the identification of potential anti-diabetic phytochemicals. PLoS One 2014; 9(11): e112911.
[http://dx.doi.org/10.1371/journal.pone.0112911] [PMID: 25396726]
[213]
Fang J, Wang L, Wu T, et al. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J Ethnopharmacol 2017; 196: 281-92.
[http://dx.doi.org/10.1016/j.jep.2016.11.034] [PMID: 27888133]
[214]
Choudhary N, Singh V. A census of P. longum’s phytochemicals and their network pharmacological evaluation for identifying novel drug-like molecules against various diseases, with a special focus on neurological disorders. PLoS One 2018; 13(1): e0191006.
[http://dx.doi.org/10.1371/journal.pone.0191006] [PMID: 29320554]
[215]
Li M, Huang W, Jie F, et al. Discovery of Keap1-Nrf2 small- molecule inhibitors from phytochemicals based on molecular docking. Food Chem Toxicol 2019; 133: 110758.
[http://dx.doi.org/10.1016/j.fct.2019.110758] [PMID: 31412289]
[216]
Kumar A, Srivastava G, Srivastava S, Verma S, Negi AS, Sharma A. Investigation of naphthofuran moiety as potential dual inhibitor against BACE-1 and GSK-3β: molecular dynamics simulations, binding energy, and network analysis to identify first-in-class dual inhibitors against Alzheimer’s disease. J Mol Model 2017; 23(8): 239.
[http://dx.doi.org/10.1007/s00894-017-3396-7] [PMID: 28741112]
[217]
Lagunin A, Druzhilovsky D, Rudik A, Filimonov DA, Gawande D, Suresh K, et al. Capacities of computer evaluation of hidden potential of phytochemicals of medicinal plants of the traditional Indian ayurvedic Medicine. Biomed Chem 2016; 10: 43-54.
[http://dx.doi.org/10.1134/S1990750816010091]
[218]
Sala-Cirtog M, Marian C, Anghel A. New insights of medicinal plant therapeutic activity-The miRNA transfer. Biomed Pharmacother 2015; 74: 228-32.
[http://dx.doi.org/10.1016/j.biopha.2015.08.016] [PMID: 26349990]
[219]
Huang F, Du J, Liang Z, et al. Large-scale analysis of small RNAs derived from traditional Chinese herbs in human tissues. Sci China Life Sci 2019; 62(3): 321-32.
[http://dx.doi.org/10.1007/s11427-018-9323-5] [PMID: 30238279]
[220]
Meena S, Kanthaliya B, Joshi A, Khan F, Arora J. Biologia futura: medicinal plants - derived bioactive peptides in functional perspective — a review. Biol Futur 2020; 71: 195-208.
[http://dx.doi.org/10.1007/s42977-020-00042-4]
[221]
Patil SP, Goswami A, Kalia K, Kate AS. Plant-derived bioactive peptides: A treatment to cure diabetes. Int J Pept Res Ther 2020; 26(2): 955-68.
[http://dx.doi.org/10.1007/s10989-019-09899-z] [PMID: 32435169]
[222]
Sajadimajd S, Bahrami G, Daglia M, Nabavi SM, Naseri R, Farzaei MH. Plant-derived supplementary carbohydrates, polysaccharides, and oligosaccharides in management of diabetes mellitus: A comprehensive review. Food Rev Int 2019; 35: 563-86.
[http://dx.doi.org/10.1080/87559129.2019.1584818]
[223]
Manigandan V, Karthik R, Saravanan R. Marine carbohydrate-based therapeutics for Alzheimer disease-mini review. J Neurol Neurosci 2015; 06: 1-6.
[224]
Baidyanath.Ayurveda sar sangraha, Sri Baidyanath ayurveda bhavan. Telangana 2017.
[225]
Shastri A. Susruta Samhita. Varanasi: Chaukhambha Sanskrit Sansthan 2014.
[226]
Shukla AV, Tripathi R. Charak Samhita, 2015th edition. Chennai: CPS 2015.
[227]
Shastri VS. Shastri BSB. Varanasi: Yogaratnakara, Chaukhambha Prakashan 2017.
[228]
Ayurveda Formulary of India. Available from: https://dravyagunatvpm.wordpress.com/ayurvedic-formulary-of-india/[cited:27th Sep 2020]