PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer’s Disease

Page: [309 - 323] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Progressive degeneration and dysfunction of the nervous system because of oxidative stress, aggregations of misfolded proteins, and neuroinflammation are the key pathological features of neurodegenerative diseases. Alzheimer's disease is a chronic neurodegenerative disorder driven by uncontrolled extracellular deposition of β-amyloid (Aβ) in the amyloid plaques and intracellular accumulation of hyperphosphorylated tau protein. Curcumin is a hydrophobic polyphenol with noticeable neuroprotective and anti-inflammatory effects that can cross the blood-brain barrier. Therefore, it is widely studied for the alleviation of inflammatory and neurological disorders. However, the clinical application of curcumin is limited due to its low aqueous solubility and bioavailability. Recently, nano-based curcumin delivery systems are developed to overcome these limitations effectively. This review article discusses the effects and potential mechanisms of curcumin-loaded PLGA nanoparticles in Alzheimer’s disease.

Keywords: Curcuminoids, polymer, PLGA, cognition, inflammation, drug delivery.

Graphical Abstract

[1]
Emerit, J.; Edeas, M.; Bricaire, F. Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother., 2004, 58(1), 39-46.
[http://dx.doi.org/10.1016/j.biopha.2003.11.004] [PMID: 14739060]
[2]
Koo, E.H.; Lansbury, P.T., Jr; Kelly, J.W. Amyloid diseases: Abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 9989-9990.
[http://dx.doi.org/10.1073/pnas.96.18.9989] [PMID: 10468546]
[3]
Amor, S.; Puentes, F.; Baker, D.; van der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[4]
Becher, B.; Spath, S.; Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol., 2017, 17(1), 49-59.
[http://dx.doi.org/10.1038/nri.2016.123] [PMID: 27916979]
[5]
DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153.
[http://dx.doi.org/10.1111/jnc.13607] [PMID: 26990767]
[6]
Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2766-2778.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[7]
Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci., 2008, 9(1), 46-56.
[http://dx.doi.org/10.1038/nrn2297] [PMID: 18073775]
[8]
Trovato Salinaro, A.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: A systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol., 2014, 5, 129.
[http://dx.doi.org/10.3389/fphar.2014.00129] [PMID: 24936186]
[9]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[10]
Trovato Salinaro, A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: Modulation by nutritional mushrooms. Immun. Ageing, 2018, 15(1), 8.
[http://dx.doi.org/10.1186/s12979-017-0108-1] [PMID: 29456585]
[11]
Calabrese, V.; Cornelius, C.; Mancuso, C.; Barone, E.; Calafato, S.; Bates, T.; Rizzarelli, E.; Kostova, A.T. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front. Biosci., 2009, 14, 376-397.
[http://dx.doi.org/10.2741/3250] [PMID: 19273073]
[12]
Cornelius, C.; Trovato Salinaro, A.; Scuto, M.; Fronte, V.; Cambria, M.T.; Pennisi, M.; Bella, R.; Milone, P.; Graziano, A.; Crupi, R.; Cuzzocrea, S.; Pennisi, G.; Calabrese, V. Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: Role of vitagenes. Immun. Ageing, 2013, 10(1), 41.
[http://dx.doi.org/10.1186/1742-4933-10-41] [PMID: 24498895]
[13]
Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2016, 53, 350-358.
[http://dx.doi.org/10.1016/j.neuro.2015.09.012] [PMID: 26433056]
[14]
Calabrese, V.; Scapagnini, G.; Davinelli, S.; Koverech, G.; Koverech, A.; De Pasquale, C.; Salinaro, A.T.; Scuto, M.; Calabrese, E.J.; Genazzani, A.R. Sex hormonal regulation and hormesis in aging and longevity: Role of vitagenes. J. Cell Commun. Signal., 2014, 8(4), 369-384.
[http://dx.doi.org/10.1007/s12079-014-0253-7] [PMID: 25381162]
[15]
Ruz, C.; Alcantud, J.L.; Vives Montero, F.; Duran, R.; Bandres-Ciga, S.; Bandres-Ciga, S. Proteotoxicity and neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(16), 5646.
[http://dx.doi.org/10.3390/ijms21165646] [PMID: 32781742]
[16]
Morimoto, R.I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev., 1998, 12(24), 3788-3796.
[http://dx.doi.org/10.1101/gad.12.24.3788] [PMID: 9869631]
[17]
Morimoto, R.I. Stress, aging, and neurodegenerative disease. Mol. Biol. Cell, 2004, 15, 657-664.
[18]
Morimoto, R.I. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev., 2008, 22(11), 1427-1438.
[http://dx.doi.org/10.1101/gad.1657108] [PMID: 18519635]
[19]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[20]
Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida, S.A.M.; Schapira, T.; Dinkova Kostova, A.T.; Rizzarelli, E. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res., 2008, 33(12), 2444-2471.
[http://dx.doi.org/10.1007/s11064-008-9775-9] [PMID: 18629638]
[21]
Calabrese, V.; Bates, T.E.; Mancuso, C.; Cornelius, C.; Ventimiglia, B.; Cambria, M.T.; Di Renzo, L.; De Lorenzo, A.; Dinkova-Kostova, A.T. Curcumin and the cellular stress response in free radical-related diseases. Mol. Nutr. Food Res., 2008, 52(9), 1062-1073.
[http://dx.doi.org/10.1002/mnfr.200700316] [PMID: 18792015]
[22]
Calabrese, E.J. Hormesis and medicine. Br. J. Clin. Pharmacol., 2008, 66(5), 594-617.
[PMID: 18662293]
[23]
Cedergreen, N.; Streibig, J.C.; Kudsk, P.; Mathiassen, S.K.; Duke, S.O. The occurrence of hormesis in plants and algae. Dose Response, 2007, 5(2), 150-162.
[http://dx.doi.org/10.2203/dose-response.06-008.Cedergreen]
[24]
Hoffmann, G.R. A perspective on the scientific, philosophical, and policy dimensions of hormesis. Dose Response, 2009, 7(1), 1-51.
[http://dx.doi.org/10.2203/dose-response.08-023.Hoffmann]
[25]
Masoro, E.J. Role of hormesis in life extension by caloric restriction. Dose Response, 2007, 5(2), 163-173.
[http://dx.doi.org/10.2203/dose-response.06-005.Masoro]
[26]
Scott, BR .It's time for a new low-dose-radiation risk assessment paradigm—one that acknowledges hormesis. Dose-Response,, 2008, 6(4), 07-005.
[27]
Calabrese, E.J.; Baldwin, L.A. Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol. Sci., 2001, 22(6), 285-291.
[http://dx.doi.org/10.1016/S0165-6147(00)01719-3] [PMID: 11395156]
[28]
Calabrese, E.J.; Baldwin, L.A. U-shaped dose-responses in biology, toxicology, and public health. Annu. Rev. Public Health, 2001, 22(1), 15-33.
[http://dx.doi.org/10.1146/annurev.publhealth.22.1.15] [PMID: 11274508]
[29]
Calabrese, E.J. Historical blunders: how toxicology got the dose-response relationship half right. Cell. Mol. Biol., 2005, 51(7), 643-654.
[PMID: 16359616]
[30]
Calabrese, E.J. Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit. Rev. Toxicol., 2005, 35(2-3), 89-295.
[http://dx.doi.org/10.1080/10408440590917044] [PMID: 15839378]
[31]
Calabrese, E.J. Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted. Arch. Toxicol., 2009, 83(3), 227-247.
[http://dx.doi.org/10.1007/s00204-009-0411-5] [PMID: 19234688]
[32]
Mattson, M.P. Awareness of hormesis will enhance future research in basic and applied neuroscience. Crit. Rev. Toxicol., 2008, 38(7), 633-639.
[http://dx.doi.org/10.1080/10408440802026406] [PMID: 18709572]
[33]
Calabrese, E.J. Dose-response features of neuroprotective agents: An integrative summary. Crit. Rev. Toxicol., 2008, 38(4), 253-348.
[http://dx.doi.org/10.1080/10408440801981965] [PMID: 18432419]
[34]
Mattson, M.P. Hormesis defined. Ageing Res. Rev., 2008, 7(1), 1-7.
[http://dx.doi.org/10.1016/j.arr.2007.08.007] [PMID: 18162444]
[35]
Calabrese, E.J.; Bachmann, K.A.; Bailer, A.J.; Bolger, P.M.; Borak, J.; Cai, L.; Cedergreen, N.; Cherian, M.G.; Chiueh, C.C.; Clarkson, T.W.; Cook, R.R.; Diamond, D.M.; Doolittle, D.J.; Dorato, M.A.; Duke, S.O.; Feinendegen, L.; Gardner, D.E.; Hart, R.W.; Hastings, K.L.; Hayes, A.W.; Hoffmann, G.R.; Ives, J.A.; Jaworowski, Z.; Johnson, T.E.; Jonas, W.B.; Kaminski, N.E.; Keller, J.G.; Klaunig, J.E.; Knudsen, T.B.; Kozumbo, W.J.; Lettieri, T.; Liu, S.Z.; Maisseu, A.; Maynard, K.I.; Masoro, E.J.; McClellan, R.O.; Mehendale, H.M.; Mothersill, C.; Newlin, D.B.; Nigg, H.N.; Oehme, F.W.; Phalen, R.F.; Philbert, M.A.; Rattan, S.I.; Riviere, J.E.; Rodricks, J.; Sapolsky, R.M.; Scott, B.R.; Seymour, C.; Sinclair, D.A.; Smith-Sonneborn, J.; Snow, E.T.; Spear, L.; Stevenson, D.E.; Thomas, Y.; Tubiana, M.; Williams, G.M.; Mattson, M.P. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol. Appl. Pharmacol., 2007, 222(1), 122-128.
[http://dx.doi.org/10.1016/j.taap.2007.02.015] [PMID: 17459441]
[36]
Hayes, D.P. Nutritional hormesis. Eur. J. Clin. Nutr., 2007, 61(2), 147-159.
[http://dx.doi.org/10.1038/sj.ejcn.1602507] [PMID: 16885926]
[37]
Martins, I.; Galluzzi, L.; Kroemer, G. Hormesis, cell death and aging. Aging, 2011, 3(9), 821-828.
[http://dx.doi.org/10.18632/aging.100380] [PMID: 21931183]
[38]
de Grey, A.D. Free radicals in aging: causal complexity and its biomedical implications. Free Radic. Res., 2006, 40(12), 1244-1249.
[http://dx.doi.org/10.1080/10715760600913176] [PMID: 17090413]
[39]
Ludovico, P.; Burhans, W.C. Reactive oxygen species, ageing and the hormesis police. FEMS Yeast Res., 2014, 14(1), 33-39.
[http://dx.doi.org/10.1111/1567-1364.12070] [PMID: 23965186]
[40]
Lee, S.H.; Blair, I.A. Oxidative DNA damage and cardiovascular disease. Trends Cardiovasc. Med., 2001, 11(3-4), 148-155.
[http://dx.doi.org/10.1016/S1050-1738(01)00094-9] [PMID: 11686005]
[41]
Afonso, V.; Champy, R.; Mitrovic, D.; Collin, P.; Lomri, A. Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine, 2007, 74(4), 324-329.
[http://dx.doi.org/10.1016/j.jbspin.2007.02.002] [PMID: 17590367]
[42]
McCord, J.M. Superoxide dismutase in aging and disease: An overview. Methods in Enzymology; Academic Press, 2002, pp. 331-341.
[http://dx.doi.org/10.1016/S0076-6879(02)49348-2]
[43]
Shan, X.; Chi, L.; Ke, Y.; Luo, C.; Qian, S.; Gozal, D.; Liu, R. Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage. Neurobiol. Dis., 2007, 28(2), 206-215.
[http://dx.doi.org/10.1016/j.nbd.2007.07.013] [PMID: 17719231]
[44]
Keller, J.N.; Kindy, M.S.; Holtsberg, F.W.; St Clair, D.K.; Yen, H.C.; Germeyer, A.; Steiner, S.M.; Bruce-Keller, A.J.; Hutchins, J.B.; Mattson, M.P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci., 1998, 18(2), 687-697.
[http://dx.doi.org/10.1523/JNEUROSCI.18-02-00687.1998] [PMID: 9425011]
[45]
Dirnagl, U.; Meisel, A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology, 2008, 55(3), 334-344.
[http://dx.doi.org/10.1016/j.neuropharm.2008.02.017] [PMID: 18402985]
[46]
Ristow, M.; Zarse, K. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol., 2010, 45(6), 410-418.
[http://dx.doi.org/10.1016/j.exger.2010.03.014] [PMID: 20350594]
[47]
Mandel, S.; Amit, T.; Reznichenko, L.; Weinreb, O.; Youdim, M.B. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol. Nutr. Food Res., 2006, 50(2), 229-234.
[http://dx.doi.org/10.1002/mnfr.200500156] [PMID: 16470637]
[48]
Mandel, S.; Weinreb, O.; Reznichenko, L.; Kalfon, L.; Amit, T. Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain. J. Neural Transm. Suppl., 2006, (71), 249-257.
[http://dx.doi.org/10.1007/978-3-211-33328-0_26] [PMID: 17447435]
[49]
Rattan, S.I. Hormesis in aging. Ageing Res. Rev., 2008, 7(1), 63-78.
[http://dx.doi.org/10.1016/j.arr.2007.03.002] [PMID: 17964227]
[50]
Calabrese, E.J. Astrocytes: Adaptive responses to low doses of neurotoxins. Crit. Rev. Toxicol., 2008, 38(5), 463-471.
[http://dx.doi.org/10.1080/10408440802004023] [PMID: 18568866]
[51]
Calabrese, E.J. Pharmacological enhancement of neuronal survival. Crit. Rev. Toxicol., 2008, 38(4), 349-389.
[http://dx.doi.org/10.1080/10408440801981973] [PMID: 18432420]
[52]
Calabrese, E.J. Neuroscience and hormesis: overview and general findings. Crit. Rev. Toxicol., 2008, 38(4), 249-252.
[http://dx.doi.org/10.1080/10408440801981957] [PMID: 18432418]
[53]
Cook, R.; Calabrese, E.J. The importance of hormesis to public health. Environ. Health Perspect., 2006, 114(11), 1631-1635.
[http://dx.doi.org/10.1289/ehp.8606] [PMID: 17107845]
[54]
Calabrese, E.J. Converging concepts: Adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Ageing Res. Rev., 2008, 7(1), 8-20.
[http://dx.doi.org/10.1016/j.arr.2007.07.001] [PMID: 17768095]
[55]
Calabrese, V.; Renis, M.; Calderone, A.; Russo, A.; Reale, S.; Barcellona, M.L.; Rizza, V. Stress proteins and SH-groups in oxidant-induced cellular injury after chronic ethanol administration in rat. Free Radic. Biol. Med., 1998, 24(7-8), 1159-1167.
[http://dx.doi.org/10.1016/S0891-5849(97)00441-3] [PMID: 9626570]
[56]
Mancuso, C.; Scapagini, G.; Currò, D. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front. Biosci., 2007, 12, 1107-1123.
[http://dx.doi.org/10.2741/2130]
[57]
Calabrese, V.; Guagliano, E.; Sapienza, M.; Panebianco, M.; Calafato, S.; Puleo, E.; Pennisi, G.; Mancuso, C.; Butterfield, D.A.; Stella, A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem. Res., 2007, 32(4-5), 757-773.
[http://dx.doi.org/10.1007/s11064-006-9203-y] [PMID: 17191135]
[58]
Mancuso, C.; Perluigi, M.; Cini, C.; De Marco, C.; Giuffrida, S.A.M.; Calabrese, V. Heme oxygenase and cyclooxygenase in the central nervous system: A functional interplay. J. Neurosci. Res., 2006, 84(7), 1385-1391.
[http://dx.doi.org/10.1002/jnr.21049] [PMID: 16998916]
[59]
Soobrattee, M.A.; Bahorun, T.; Aruoma, O.I. Chemopreventive actions of polyphenolic compounds in cancer. Biofactors, 2006, 27(1-4), 19-35.
[http://dx.doi.org/10.1002/biof.5520270103] [PMID: 17012761]
[60]
Mattson, M.P.; Cheng, A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci., 2006, 29(11), 632-639.
[http://dx.doi.org/10.1016/j.tins.2006.09.001] [PMID: 17000014]
[61]
Wu, L.; Noyan, A.M.H.; Facci, M.; Wang, R.; Paterson, P.G.; Ferrie, A.; Juurlink, B.H. Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc. Natl. Acad. Sci. USA, 2004, 101(18), 7094-7099.
[http://dx.doi.org/10.1073/pnas.0402004101] [PMID: 15103025]
[62]
Miquel, S.; Champ, C. Day, J Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res. Rev., 2018, 42, 40-55.
[http://dx.doi.org/10.1016/j.arr.2017.12.004]
[63]
Lee, J.S.; Surh, Y.J. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett., 2005, 224(2), 171-184.
[http://dx.doi.org/10.1016/j.canlet.2004.09.042] [PMID: 15914268]
[64]
Bautista, D.M.; Movahed, P.; Hinman, A.; Axelsson, H.E.; Sterner, O.; Högestätt, E.D.; Julius, D.; Jordt, S.E.; Zygmunt, P.M. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl. Acad. Sci. USA, 2005, 102(34), 12248-12252.
[http://dx.doi.org/10.1073/pnas.0505356102] [PMID: 16103371]
[65]
Frescas, D.; Valenti, L.; Accili, D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem., 2005, 280(21), 20589-20595.
[http://dx.doi.org/10.1074/jbc.M412357200] [PMID: 15788402]
[66]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and Anti-oxidant Activity of Hidrox® in Rotenone-Induced Parkinson’s Disease in Mice. Antioxidants, 2020, 9(9), 824.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]
[67]
Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan maintenance and prevention of parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int. J. Mol. Sci., 2020, 21(7)E2588
[http://dx.doi.org/10.3390/ijms21072588] [PMID: 32276415]
[68]
Calabrese, E.J.; Mattson, M.P.; Dhawan, G.; Kapoor, R.; Calabrese, V.; Giordano, J. Söderbom, G.; Esterline, R.; Oscarsson, J.; Mattson, M.P. Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. Int. Rev. Neurobiol., 2020, 155, 271-301.
[69]
Calabrese, E.J.; Calabrese, V.; Giordano, J. Demonstrated hormetic mechanisms putatively subserve riluzole-induced effects in neuroprotection against amyotrophic lateral sclerosis (ALS): Implications for research and clinical practice. Ageing Res. Rev., 2021, 67101273
[http://dx.doi.org/10.1016/j.arr.2021.101273]
[70]
Bassani, T.B.; Turnes, J.M.; Moura, E.L.R.; Bonato, J.M.; Cóppola-Segovia, V.; Zanata, S.M.; Oliveira, R.M.M.W.; Vital, M.A.B.F. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer’s type. Behav. Brain Res., 2017, 335, 41-54.
[http://dx.doi.org/10.1016/j.bbr.2017.08.014] [PMID: 28801114]
[71]
Ray, B.; Lahiri, D.K. Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr. Opin. Pharmacol., 2009, 9(4), 434-444.
[http://dx.doi.org/10.1016/j.coph.2009.06.012] [PMID: 19656726]
[72]
Xiao, L.; Ding, M.; Fernandez, A.; Zhao, P.; Jin, L.; Li, X. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors. Eur. Cell. Mater., 2017, 33, 279-293.
[http://dx.doi.org/10.22203/eCM.v033a21] [PMID: 28485773]
[73]
Pardridge, W.M. Re-engineering therapeutic antibodies for Alzheimer’s disease as blood-brain barrier penetrating bi-specific antibodies. Expert Opin. Biol. Ther., 2016, 16(12), 1455-1468.
[http://dx.doi.org/10.1080/14712598.2016.1230195] [PMID: 27572805]
[74]
Yang, L.; Yin, T.; Liu, Y.; Sun, J.; Zhou, Y.; Liu, J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater., 2016, 46, 177-190.
[http://dx.doi.org/10.1016/j.actbio.2016.09.010] [PMID: 27619837]
[75]
Amiri, H.; Saeidi, K.; Borhani, P.; Manafirad, A.; Ghavami, M.; Zerbi, V. Alzheimer’s disease: Pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem. Neurosci., 2013, 4(11), 1417-1429.
[http://dx.doi.org/10.1021/cn4001582] [PMID: 24024702]
[76]
Melchels, F.P.; Feijen, J.; Grijpma, D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24), 6121-6130.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.050] [PMID: 20478613]
[77]
Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; Jorm, A.; Mathers, C.; Menezes, P.R.; Rimmer, E.; Scazufca, M. Global prevalence of dementia: A Delphi consensus study. Lancet, 2005, 366(9503), 2112-2117.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[78]
Qin, J.; Park, J.S.; Jo, D.G.; Cho, M.; Lee, Y. Curcumin-based electrochemical sensor of amyloid-β oligomer for the early detection of Alzheimer’s disease. Sens. Actuators B Chem., 2018, 273, 1593-1599.
[http://dx.doi.org/10.1016/j.snb.2018.07.078]
[79]
Yang, C-C.; Yang, S-Y.; Chieh, J-J.; Horng, H.E.; Hong, C.Y.; Yang, H.C.; Chen, K.H.; Shih, B.Y.; Chen, T.F.; Chiu, M.J. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem. Neurosci., 2011, 2(9), 500-505.
[http://dx.doi.org/10.1021/cn200028j] [PMID: 22860173]
[80]
Cheng, K.K.; Chan, P.S.; Fan, S.; Kwan, S.M.; Yeung, K.L.; Wáng, Y.X.; Chow, A.H.; Wu, E.X.; Baum, L. Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials, 2015, 44, 155-172.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.005] [PMID: 25617135]
[81]
Cheng, K.K.; Wang, Y.X.; Chow, A.H.; Baum, L. Amyloid plaques binding curcumin conjugated magnetic nanoparticles for diagnosis in Alzheimer’s disease Tg2576 mice. Alzheimers Dement., 2014, 10(4), 152-P153.
[http://dx.doi.org/10.1016/j.jalz.2014.04.122]
[82]
Sehlin, D.; Fang, X.T.; Cato, L.; Antoni, G.; Lannfelt, L.; Syvänen, S. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat. Commun., 2016, 7, 10759.
[http://dx.doi.org/10.1038/ncomms10759] [PMID: 26892305]
[83]
Moreira, P.I.; Carvalho, C.; Zhu, X.; Smith, M.A.; Perry, G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim. Biophys. Acta, 2010, 1802(1), 2-10.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.006] [PMID: 19853658]
[84]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[85]
Auld, D.S.; Kornecook, T.J.; Bastianetto, S.; Quirion, R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol., 2002, 68(3), 209-245.
[http://dx.doi.org/10.1016/S0301-0082(02)00079-5] [PMID: 12450488]
[86]
Vassar, R.; Bennett, BD Babu-Khan, S β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741.
[87]
Kumar, S.; Walter, J. Phosphorylation of amyloid beta (Aβ) peptides - a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging (Albany NY), 2011, 3(8), 803-812.
[http://dx.doi.org/10.18632/aging.100362] [PMID: 21869458]
[88]
Butterfield, D.A. β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem. Res. Toxicol., 1997, 10(5), 495-506.
[http://dx.doi.org/10.1021/tx960130e] [PMID: 9168246]
[89]
Mathew, A.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Alzheimer’s disease: cholesterol a menace? Brain Res. Bull., 2011, 86(1-2), 1-12.
[http://dx.doi.org/10.1016/j.brainresbull.2011.06.006] [PMID: 21741455]
[90]
Ghiso, J.; Frangione, B. Amyloidosis and Alzheimer’s disease. Adv. Drug Deliv. Rev., 2002, 54(12), 1539-1551.
[http://dx.doi.org/10.1016/S0169-409X(02)00149-7] [PMID: 12453671]
[91]
Heppner, F.L.R.; Becher, B. Immune attack: the role of inflammation in Alzheimer disease.Nat. Rev. Neurosci.,, 2015, 16(6)358r372.
[92]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[93]
Mandrekar-Colucci, S.; Landreth, G.E. Microglia and inflammation in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 156-167.
[94]
Cao, J.; Hou, J.; Ping, J.; Cai, D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8]
[95]
Velmurugan, B.K.; Rathinasamy, B.; Lohanathan, B.P.; Thiyagarajan, V.; Weng, C.F. Neuroprotective role of phytochemicals. Molecules, 2018, 23(10)E2485
[http://dx.doi.org/10.3390/molecules23102485] [PMID: 30262792]
[96]
Keshavarz Shahbaz, S.; Varasteh, A-R.; Koushki, K. Sublingual dendritic cells targeting by aptamer: Possible approach for improvement of sublingual immunotherapy efficacy. Int. Immunopharmacol., 2020, 85106603
[http://dx.doi.org/10.1016/j.intimp.2020.106603]
[97]
Koushki, K.; Varasteh, A-R.; Shahbaz, S.K. Dc-specific aptamer decorated gold nanoparticles: A new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. Int. J. Pharm., 2020, 584119403
[http://dx.doi.org/10.1016/j.ijpharm.2020.119403]
[98]
Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E.M.; Frieder, J.; Wu, J.; Farokhzad, O.C. DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11853-11857.
[http://dx.doi.org/10.1002/anie.201204018] [PMID: 23081716]
[99]
Wang, X.; Cheng, R.; Zhong, Z. Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomater., 2021, 125, 280-289.
[http://dx.doi.org/10.1016/j.actbio.2021.02.044] [PMID: 33677162]
[100]
Deng, W.; Kautzka, Z.; Chen, W.; Goldys, E.M. PLGA nanocomposites loaded with verteporfin and gold nanoparticles for enhanced photodynamic therapy of cancer cells. RSC Advances, 2016, 6(113), 112393-112402.
[http://dx.doi.org/10.1039/C6RA21997G]
[101]
Khan, N.H.; Mir, M.; Ngowi, E.E.; Zafar, U.; Khakwani, M.M.A.K.; Khattak, S.; Zhai, Y.K.; Jiang, E.S.; Zheng, M.; Duan, S.F.; Wei, J.S.; Wu, D.D.; Ji, X.Y. Nanomed: a promising way to manage Alzheimer’s Disease. Front. Bioeng. Biotechnol., 2021, 9630055
[http://dx.doi.org/10.3389/fbioe.2021.630055] [PMID: 33996777]
[102]
Jia, L.; Nie, X-Q.; Ji, H-M.; Yuan, Z-X.; Li, R-S. Multiple-Coated PLGA nanoparticles loading triptolide attenuate injury of a cellular model of Alzheimer’s Disease. BioMed Res. Int., 2021, 20218825640
[103]
Abbas, M. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in Alzheimer’s Patients. Polymers (Basel), 2021, 13(7), 1051.
[http://dx.doi.org/10.3390/polym13071051] [PMID: 33801619]
[104]
Del Amo, L.; Cano, A.; Ettcheto, M. Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer’s Disease. Appl. Sci. (Basel), 2021, 11(9), 4305.
[http://dx.doi.org/10.3390/app11094305]
[105]
Gao, C.; Chu, X.; Gong, W.; Zheng, J.; Xie, X.; Wang, Y.; Yang, M.; Li, Z.; Gao, C.; Yang, Y. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J. Nanobiotechnol, 2020, 18(1), 71.
[http://dx.doi.org/10.1186/s12951-020-00626-1] [PMID: 32404183]
[106]
Sadeghi, M.; Koushki, K.; Mashayekhi, K. DC-targeted gold nanoparticles as an efficient and biocompatible carrier for modulating allergic responses in sublingual immunotherapy. Int. Immunopharmacol., 2020, 86106690
[http://dx.doi.org/10.1016/j.intimp.2020.106690]
[107]
Hasanpour, A.; Esmaeili, F.; Hosseini, H.; Amani, A. Use of mPEG-PLGA nanoparticles to improve bioactivity and hemocompatibility of streptokinase: In-vitro and in-vivo studies. Materials Sci. Eng., 2021, 118111427
[http://dx.doi.org/10.1016/j.msec.2020.111427]
[108]
Esfandyari-Manesh, M.; Abdi, M.; Talasaz, A.H.; Ebrahimi, S.M.; Atyabi, F.; Dinarvand, R. S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. DARU, 2020, 28(1), 131-138.
[http://dx.doi.org/10.1007/s40199-019-00324-w]
[109]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[110]
Maiti, P.; Dunbar, G.L. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int. J. Mol. Sci., 2018, 19(6), 1637.
[http://dx.doi.org/10.3390/ijms19061637] [PMID: 29857538]
[111]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. Review Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 29480523]
[112]
Gopinath, D.; Ahmed, M.R.; Gomathi, K.; Chitra, K.; Sehgal, P.K.; Jayakumar, R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials, 2004, 25(10), 1911-1917.
[http://dx.doi.org/10.1016/S0142-9612(03)00625-2] [PMID: 14738855]
[113]
Mohanty, C.; Das, M.; Sahoo, S.K. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol. Pharm., 2012, 9(10), 2801-2811.
[http://dx.doi.org/10.1021/mp300075u] [PMID: 22946786]
[114]
Tummalapalli, M.; Berthet, M.; Verrier, B.; Deopura, B.L.; Alam, M.S.; Gupta, B. Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int. J. Biol. Macromol., 2016, 82, 104-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.087] [PMID: 26529192]
[115]
Shah, B.H.; Nawaz, Z.; Pertani, S.A.; Roomi, A.; Mahmood, H.; Saeed, S.A.; Gilani, A.H. Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling. Biochem. Pharmacol., 1999, 58(7), 1167-1172.
[http://dx.doi.org/10.1016/S0006-2952(99)00206-3] [PMID: 10484074]
[116]
Zorofchian, M.S.; Abdul, K.H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res. Int., 2014, 2014186864
[http://dx.doi.org/10.1155/2014/186864]
[117]
Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.; Kumar, A.P.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[118]
Ahmadi, F.; Ghasemi-Kasman, M.; Ghasemi, S.; Gholamitabar Tabari, M.; Pourbagher, R.; Kazemi, S.; Alinejad-Mir, A. Induction of apoptosis in HeLa cancer cells by an ultrasonic-mediated synthesis of curcumin-loaded chitosan-alginate-STPP nanoparticles. Int. J. Nanomed, 2017, 12, 8545-8556.
[http://dx.doi.org/10.2147/IJN.S146516] [PMID: 29238191]
[119]
Moustapha, A.; Pérétout, P.A.; Rainey, N.E.; Sureau, F.; Geze, M.; Petit, J.M.; Dewailly, E.; Slomianny, C.; Petit, P.X. Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discov., 2015, 1(1), 15017.
[http://dx.doi.org/10.1038/cddiscovery.2015.17] [PMID: 27551451]
[120]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[121]
Mohajeri, M.; Bianconi, V.; Ávila-Rodriguez, M.F.; Barreto, G.E.; Jamialahmadi, T.; Pirro, M.; Sahebkar, A. Curcumin: A phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacol. Res., 2020, 156104765
[http://dx.doi.org/10.1016/j.phrs.2020.104765] [PMID: 32217147]
[122]
Mukhopadhyay, A.; Basu, N.; Ghatak, N.; Gujral, P.K. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions, 1982, 12(4), 508-515.
[http://dx.doi.org/10.1007/BF01965935] [PMID: 7180736]
[123]
Bianconi, V.; Sahebkar, A.; Atkin, S.L.; Pirro, M. The regulation and importance of monocyte chemoattractant protein-1. Curr. Opin. Hematol., 2018, 25(1), 44-51.
[http://dx.doi.org/10.1097/MOH.0000000000000389] [PMID: 28914666]
[124]
Ghandadi, M.; Sahebkar, A. Curcumin: An effective inhibitor of interleukin-6. Curr. Pharm. Des., 2017, 23(6), 921-931.
[http://dx.doi.org/10.2174/1381612822666161006151605] [PMID: 27719643]
[125]
Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101.
[http://dx.doi.org/10.1080/10408398.2017.1358139] [PMID: 28799796]
[126]
Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease; Springer, 2007, pp. 105-125.
[127]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Simental-Mendía, L.E.; Majeed, M.; Sahebkar, A. Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled trial. Drug Res. (Stuttg.), 2018, 68(7), 403-409.
[http://dx.doi.org/10.1055/s-0044-101752] [PMID: 29458218]
[128]
Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell. Physiol., 2018, 233(1), 141-152.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[129]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[130]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: the Indian solid gold. The molecular targets and therapeutic uses of curcumin in health and disease; Springer, 2007, pp. 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[131]
Thiyagarajan, M.; Sharma, S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci., 2004, 74(8), 969-985.
[http://dx.doi.org/10.1016/j.lfs.2003.06.042] [PMID: 14672754]
[132]
Shen, L.; Ji, H-F. The pharmacology of curcumin: is it the degradation products? Trends Mol. Med., 2012, 18(3), 138-144.
[http://dx.doi.org/10.1016/j.molmed.2012.01.004] [PMID: 22386732]
[133]
Karlstetter, M.; Lippe, E.; Walczak, Y.; Moehle, C.; Aslanidis, A.; Mirza, M.; Langmann, T. Curcumin is a potent modulator of microglial gene expression and migration. J. Neuroinflam., 2011, 8(1), 125.
[http://dx.doi.org/10.1186/1742-2094-8-125] [PMID: 21958395]
[134]
Tizabi, Y.; Hurley, L.L.; Qualls, Z.; Akinfiresoye, L. Relevance of the anti-inflammatory properties of curcumin in neurodegenerative diseases and depression. Molecules, 2014, 19(12), 20864-20879.
[http://dx.doi.org/10.3390/molecules191220864] [PMID: 25514226]
[135]
Chen, J.; Tang, XQ Zhi, JL Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 2006, 11(6), 943-953.
[http://dx.doi.org/10.1007/s10495-006-6715-5]
[136]
Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[137]
Pérez-Arriaga, L.; Mendoza-Magaña, M.L.; Cortés-Zárate, R.; Corona-Rivera, A.; Bobadilla-Morales, L.; Troyo-Sanromán, R.; Ramírez-Herrera, M.A. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop., 2006, 98(2), 152-161.
[http://dx.doi.org/10.1016/j.actatropica.2006.03.005] [PMID: 16678115]
[138]
Ramsewak, R.S.; DeWitt, D.L.; Nair, M.G. Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine, 2000, 7(4), 303-308.
[http://dx.doi.org/10.1016/S0944-7113(00)80048-3]
[139]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[140]
Calabrese, V.; Cornelius, C.; Trovato, A.; Cavallaro, M.; Mancuso, C.; Di Rienzo, L.; Condorelli, D.; De Lorenzo, A.; Calabrese, E.J. The hormetic role of dietary antioxidants in free radical-related diseases. Curr. Pharm. Des., 2010, 16(7), 877-883.
[http://dx.doi.org/10.2174/138161210790883615] [PMID: 20388101]
[141]
Moghaddam, N.S.A.; Oskouie, M.N.; Butler, A.E.; Petit, P.X.; Barreto, G.E.; Sahebkar, A. Hormetic effects of curcumin: What is the evidence? J. Cell. Physiol., 2019, 234(7), 10060-10071.
[http://dx.doi.org/10.1002/jcp.27880] [PMID: 30515809]
[142]
Yang, K-Y.; Lin, L-C.; Tseng, T-Y.; Wang, S-C.; Tsai, T-H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 853(1-2), 183-189.
[http://dx.doi.org/10.1016/j.jchromb.2007.03.010] [PMID: 17400527]
[143]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[144]
Lopresti, A.L. The problem of curcumin and its bioavailability: could its gastrointestinal influence contribute to its overall health-enhancing effects? Adv. Nutr., 2018, 9(1), 41-50.
[http://dx.doi.org/10.1093/advances/nmx011] [PMID: 29438458]
[145]
Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev. Technol., 2007, 5(4), 567-576.
[http://dx.doi.org/10.1089/adt.2007.064] [PMID: 17767425]
[146]
Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm., 2002, 244(1-2), 127-135.
[http://dx.doi.org/10.1016/S0378-5173(02)00323-X] [PMID: 12204572]
[147]
Wang, Y-J.; Pan, M-H.; Cheng, A-L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal., 1997, 15(12), 1867-1876.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[148]
Aggarwal, B.B.; Surh, Y-J.; Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease; Springer Science & Business Media, 2007, Vol. 595, .
[http://dx.doi.org/10.1007/978-0-387-46401-5_1]
[149]
Souza, C.R.; Osme, S.F.; Glória, M.B.A. stability of curcuminoib pigments in model systems. J. Food Process. Preserv., 1997, 21(5), 353-363.
[http://dx.doi.org/10.1111/j.1745-4549.1997.tb00789.x]
[150]
Del Prado-Audelo, M.L.; Caballero-Florán, I.H.; Meza-Toledo, J.A.; Mendoza-Muñoz, N.; González-Torres, M.; Florán, B.; Cortés, H.; Leyva-Gómez, G. Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 2019, 9(2), 56.
[http://dx.doi.org/10.3390/biom9020056] [PMID: 30743984]
[151]
Mahran, R.I.; Hagras, M.M.; Sun, D.; Brenner, D.E. Bringing curcumin to the clinic in cancer prevention: A review of strategies to enhance bioavailability and efficacy. AAPS J., 2017, 19(1), 54-81.
[http://dx.doi.org/10.1208/s12248-016-0003-2] [PMID: 27783266]
[152]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[153]
Yallapu, M.M.; Nagesh, P.K.B.; Jaggi, M.; Chauhan, S.C. Therapeutic applications of curcumin nanoformulations. AAPS J., 2015, 17(6), 1341-1356.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[154]
Mouhieddine, T.H.; Itani, M.M.; Nokkari, A.; Ren, C.; Daoud, G.; Zeidan, A.; Mondello, S.; Kobeissy, F.H. Nanotheragnostic applications for ischemic and hemorrhagic strokes: improved delivery for a better prognosis. Curr. Neurol. Neurosci. Rep., 2015, 15(1), 505.
[http://dx.doi.org/10.1007/s11910-014-0505-1] [PMID: 25394858]
[155]
Ghalandarlaki, N; Alizadeh, AM; Ashkani-Esfahani, S Nanotechnology-applied curcumin for different diseases therapy.BioMed. Res. Intl.2014, 2014.
[http://dx.doi.org/10.1155/2014/394264]
[156]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nano formulations: A future Nanomed for cancer. Drug Discov. Today, 2012, 17(1-2), 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[157]
Sun, M.; Su, X.; Ding, B.; He, X.; Liu, X.; Yu, A.; Lou, H.; Zhai, G. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond.), 2012, 7(7), 1085-1100.
[http://dx.doi.org/10.2217/nnm.12.80] [PMID: 22846093]
[158]
Szymusiak, M.; Hu, X.; Leon Plata, P.A.; Ciupinski, P.; Wang, Z.J.; Liu, Y. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin. Int. J. Pharm., 2016, 511(1), 415-423.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.027] [PMID: 27426105]
[159]
Kreuter, J. Nanoparticles--a historical perspective. Int. J. Pharm., 2007, 331(1), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.021] [PMID: 17110063]
[160]
Leson, A. There is plenty of room at the Bottom. Vakuum in Forschung und Praxis, 2005, 17(3), 123-123.
[http://dx.doi.org/10.1002/vipr.200590035]
[161]
Khanna, S.C.; Soliva, M.; Speiser, P. Epoxy resin beads as a pharmaceutical dosage form. II. Dissolution studies of epoxy-amine beads and release of drug. J. Pharm. Sci., 1969, 58(11), 1385-1388.
[http://dx.doi.org/10.1002/jps.2600581120] [PMID: 5349755]
[162]
Müller, R.H.; Maassen, S.; Weyhers, H.; Mehnert, W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J. Drug Target., 1996, 4(3), 161-170.
[http://dx.doi.org/10.3109/10611869609015973] [PMID: 8959488]
[163]
Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(6), 1692-1716.
[http://dx.doi.org/10.1002/jbm.b.33648] [PMID: 27098357]
[164]
Chen, Y.; Lin, X.; Park, H.; Greever, R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine,, 2009, 5(3), 316-322.
[http://dx.doi.org/10.1016/j.nano.2008.12.005] [PMID: 19523432]
[165]
Nguyen, H.T.; Tran, T.H.; Kim, J.O.; Yong, C.S.; Nguyen, C.N. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-D,L-lactide-co-glycolide (PLGA) nanoparticles. Arch. Pharm. Res., 2015, 38(5), 716-724.
[http://dx.doi.org/10.1007/s12272-014-0424-3] [PMID: 24968925]
[166]
Keshavarz, S.S.; Foroughi, F.; Soltaninezhad, E.; Jamialahmadi, T.; Penson, P.E.; Sahebkar, A. Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of allotransplant rejection. Expert Opin. Drug Deliv., 2020, 17(6), 767-780.
[http://dx.doi.org/10.1080/17425247.2020.1748006]
[167]
Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid Interface Sci., 2010, 351(1), 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[168]
Luz, P.P.; Magalhães, L.G.; Pereira, A.C.; Cunha, W.R.; Rodrigues, V.; Andrade, E.; Silva, M.L. Curcumin-loaded into PLGA nanoparticles: Preparation and in vitro schistosomicidal activity. Parasitol. Res., 2012, 110(2), 593-598.
[http://dx.doi.org/10.1007/s00436-011-2527-9] [PMID: 21739309]
[169]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043]
[170]
Arshad, A.; Yang, B.; Bienemann, A.S.; Barua, N.U.; Wyatt, M.J.; Woolley, M.; Johnson, D.E.; Edler, K.J.; Gill, S.S. Convection-enhanced delivery of carboplatin PLGA nanoparticles for the treatment of glioblastoma. PLoS One, 2015, 10(7)e0132266
[http://dx.doi.org/10.1371/journal.pone.0132266] [PMID: 26186224]
[171]
Mourtas, S.; Lazar, A.N.; Markoutsa, E.; Duyckaerts, C.; Antimisiaris, S.G. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur. J. Med. Chem., 2014, 80, 175-183.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.050] [PMID: 24780594]
[172]
Ringman, J.M.; Frautschy, S.A.; Cole, G.M.; Masterman, D.L.; Cummings, J.L. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(2), 131-136.
[http://dx.doi.org/10.2174/1567205053585882] [PMID: 15974909]
[173]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[174]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[175]
Park, S-Y.; Kim, H-S.; Cho, E-K.; Kwon, B.Y.; Phark, S.; Hwang, K.W.; Sul, D. Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem. Toxicol., 2008, 46(8), 2881-2887.
[http://dx.doi.org/10.1016/j.fct.2008.05.030] [PMID: 18573304]
[176]
Bustanji, Y.; Taha, M.O.; Almasri, I.M.; Al-Ghussein, M.A.; Mohammad, M.K.; Alkhatib, H.S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 771-778.
[http://dx.doi.org/10.1080/14756360802364377] [PMID: 18720192]
[177]
Wang, H-M.; Zhao, Y-X.; Zhang, S.; Liu, G.D.; Kang, W.Y.; Tang, H.D.; Ding, J.Q.; Chen, S.D. PPAR gamma agonist curcumin reduces the amyloid-β-stimulated inflammatory responses in primary astrocytes. J. Alzheimers Dis., 2010, 20(4), 1189-1199.
[http://dx.doi.org/10.3233/JAD-2010-091336] [PMID: 20413894]
[178]
Aggarwal, BB; Kumar, A; Bharti, AC Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res, 2003, 23(1/A), 363-398.
[179]
Balasubramanian, K. Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J. Agric. Food Chem., 2006, 54(10), 3512-3520.
[http://dx.doi.org/10.1021/jf0603533] [PMID: 19127718]
[180]
Sharma, S.; Ying, Z.; Gomez-Pinilla, F. A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp. Neurol., 2010, 226(1), 191-199.
[http://dx.doi.org/10.1016/j.expneurol.2010.08.027] [PMID: 20816821]
[181]
Tsai, Y-M.; Chien, C-F.; Lin, L-C.; Tsai, T-H. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[182]
Mathew, A.; Aravind, A.; Fukuda, T. Curcumin nanoparticles-a gateway for multifaceted approach to tackle Alzheimer’s disease; IEEE, 2011, pp. 833-836.
[183]
Chiu, S.S.; Lui, E.; Majeed, M.; Vishwanatha, J.K.; Ranjan, A.P.; Maitra, A.; Pramanik, D.; Smith, J.A.; Helson, L. Differential distribution of intravenous curcumin formulations in the rat brain. Anticancer Res., 2011, 31(3), 907-911.
[PMID: 21498712]
[184]
Mathew, A.; Aravind, A.; Brahatheeswaran, D. Amyloid-binding aptamer conjugated curcumin–PLGA nanoparticle for potential use in Alzheimer’s disease. Bionanoscience, 2012, 2(2), 83-93.
[http://dx.doi.org/10.1007/s12668-012-0040-y]
[185]
Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3)e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[186]
Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16288-16293.
[http://dx.doi.org/10.1073/pnas.1210096109] [PMID: 22991470]
[187]
Doggui, S.; Sahni, J.K.; Arseneault, M.; Dao, L.; Ramassamy, C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J. Alzheimers Dis., 2012, 30(2), 377-392.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[188]
Tiwari, S.K.; Agarwal, S.; Seth, B.; Yadav, A.; Nair, S.; Bhatnagar, P.; Karmakar, M.; Kumari, M.; Chauhan, L.K.; Patel, D.K.; Srivastava, V.; Singh, D.; Gupta, S.K.; Tripathi, A.; Chaturvedi, R.K.; Gupta, K.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano, 2014, 8(1), 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[189]
Srivastava, A.; Arya, P.; Goel, S.; Kundu, B.; Mishra, P.; Fnu, A. Gelsolin amyloidogenesis is effectively modulated by curcumin and emetine conjugated PLGA nanoparticles. PLoS One, 2015, 10(5)e0127011
[http://dx.doi.org/10.1371/journal.pone.0127011] [PMID: 25996685]
[190]
Paka, G.D.; Ramassamy, C. Optimization of curcumin-loaded PEG-PLGA nanoparticles by GSH functionalization: investigation of the internalization pathway in neuronal cells. Mol. Pharm., 2017, 14(1), 93-106.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00738] [PMID: 27744707]
[191]
Huang, N.; Lu, S.; Liu, X-G.; Zhu, J.; Wang, Y-J.; Liu, R-T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget, 2017, 8(46), 81001-81013.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[192]
Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A.M. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int. J. Pharm., 2017, 526(1-2), 413-424.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[193]
Ameruoso, A.; Palomba, R.; Palange, A.L.; Cervadoro, A.; Lee, A.; Di Mascolo, D.; Decuzzi, P. Ameliorating amyloid-β fibrils triggered inflammation via curcumin-loaded polymeric nanoconstructs. Front. Immunol., 2017, 8, 1411.
[http://dx.doi.org/10.3389/fimmu.2017.01411] [PMID: 29163489]
[194]
Huo, X.; Zhang, Y.; Jin, X.; Li, Y.; Zhang, L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J. Photochem. Photobiol. B, 2019, 190, 98-102.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.008] [PMID: 30504054]
[195]
Sutcliffe, J.G.; Hedlund, P.B.; Thomas, E.A.; Bloom, F.E.; Hilbush, B.S. Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: implications for Alzheimer’s disease. J. Neurosci. Res., 2011, 89(6), 808-814.
[http://dx.doi.org/10.1002/jnr.22603] [PMID: 21374699]
[196]
Matsuoka, Y.; Saito, M.; LaFrancois, J.; Saito, M.; Gaynor, K.; Olm, V.; Wang, L.; Casey, E.; Lu, Y.; Shiratori, C.; Lemere, C.; Duff, K. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid. J. Neurosci., 2003, 23(1), 29-33.
[http://dx.doi.org/10.1523/JNEUROSCI.23-01-00029.2003] [PMID: 12514198]
[197]
Takahashi, T.; Tada, K.; Mihara, H. RNA aptamers selected against amyloid β-peptide (Abeta) inhibit the aggregation of Abeta. Mol. Biosyst., 2009, 5(9), 986-991.
[http://dx.doi.org/10.1039/b903391b] [PMID: 19668864]
[198]
Fan, S.; Zheng, Y.; Liu, X.; Fang, W.; Chen, X.; Liao, W.; Jing, X.; Lei, M.; Tao, E.; Ma, Q.; Zhang, X.; Guo, R.; Liu, J. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv., 2018, 25(1), 1091-1102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[199]
Kuo, Y-C.; Tsai, H-C. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater. Sci. Eng. C, 2018, 91, 445-457.
[http://dx.doi.org/10.1016/j.msec.2018.05.062] [PMID: 30033276]