Venom of Viperidae: A Perspective of its Antibacterial and Antitumor Potential

Page: [126 - 144] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent two important challenges in modern medicine. Biological compounds have been explored with a particular focus on venoms. Although they can be lethal or cause considerable damage to humans, venom is also a source rich in components with high therapeutic potential.

Viperidae family is one of the most emblematic venomous snake families and several studies highlighted the antibacterial and antitumor potential of viper toxins. According to the literature, these activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria, as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide an overview of the venom toxins produced by species belonging to the Viperidae family, exploring their roles during the envenoming and their pharmacological properties, in order to demonstrate its antibacterial and antitumor potential.

Keywords: Viperidae venoms, toxins, multi-drug resistant bacteria, cancer, antibacterial, antitumor.

Graphical Abstract

[1]
Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13(1): 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[2]
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus 2017; 9(6): e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[3]
Dodds DR. Antibiotic resistance: A current epilogue. Biochem Pharmacol 2017; 134: 139-46.
[http://dx.doi.org/10.1016/j.bcp.2016.12.005] [PMID: 27956111]
[4]
Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med 2013; 368(4): 299-302.
[http://dx.doi.org/10.1056/NEJMp1215093] [PMID: 23343059]
[5]
Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents 2019; 53(4): 371-82.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.010] [PMID: 30472287]
[6]
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[7]
Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother 2009; 64(1): i3-i10.
[http://dx.doi.org/10.1093/jac/dkp256] [PMID: 19675017]
[8]
Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol 2011; 19(8): 419-26.
[http://dx.doi.org/10.1016/j.tim.2011.04.005] [PMID: 21664819]
[9]
Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 2009; 7(9): 629-41.
[http://dx.doi.org/10.1038/nrmicro2200] [PMID: 19680247]
[10]
Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol 2006; 9(5): 466-75.
[http://dx.doi.org/10.1016/j.mib.2006.08.011] [PMID: 16942899]
[11]
Giufrè M, Errico G, Accogli M, et al. Emergence of NDM-5-producing Escherichia coli sequence type 167 clone in Italy. Int J Antimicrob Agents 2018; 52(1): 76-81.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.02.020] [PMID: 29501819]
[12]
Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE Jr. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 2004; 38(9): 1279-86.
[http://dx.doi.org/10.1086/420937] [PMID: 15127341]
[13]
Antibiotic resistance. Available from: https://www.who.int/news- room/fact-sheets/detail/antibiotic-resistance [Accessed May 9, 2021].
[14]
CDC. Antibiotic resistance threats in the united states. Atlanta 2019.
[15]
Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. Interference in bacterial quorum sensing: A biopharmaceutical perspective. Front Pharmacol 2018; 9: 203.
[http://dx.doi.org/10.3389/fphar.2018.00203] [PMID: 29563876]
[16]
Wright GD, Sutherland AD. New strategies for combating multidrug-resistant bacteria. Trends Mol Med 2007; 13(6): 260-7.
[http://dx.doi.org/10.1016/j.molmed.2007.04.004] [PMID: 17493872]
[17]
Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134.
[http://dx.doi.org/10.3389/fmicb.2010.00134] [PMID: 21687759]
[18]
OECD. Health at a glance: Europe.Union E. 2018. Available from: https://www.oecd.org/health/health-at-a-glance-europe/
[19]
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[20]
Olaku OO, Taylor EA. Cancer in the medically underserved population. Physician Assistant Clinics 2019; 4: 275-85.
[http://dx.doi.org/10.1016/j.cpha.2018.08.011]
[21]
Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 2019; 69(5): 363-85.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[22]
WHO. Cancer today. 2021. Available from: http://gco.iarc.fr/to- day/home [Accessed May 9, 2021
[23]
Khusro A, Aarti C, Barbabosa-Pliego A, Rivas-Cáceres RR, Cipriano-Salazar M. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microb Pathog 2018; 125: 96-107.
[http://dx.doi.org/10.1016/j.micpath.2018.09.003] [PMID: 30195644]
[24]
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36(7): 1928-45.
[http://dx.doi.org/10.1016/j.biotechadv.2018.08.001] [PMID: 30077715]
[25]
Chen L, Cai J, Huang Y, et al. Identification of cofilin-1 as a novel mediator for the metastatic potentials and chemoresistance of the prostate cancer cells. Eur J Pharmacol 2020; 880: 173100.
[http://dx.doi.org/10.1016/j.ejphar.2020.173100] [PMID: 32320704]
[26]
Xu S, Yu C, Ma X, et al. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. Eur J Pharmacol 2021; 894: 173817.
[http://dx.doi.org/10.1016/j.ejphar.2020.173817] [PMID: 33345849]
[27]
Mao P, Bao G, Wang Y-C, et al. PDZ-binding kinase-dependent transcriptional regulation of ccnb2 promotes tumorigenesis and radio-resistance in glioblastoma. Transl Oncol 2020; 13(2): 287-94.
[http://dx.doi.org/10.1016/j.tranon.2019.09.011] [PMID: 31874375]
[28]
Cai S, Xu W, Wei X, et al. Acetyltransferase kat5 promotes radio-resistance of anaplastic thyroid carcinoma (atc) through c-myc / mir-210 pathway. Int J Radiat Oncol Biol Phys 2020; 108: e542.
[http://dx.doi.org/10.1016/j.ijrobp.2020.07.1690]
[29]
Callahan MK, Wolchok JD, Allison JP. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 2010; 37(5): 473-84.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.001] [PMID: 21074063]
[30]
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271(5256): 1734-6.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[31]
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 2002; 99(19): 12293-7.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188]
[32]
Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol 2005; 17(2): 133-44.
[http://dx.doi.org/10.1093/intimm/dxh194] [PMID: 15611321]
[33]
Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017; 170(6): 1120-1133.e17.
[http://dx.doi.org/10.1016/j.cell.2017.07.024] [PMID: 28803728]
[34]
Kumar-Sinha C, Chinnaiyan AM. Precision oncology in the age of integrative genomics. Nat Biotechnol 2018; 36(1): 46-60.
[http://dx.doi.org/10.1038/nbt.4017] [PMID: 29319699]
[35]
Kirtonia A, Pandya G, Sethi G, Pandey AK, Das BC, Garg M. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J Mol Med (Berl) 2020; 98(8): 1069-91.
[http://dx.doi.org/10.1007/s00109-020-01944-5] [PMID: 32620999]
[36]
Clarke BT. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc 1997; 72(3): 365-79.
[http://dx.doi.org/10.1017/S0006323197005045] [PMID: 9336100]
[37]
McChesney JD, Venkataraman SK, Henri JT. Plant natural products: back to the future or into extinction? Phytochemistry 2007; 68(14): 2015-22.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.032] [PMID: 17574638]
[38]
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870): 389-95.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[39]
Kerkkamp H, Bagowski C, Kool J, van Soolingen B, Vonk FJ, Vlecken D. Whole snake venoms: Cytotoxic, anti-metastatic and antiangiogenic properties. Toxicon 2018; 150: 39-49.
[http://dx.doi.org/10.1016/j.toxicon.2018.05.004] [PMID: 29763628]
[40]
Fry BG. Venomous reptiles and their toxins: Evolution, pathophysiology, and biodiscovery.Oxford University Press 2015.
[41]
Calvete Juan JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett 2009; 583: 1736-43.
[http://dx.doi.org/10.1016/j.febslet.2009.03.029] [PMID: 19303875]
[42]
Imran R, Vanat Q, Hausien O, Jose R. King cobra bite - can early decompression prevent digital amputation? JPRAS Open 2020; 27: 12-6.
[http://dx.doi.org/10.1016/j.jpra.2020.11.004] [PMID: 33299920]
[43]
Changadiya K, Anadure RK, Sreen A, Gupta S, Singh S, Mhatre R. Two unusual cases of Guillain-Barre syndrome after snake bite: The rare immune mediated complication of Elapid venom. Med J Armed Forces India 2020, In Press.
[http://dx.doi.org/10.1016/j.mjafi.2020.07.013]
[44]
Longbottom J, Shearer FM, Devine M, et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet 2018; 392(10148): 673-84.
[http://dx.doi.org/10.1016/S0140-6736(18)31224-8] [PMID: 30017551]
[45]
Gutiérrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA. Snakebite envenoming. Nat Rev Dis Primers 2017; 3: 17063.
[http://dx.doi.org/10.1038/nrdp.2017.63] [PMID: 28905944]
[46]
WHO | What is snakebite envenoming? WHO. 2018. Available from: http://www.who.int/snakebites/disease/en/ [Accessed November 24, 2018].
[47]
Estevão-Costa M-I, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104: 94-113.
[http://dx.doi.org/10.1016/j.biocel.2018.09.011] [PMID: 30261311]
[48]
Calvete JJ, Juárez P, Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom 2007; 42(11): 1405-14.
[http://dx.doi.org/10.1002/jms.1242] [PMID: 17621391]
[49]
Harvey AL, Bradley KN, Cochran SA, et al. What can toxins tell us for drug discovery? Toxicon 1998; 36(11): 1635-40.
[http://dx.doi.org/10.1016/S0041-0101(98)00156-1] [PMID: 9792180]
[50]
Koh DCI, Armugam A, Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci 2006; 63(24): 3030-41.
[http://dx.doi.org/10.1007/s00018-006-6315-0] [PMID: 17103111]
[51]
Koh CY, Kini RM. From snake venom toxins to therapeutics--cardiovascular examples. Toxicon 2012; 59(4): 497-506.
[http://dx.doi.org/10.1016/j.toxicon.2011.03.017] [PMID: 21447352]
[52]
Camargo ACM, Ianzer D, Guerreiro JR, Serrano SMT. Bradykinin-potentiating peptides: Beyond captopril. Toxicon 2012; 59(4): 516-23.
[http://dx.doi.org/10.1016/j.toxicon.2011.07.013] [PMID: 21835190]
[53]
e Silva MR, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiology-Legacy Content 1949; 156: 261-73.
[http://dx.doi.org/10.1152/ajplegacy.1949.156.2.261]
[54]
Fernandez JH, Neshich G, Camargo ACM. Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genet Mol Res 2004; 3(4): 554-63.
[PMID: 15688321]
[55]
Maritz B, Penner J, Martins M, et al. Identifying global priorities for the conservation of vipers. Biol Conserv 2016; 204: 94-102.
[http://dx.doi.org/10.1016/j.biocon.2016.05.004]
[56]
Wüster W, Peppin L, Pook CE, Walker DE. A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol 2008; 49(2): 445-59.
[http://dx.doi.org/10.1016/j.ympev.2008.08.019] [PMID: 18804544]
[57]
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998; 36(12): 1749-800.
[http://dx.doi.org/10.1016/S0041-0101(98)00126-3] [PMID: 9839663]
[58]
Ferquel E, de Haro L, Jan V, et al. Reappraisal of Vipera aspis venom neurotoxicity. PLoS One 2007; 2(11): e1194.
[http://dx.doi.org/10.1371/journal.pone.0001194] [PMID: 18030329]
[59]
Ramazanova AS, Starkov VG, Osipov AV, et al. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship. Toxicon 2009; 53(1): 162-8.
[http://dx.doi.org/10.1016/j.toxicon.2008.11.001] [PMID: 19041663]
[60]
Ferrari CZ, Ribeiro R, Lima AM, Soares AM, Cavalcante WLG, Vieira LB. Gyroxin, a toxin from Crotalus durissus terrificus snake venom, induces a calcium dependent increase in glutamate release in mice brain cortical synaptosomes. Neuropeptides 2020; 83: 102081.
[http://dx.doi.org/10.1016/j.npep.2020.102081] [PMID: 32839009]
[61]
Beghini DG, Rodrigues-Simioni L, Toyama MH, Novello JC, da Cruz-Höfling MA, Marangoni S. Neurotoxic and myotoxic actions of crotoxin-like and Crotalus durissus cascavella whole venom in the chick biventer cervicis preparation. Toxicon 2004; 43(3): 255-61.
[http://dx.doi.org/10.1016/j.toxicon.2003.12.001] [PMID: 15033323]
[62]
Paolino G, Di Nicola MR, Pontara A, et al. Vipera snakebite in Europe: A systematic review of a neglected disease. J Eur Acad Dermatol Venereol 2020; 34(10): 2247-60.
[http://dx.doi.org/10.1111/jdv.16722] [PMID: 32530549]
[63]
Ozverel CS, Damm M, Hempel B-F, et al. Investigating the cytotoxic effects of the venom proteome of two species of the Viperidae family (Cerastes cerastes and Cryptelytrops purpureomaculatus) from various habitats. Comp Biochem Physiol C Toxicol Pharmacol 2019; 220: 20-30.
[http://dx.doi.org/10.1016/j.cbpc.2019.02.013] [PMID: 30825636]
[64]
Giribaldi J, Kazandjian T, Amorim FG, et al. Venomics of the asp viper Vipera aspis aspis from France. J Proteomics 2020; 218: 103707.
[http://dx.doi.org/10.1016/j.jprot.2020.103707] [PMID: 32087377]
[65]
Pereañez JA, Preciado LM, Fernández J, et al. Snake venomics, experimental toxic activities and clinical characteristics of human envenomation by Bothrocophias myersi (Serpentes: Viperidae) from Colombia. J Proteomics 2020; 220: 103758.
[http://dx.doi.org/10.1016/j.jprot.2020.103758] [PMID: 32247171]
[66]
Martínez-Freiría F, Freitas IAL, Zuffi M, Golay P, Ursenbacher S, Velo-Antón G. Climatic refugia boosted allopatric diversification in Western Mediterranean vipers. J Biogeogr 2020; 47
[http://dx.doi.org/10.1111/jbi.13861]
[67]
Fahmi L, Makran B, Pla D, et al. Venomics and antivenomics profiles of North African Cerastes cerastes and C. vipera populations reveals a potentially important therapeutic weakness. J Proteomics 2012; 75(8): 2442-53.
[http://dx.doi.org/10.1016/j.jprot.2012.02.021] [PMID: 22387316]
[68]
Barlow A, Pook CE, Harrison RA, Wster W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings of the Royal Society B: Biological Sciences.
[http://dx.doi.org/10.1098/rspb.2009.0048]
[69]
Serrano SMT, Maroun RC. Snake venom serine proteinases: sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005; 45(8): 1115-32.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.020] [PMID: 15922778]
[70]
Serrano SMT. The long road of research on snake venom serine proteinases. Toxicon 2013; 62: 19-26.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.003] [PMID: 23010164]
[71]
Zelanis A, Huesgen PF, Oliveira AK, Tashima AK, Serrano SMT, Overall CM. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. J Proteomics 2015; 113: 260-7.
[http://dx.doi.org/10.1016/j.jprot.2014.10.002] [PMID: 25452133]
[72]
Bocian A, Urbanik M, Hus K, et al. Proteome and peptidome of vipera berus berus Venom. Molecules 2016; 21(10): E1398.
[http://dx.doi.org/10.3390/molecules21101398] [PMID: 27775574]
[73]
Bhat SK, Joshi MB, Ullah A, et al. Serine proteinases from Bothrops snake venom activates PI3K/Akt mediated angiogenesis. Toxicon 2016; 124: 63-72.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.001] [PMID: 27816537]
[74]
Patiño AC, Pereañez JA, Gutiérrez JM, Rucavado A. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon 2013; 63: 32-43.
[http://dx.doi.org/10.1016/j.toxicon.2012.11.010] [PMID: 23178323]
[75]
White J. Snake venoms and coagulopathy. Toxicon 2005; 45(8): 951-67.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.030] [PMID: 15922768]
[76]
Fox JW, Serrano SMT. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 2005; 45(8): 969-85.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.012] [PMID: 15922769]
[77]
Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 2008; 275(12): 3016-30.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06466.x] [PMID: 18479462]
[78]
Gutiérrez JM, Escalante T, Rucavado A, Herrera C. Hemorrhage caused by snake venom metalloproteinases: A journey of discovery and understanding. Toxins (Basel) 2016; 8(4): 93.
[http://dx.doi.org/10.3390/toxins8040093] [PMID: 27023608]
[79]
Markland FS Jr, Swenson S. Snake venom metalloproteinases. Toxicon 2013; 62: 3-18.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.004] [PMID: 23000249]
[80]
Yee KT, Tongsima S, Vasieva O, et al. Analysis of snake venom metalloproteinases from Myanmar Russell’s viper transcriptome. Toxicon 2018; 146: 31-41.
[http://dx.doi.org/10.1016/j.toxicon.2018.03.005] [PMID: 29567103]
[81]
Kamiguti AS. Platelets as targets of snake venom metalloproteinases. Toxicon 2005; 45(8): 1041-9.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.026] [PMID: 15922773]
[82]
Lee EH, Park JE, Park JW, Lee JS. Purification and biochemical characterization of a fibrin(ogen)olytic metalloprotease from Macrovipera mauritanica snake venom which induces vascular permeability. Int J Mol Med 2014; 34(4): 1180-90.
[http://dx.doi.org/10.3892/ijmm.2014.1864] [PMID: 25069477]
[83]
Leonardi A, Fox JW, Trampuš-Bakija A, Križaj I. Ammodytase, a metalloprotease from Vipera ammodytes ammodytes venom, possesses strong fibrinolytic activity. Toxicon 2007; 49(6): 833-42.
[http://dx.doi.org/10.1016/j.toxicon.2006.12.003] [PMID: 17250863]
[84]
Guo C, Liu S, Yao Y, Zhang Q, Sun M-Z. Past decade study of snake venom L-amino acid oxidase. Toxicon 2012; 60(3): 302-11.
[http://dx.doi.org/10.1016/j.toxicon.2012.05.001] [PMID: 22579637]
[85]
Salama WH, Ibrahim NM, El Hakim AE, et al. l-amino acid oxidase from Cerastes vipera snake venom: Isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon 2018; 150: 270-9.
[http://dx.doi.org/10.1016/j.toxicon.2018.06.064] [PMID: 29898379]
[86]
Carone SEI, Costa TR, Burin SM, et al. A new l-amino acid oxidase from Bothrops jararacussu snake venom: Isolation, partial characterization, and assessment of pro-apoptotic and antiprotozoal activities. Int J Biol Macromol 2017; 103: 25-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.025] [PMID: 28495622]
[87]
Moustafa IM, Foster S, Lyubimov AY, Vrielink A. Crystal structure of LAAO from calloselasma rhodostoma with an L-phenylalanine substrate: insights into structure and mechanism. J Mol Biol 2006; 364(5): 991-1002.
[http://dx.doi.org/10.1016/j.jmb.2006.09.032] [PMID: 17046020]
[88]
Du X-Y, Clemetson KJ. Snake venom L-amino acid oxidases. Toxicon 2002; 40(6): 659-65.
[http://dx.doi.org/10.1016/S0041-0101(02)00102-2] [PMID: 12175601]
[89]
Izidoro LFM, Ribeiro MC, Souza GRL, et al. Biochemical and functional characterization of an L-amino acid oxidase isolated from Bothrops pirajai snake venom. Bioorg Med Chem 2006; 14(20): 7034-43.
[http://dx.doi.org/10.1016/j.bmc.2006.06.025] [PMID: 16809041]
[90]
Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003; 42(8): 827-40.
[http://dx.doi.org/10.1016/j.toxicon.2003.11.002] [PMID: 15019485]
[91]
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57(5): 627-45.
[http://dx.doi.org/10.1016/j.toxicon.2011.01.006] [PMID: 21277886]
[92]
Valentin E, Lambeau G. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. Biochim Biophys Acta 2000; 1488(1-2): 59-70.
[http://dx.doi.org/10.1016/S1388-1981(00)00110-4] [PMID: 11080677]
[93]
Kemparaju K, Krishnakanth TP, Veerabasappa Gowda T. Purification and characterization of a platelet aggregation inhibitor acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) venom. Toxicon 1999; 37(12): 1659-71.
[http://dx.doi.org/10.1016/S0041-0101(99)00104-X] [PMID: 10519645]
[94]
Six DA, Dennis EA. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 2000; 1488(1-2): 1-19.
[http://dx.doi.org/10.1016/S1388-1981(00)00105-0] [PMID: 11080672]
[95]
Calvete JJ, Marcinkiewicz C, Monleón D, et al. Snake venom disintegrins: evolution of structure and function. Toxicon 2005; 45(8): 1063-74.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.024] [PMID: 15922775]
[96]
Rivas-Mercado EA, Garza-Ocañas L. Disintegrins obtained from snake venom and their pharmacological potential. Medicina Universitaria 2017; 19: 32-7.
[http://dx.doi.org/10.1016/j.rmu.2017.02.004]
[97]
Calvete JJ. The continuing saga of snake venom disintegrins. Toxicon 2013; 62: 40-9.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.005] [PMID: 23010163]
[98]
Marcinkiewicz C. Functional characteristic of snake venom disintegrins: potential therapeutic implication. Curr Pharm Des 2005; 11(7): 815-27.
[http://dx.doi.org/10.2174/1381612053381765] [PMID: 15777236]
[99]
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16(6): 532-48.
[http://dx.doi.org/10.2174/1389203716666150515125002] [PMID: 26031306]
[100]
Lucena S, Castro R, Lundin C, et al. Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon 2015; 93: 136-43.
[http://dx.doi.org/10.1016/j.toxicon.2014.11.228] [PMID: 25450798]
[101]
Siigur J, Aaspõllu A, Siigur E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 2019; 158: 16-32.
[http://dx.doi.org/10.1016/j.toxicon.2018.11.294] [PMID: 30472110]
[102]
Clemetson KJ. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon 2010; 56(7): 1236-46.
[http://dx.doi.org/10.1016/j.toxicon.2010.03.011] [PMID: 20350564]
[103]
Arlinghaus FT, Eble JA. C-type lectin-like proteins from snake venoms. Toxicon 2012; 60(4): 512-9.
[http://dx.doi.org/10.1016/j.toxicon.2012.03.001] [PMID: 22781131]
[104]
Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 2005; 45(8): 1099-114.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.021] [PMID: 15922777]
[105]
Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost 2005; 3(8): 1791-9.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01358.x] [PMID: 16102046]
[106]
Samah S, Fatah C, Jean-Marc B, Safia K-T, Fatima L-D. Purification and characterization of Cc-Lec, C-type lactose-binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. Int J Biol Macromol 2017; 102: 336-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.018] [PMID: 28400185]
[107]
Vink S, Jin AH, Poth KJ, Head GA, Alewood PF. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59(4): 434-45.
[http://dx.doi.org/10.1016/j.toxicon.2010.12.001] [PMID: 21147145]
[108]
Zhang Y, Wu J, Yu G, et al. A novel natriuretic peptide from the cobra venom. Toxicon 2011; 57(1): 134-40.
[http://dx.doi.org/10.1016/j.toxicon.2010.10.014] [PMID: 21050868]
[109]
Paulo LH. Is natriuretic peptide a snake venom component? Toxicon 2000; 38: 505-6.
[http://dx.doi.org/10.1016/S0041-0101(00)80023-9]
[110]
Evangelista JSAM, Martins AMC, Nascimento NRF, et al. Renal and vascular effects of the natriuretic peptide isolated from Crotalus durissus cascavella venom. Toxicon 2008; 52(7): 737-44.
[http://dx.doi.org/10.1016/j.toxicon.2008.08.014] [PMID: 18835291]
[111]
Da Silva SL, Dias-Junior CA, Baldasso PA, et al. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom. Peptides 2012; 36(2): 206-12.
[http://dx.doi.org/10.1016/j.peptides.2012.05.005] [PMID: 22617223]
[112]
Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon 2004; 44(3): 227-31.
[http://dx.doi.org/10.1016/j.toxicon.2004.05.023] [PMID: 15302528]
[113]
Osipov AV, Levashov MYu, Tsetlin VI, Utkin YN. Cobra venom contains a pool of cysteine-rich secretory proteins. Biochem Biophys Res Commun 2005; 328(1): 177-82.
[http://dx.doi.org/10.1016/j.bbrc.2004.12.154] [PMID: 15670767]
[114]
Boldrini-França J, Cologna CT, Pucca MB, et al. Minor snake venom proteins: Structure, function and potential applications. Biochim Biophys Acta, Gen Subj 2017; 1861(4): 824-38.
[http://dx.doi.org/10.1016/j.bbagen.2016.12.022] [PMID: 28012742]
[115]
Suzuki N, Yamazaki Y, Brown RL, Fujimoto Z, Morita T, Mizuno H. Structures of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels: implications for movement of the C-terminal cysteine-rich domain. Acta Crystallogr D Biol Crystallogr 2008; 64(Pt 10): 1034-42.
[http://dx.doi.org/10.1107/S0907444908023512] [PMID: 18931410]
[116]
Nobile M, Magnelli V, Lagostena L, Mochca-Morales J, Possani LD, Prestipino G. The toxin helothermine affects potassium currents in newborn rat cerebellar granule cells. J Membr Biol 1994; 139(1): 49-55.
[http://dx.doi.org/10.1007/BF00232674] [PMID: 8071987]
[117]
Wang J, Shen B, Guo M, et al. Blocking effect and crystal structure of natrin toxin, a cysteine-rich secretory protein from Naja atra venom that targets the BKCa channel. Biochemistry 2005; 44(30): 10145-52.
[http://dx.doi.org/10.1021/bi050614m] [PMID: 16042391]
[118]
Fry BG, Scheib H, van der Weerd L, et al. Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics 2008; 7(2): 215-46.
[http://dx.doi.org/10.1074/mcp.M700094-MCP200] [PMID: 17855442]
[119]
Lodovicho ME, Costa TR, Bernardes CP, et al. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicol Lett 2017; 265: 156-69.
[http://dx.doi.org/10.1016/j.toxlet.2016.12.003] [PMID: 27932254]
[120]
Mukherjee AK, Mackessy SP, Dutta S. Characterization of a Kunitz-type protease inhibitor peptide (Rusvikunin) purified from Daboia russelii russelii venom. Int J Biol Macromol 2014; 67: 154-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.058] [PMID: 24632346]
[121]
Earl STH, Richards R, Johnson LA, et al. Identification and characterisation of Kunitz-type plasma kallikrein inhibitors unique to Oxyuranus sp. snake venoms. Biochimie 2012; 94(2): 365-73.
[http://dx.doi.org/10.1016/j.biochi.2011.08.003] [PMID: 21843588]
[122]
Takahashi H, Iwanaga S, Suzuki T. Isolation of a novel inhibitor of kallikrein, plasmin and trypsin from the venom of Russell’s viper (Vipera russelli). FEBS Lett 1972; 27(2): 207-10.
[http://dx.doi.org/10.1016/0014-5793(72)80621-5] [PMID: 4541477]
[123]
Thakur R, Mukherjee AK. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors. Toxicon 2017; 131: 37-47.
[http://dx.doi.org/10.1016/j.toxicon.2017.03.011] [PMID: 28288936]
[124]
Ozawa K, Laskowski M Jr. The reactive site of trypsin inhibitors. J Biol Chem 1966; 241(17): 3955-61.
[http://dx.doi.org/10.1016/S0021-9258(18)99798-X] [PMID: 5950769]
[125]
Guo CT, McClean S, Shaw C, Rao PF, Ye MY, Bjourson AJ. Trypsin and chymotrypsin inhibitor peptides from the venom of Chinese Daboia russellii siamensis. Toxicon 2013; 63: 154-64.
[http://dx.doi.org/10.1016/j.toxicon.2012.12.013] [PMID: 23287726]
[126]
Laber B, Krieglstein K, Henschen A, et al. The cysteine proteinase inhibitor chicken cystatin is a phosphoprotein. FEBS Lett 1989; 248(1-2): 162-8.
[http://dx.doi.org/10.1016/0014-5793(89)80453-3] [PMID: 2721673]
[127]
Fukuoka A, Matsushita K, Morikawa T, et al. Human cystatin SN is an endogenous protease inhibitor that prevents allergic rhinitis. J Allergy Clin Immunol 2019; 143(3): 1153-1162.e12.
[http://dx.doi.org/10.1016/j.jaci.2018.06.035] [PMID: 30012514]
[128]
Rokyta DR, Ward MJ. Venom-gland transcriptomics and venom proteomics of the black-back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity. Toxicon 2017; 128: 23-37.
[http://dx.doi.org/10.1016/j.toxicon.2017.01.014] [PMID: 28115184]
[129]
Evans HJ, Barrett AJ. A cystatin-like cysteine proteinase inhibitor from venom of the African puff adder (Bitis arietans). Biochem J 1987; 246(3): 795-7.
[http://dx.doi.org/10.1042/bj2460795] [PMID: 3500713]
[130]
Ritonja A, Evans HJ, Machleidt W, Barrett AJ. Amino acid sequence of a cystatin from venom of the African puff adder (Bitis arietans). Biochem J 1987; 246(3): 799-802.
[http://dx.doi.org/10.1042/bj2460799] [PMID: 3500714]
[131]
Kregar I, Locnikar P, Popović T, et al. Bovine intracellular cysteine proteinases. Acta Biol Med Ger 1981; 40(10-11): 1433-8.
[PMID: 7342600]
[132]
Calvete JJ, Marcinkiewicz C, Sanz L. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res 2007; 6(1): 326-36.
[http://dx.doi.org/10.1021/pr060494k] [PMID: 17203976]
[133]
Brillard-Bourdet M, Nguyên V, Ferrer-di Martino M, Gauthier F, Moreau T. Purification and characterization of a new cystatin inhibitor from Taiwan cobra (Naja naja atra) venom. Biochem J 1998; 331(Pt 1): 239-44.
[http://dx.doi.org/10.1042/bj3310239] [PMID: 9512485]
[134]
Paalme V, Trummal K, Samel M, et al. Nerve growth factor from Vipera lebetina venom. Toxicon 2009; 54(3): 329-36.
[http://dx.doi.org/10.1016/j.toxicon.2009.05.001] [PMID: 19463841]
[135]
Kostiza T, Meier J. Nerve growth factors from snake venoms: chemical properties, mode of action and biological significance. Toxicon 1996; 34(7): 787-806.
[http://dx.doi.org/10.1016/0041-0101(96)00023-2] [PMID: 8843580]
[136]
Wijeyewickrema LC, Gardiner EE, Gladigau EL, Berndt MC, Andrews RK. Nerve growth factor inhibits metalloproteinase-disintegrins and blocks ectodomain shedding of platelet glycoprotein VI. J Biol Chem 2010; 285(16): 11793-9.
[http://dx.doi.org/10.1074/jbc.M110.100479] [PMID: 20164177]
[137]
Andrews RK, Gardiner EE, Asazuma N, et al. A novel viper venom metalloproteinase, alborhagin, is an agonist at the platelet collagen receptor GPVI. J Biol Chem 2001; 276(30): 28092-7.
[http://dx.doi.org/10.1074/jbc.M011352200] [PMID: 11344165]
[138]
Yamazaki Y, Matsunaga Y, Tokunaga Y, Obayashi S, Saito M, Morita T. Snake venom vascular endothelial growth factors (vegf-fs) exclusively vary their structures and functions among species. J Biol Chem 2009; 284(15): 9885-91.
[http://dx.doi.org/10.1074/jbc.M809071200] [PMID: 19208624]
[139]
Mebs D, Ownby CL. Myotoxic components of snake venoms: their biochemical and biological activities. Pharmacol Ther 1990; 48(2): 223-36.
[http://dx.doi.org/10.1016/0163-7258(90)90081-C] [PMID: 2293240]
[140]
Bober MA, Glenn JL, Straight RC, Ownby CL. Detection of myotoxin alpha-like proteins in various snake venoms. Toxicon 1988; 26(7): 665-73.
[http://dx.doi.org/10.1016/0041-0101(88)90248-6] [PMID: 3140426]
[141]
Wickramaratna JC, Fry BG, Aguilar M-I, Kini RM, Hodgson WC. Isolation and pharmacological characterization of a phospholipase A2 myotoxin from the venom of the Irian Jayan death adder (Acanthophis rugosus). Br J Pharmacol 2003; 138(2): 333-42.
[http://dx.doi.org/10.1038/sj.bjp.0705046] [PMID: 12540524]
[142]
Azofeifa K, Angulo Y, Lomonte B. Ability of fucoidan to prevent muscle necrosis induced by snake venom myotoxins: comparison of high- and low-molecular weight fractions. Toxicon 2008; 51(3): 373-80.
[http://dx.doi.org/10.1016/j.toxicon.2007.10.008] [PMID: 18061642]
[143]
Scarborough RM, Rose JW, Hsu MA, et al. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 1991; 266(15): 9359-62.
[http://dx.doi.org/10.1016/S0021-9258(18)92826-7] [PMID: 2033037]
[144]
Graziano F, Maugeri R, Basile L, Meccio F, Iacopino DG. Aulogous fibrin sealant (Vivostat(®)) in the neurosurgical practice: Part II: Vertebro-spinal procedures. Surg Neurol Int 2016; 7(Suppl. 3): S77-82.
[http://dx.doi.org/10.4103/2152-7806.174894] [PMID: 26904371]
[145]
Gutierrez VP, Konno K, Chacur M, et al. Crotalphine induces potent antinociception in neuropathic pain by acting at peripheral opioid receptors. Eur J Pharmacol 2008; 594(1-3): 84-92.
[http://dx.doi.org/10.1016/j.ejphar.2008.07.053] [PMID: 18703042]
[146]
Rowan EG, Pemberton KE, Harvey AL. On the blockade of acetylcholine release at mouse motor nerve terminals by beta-bungarotoxin and crotoxin. Br J Pharmacol 1990; 100(2): 301-4.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb15799.x] [PMID: 2116202]
[147]
Brenes H, Loría GD, Lomonte B. Potent virucidal activity against Flaviviridae of a group IIA phospholipase A2 isolated from the venom of Bothrops asper. Biologicals 2020; 63: 48-52.
[http://dx.doi.org/10.1016/j.biologicals.2019.12.002] [PMID: 31839332]
[148]
Dal Mas C, Rossato L, Shimizu T, et al. Effects of the natural peptide crotamine from a south american rattlesnake on candida auris, an emergent multidrug antifungal resistant human pathogen. Biomolecules 2019; 9(6): E205.
[http://dx.doi.org/10.3390/biom9060205] [PMID: 31141959]
[149]
França SC, Kashima S, Roberto PG, et al. Molecular approaches for structural characterization of Bothrops L-amino acid oxidases with antiprotozoal activity: cDNA cloning, comparative sequence analysis, and molecular modeling. Biochem Biophys Res Commun 2007; 355(2): 302-6.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.217] [PMID: 17292326]
[150]
Morjen M, Othman H, Abdelkafi-Koubaa Z, et al. Targeting α1 inserted domain (I) of α1β1 integrin by Lebetin 2 from M. lebetina transmediterranea venom decreased tumorigenesis and angiogenesis. Int J Biol Macromol 2018; 117: 790-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.230] [PMID: 29870815]
[151]
Waheed H, Moin SF, Choudhary MI. Snake venom: From deadly toxins to life-saving therapeutics. Curr Med Chem 2017; 24(17): 1874-91.
[http://dx.doi.org/10.2174/0929867324666170605091546] [PMID: 28578650]
[152]
Mohamed Abd El-Aziz T, Garcia Soares A, Stockand JD. Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins (Basel) 2019; 11(10): E564.
[http://dx.doi.org/10.3390/toxins11100564] [PMID: 31557973]
[153]
Moridikia A, Zargan J, Sobati H, Goodarzi H-R, Hajinourmohamadi A. Anticancer and antibacterial effects of Iranian viper (Vipera latifii) venom; an in-vitro study. J Cell Physiol 2018; 233(9): 6790-7.
[http://dx.doi.org/10.1002/jcp.26428] [PMID: 29319161]
[154]
Ciscotto P, Machado de Avila RA, Coelho EAF, et al. Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 2009; 53(3): 330-41.
[http://dx.doi.org/10.1016/j.toxicon.2008.12.004] [PMID: 19101583]
[155]
Sawan S, Yaacoub T, Hraoui-Bloquet S, et al. Montivipera bornmuelleri venom selectively exhibits high cytotoxic effects on keratinocytes cancer cell lines. Exp Toxicol Pathol 2017; 69(4): 173-8.
[http://dx.doi.org/10.1016/j.etp.2017.01.001] [PMID: 28077256]
[156]
Guimarães DO, Lopes DS, Azevedo FV, et al. In vitro antitumor and antiangiogenic effects of Bothropoidin, a metalloproteinase from Bothrops pauloensis snake venom. Int J Biol Macromol 2017; 97: 770-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.064] [PMID: 28093334]
[157]
Vyas VK, Brahmbhatt K, Bhatt H, Parmar U. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed 2013; 3(2): 156-62.
[http://dx.doi.org/10.1016/S2221-1691(13)60042-8] [PMID: 23593597]
[158]
Shanbhag VKL. Applications of snake venoms in treatment of cancer. Asian Pac J Trop Biomed 2015; 5: 275-6.
[http://dx.doi.org/10.1016/S2221-1691(15)30344-0]
[159]
Toyama MH, Toyama D de O, Passero LFD, et al. Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 2006; 47(1): 47-57.
[http://dx.doi.org/10.1016/j.toxicon.2005.09.008] [PMID: 16307769]
[160]
Tan KK, Ler SG, Gunaratne J, Bay BH, Ponnampalam G. In vitro cytotoxicity of L-amino acid oxidase from the venom of Crotalus mitchellii pyrrhus. Toxicon 2017; 139: 20-30.
[http://dx.doi.org/10.1016/j.toxicon.2017.09.012] [PMID: 28943466]
[161]
Perumal Samy R, Gopalakrishnakone P, Thwin MM, et al. Antibacterial activity of snake, scorpion and bee venoms: A comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol 2007; 102(3): 650-9.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03161.x] [PMID: 17309613]
[162]
Costa Torres AF, Dantas RT, Toyama MH, et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. Toxicon 2010; 55(4): 795-804.
[http://dx.doi.org/10.1016/j.toxicon.2009.11.013] [PMID: 19944711]
[163]
Lazo F, Vivas-Ruiz DE, Sandoval GA, et al. Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom. Toxicon 2017; 139: 74-86.
[http://dx.doi.org/10.1016/j.toxicon.2017.10.001] [PMID: 29024770]
[164]
Costa TR, Menaldo DL, Prinholato da Silva C, et al. Evaluating the microbicidal, antiparasitic and antitumor effects of CR-LAAO from Calloselasma rhodostoma venom. Int J Biol Macromol 2015; 80: 489-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.004] [PMID: 26162245]
[165]
Olfa K-Z, José L, Salma D, et al. Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab Invest 2005; 85(12): 1507-16.
[http://dx.doi.org/10.1038/labinvest.3700350] [PMID: 16200076]
[166]
Yang R-S, Tang C-H, Chuang W-J, et al. Inhibition of tumor formation by snake venom disintegrin. Toxicon 2005; 45(5): 661-9.
[http://dx.doi.org/10.1016/j.toxicon.2005.01.013] [PMID: 15777962]
[167]
Ben-Mabrouk H, Zouari-Kessentini R, Montassar F, et al. CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis. Int J Biol Macromol 2016; 86: 670-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.008] [PMID: 26853827]
[168]
Conlon JM, Attoub S, Arafat H, et al. Cytotoxic activities of [Ser49]phospholipase A2 from the venom of the saw-scaled vipers Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus. Toxicon 2013; 71: 96-104.
[http://dx.doi.org/10.1016/j.toxicon.2013.05.017] [PMID: 23747272]
[169]
Perumal Samy R, Pachiappan A, Gopalakrishnakone P, et al. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei. BMC Infect Dis 2006; 6: 100.
[http://dx.doi.org/10.1186/1471-2334-6-100] [PMID: 16784542]
[170]
Samy RP, Stiles BG, Chinnathambi A, et al. Viperatoxin-II: A novel viper venom protein as an effective bactericidal agent. FEBS Open Bio 2015; 5: 928-41.
[http://dx.doi.org/10.1016/j.fob.2015.10.004] [PMID: 26793432]
[171]
Sudharshan S, Dhananjaya BL, Sudharshan S, Dhananjaya BL. Antibacterial potential of a basic phospholipase A2 (VRV-PL-VIIIa) from Daboia russelii pulchella (Russell’s viper) venom. J Venom Anim Toxins Incl Trop Dis 2015; 21: 17.
[http://dx.doi.org/10.1186/s40409-015-0014-y] [PMID: 26042153]
[172]
Perumal Samy R, Gopalakrishnakone P, Ho B, Chow VTK. Purification, characterization and bactericidal activities of basic phospholipase A2 from the venom of Agkistrodon halys (Chinese pallas). Biochimie 2008; 90(9): 1372-88.
[http://dx.doi.org/10.1016/j.biochi.2008.04.007] [PMID: 18472013]
[173]
Zouari-Kessentini R, Luis J, Karray A, et al. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration. Toxicon 2009; 53(4): 444-53.
[http://dx.doi.org/10.1016/j.toxicon.2009.01.003] [PMID: 19708222]
[174]
Azevedo FVPV, Lopes DS, Cirilo Gimenes SN, et al. Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA2 homologue from Bothrops pauloensis venom. Int J Biol Macromol 2016; 82: 671-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.080] [PMID: 26519876]
[175]
Silva MA, Lopes DS, Teixeira SC, et al. Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. Int J Biol Macromol 2018; 118(Pt A): 311-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.082] [PMID: 29920366]
[176]
Gebrim LC, Marcussi S, Menaldo DL, et al. Antitumor effects of snake venom chemically modified Lys49 phospholipase A2-like BthTX-I and a synthetic peptide derived from its C-terminal region. Biologicals 2009; 37(4): 222-9.
[http://dx.doi.org/10.1016/j.biologicals.2009.01.010] [PMID: 19264509]
[177]
Jiménez-Charris E, Lopes DS, Gimenes SNC, et al. Antitumor potential of Pllans-II, an acidic Asp49-PLA2 from Porthidium lansbergii lansbergii snake venom on human cervical carcinoma HeLa cells. Int J Biol Macromol 2019; 122: 1053-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.053] [PMID: 30218735]
[178]
Bonilla-Porras AR, Vargas LJ, Jimenez-Del-Rio M, Nuñez V, Velez-Pardo C. Purification of nasulysin-1: A new toxin from Porthidium nasutum snake venom that specifically induces apoptosis in leukemia cell model through caspase-3 and apoptosis-inducing factor activation. Toxicon 2016; 120: 166-74.
[http://dx.doi.org/10.1016/j.toxicon.2016.08.006] [PMID: 27530665]
[179]
Corrêa MC Jr, Maria DA, Moura-da-Silva AM, Pizzocaro KF, Ruiz IRG. Inhibition of melanoma cells tumorigenicity by the snake venom toxin jararhagin. Toxicon 2002; 40(6): 739-48.
[http://dx.doi.org/10.1016/S0041-0101(01)00275-6] [PMID: 12175610]
[180]
Maria DA, da Silva MGL, Correia Junior MC, Ruiz IRG. Antiproliferative effect of the jararhagin toxin on B16F10 murine melanoma. BMC Complement Altern Med 2014; 14: 446.
[http://dx.doi.org/10.1186/1472-6882-14-446] [PMID: 25407317]
[181]
Limam I, Bazaa A, Srairi-Abid N, et al. Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion. Matrix Biol 2010; 29(2): 117-26.
[http://dx.doi.org/10.1016/j.matbio.2009.09.009] [PMID: 19808093]
[182]
Morjen M, Honoré S, Bazaa A, et al. PIVL, a snake venom Kunitz-type serine protease inhibitor, inhibits in vitro and in vivo angiogenesis. Microvasc Res 2014; 95: 149-56.
[http://dx.doi.org/10.1016/j.mvr.2014.08.006] [PMID: 25173589]
[183]
Morjen M, Kallech-Ziri O, Bazaa A, et al. PIVL, a new serine protease inhibitor from Macrovipera lebetina transmediterranea venom, impairs motility of human glioblastoma cells. Matrix Biol 2013; 32(1): 52-62.
[http://dx.doi.org/10.1016/j.matbio.2012.11.015] [PMID: 23262217]
[184]
Marcinkiewicz C, Lobb RR, Marcinkiewicz MM, et al. Isolation and characterization of EMS16, a C-lectin type protein from Echis multisquamatus venom, a potent and selective inhibitor of the α2β1 integrin. Biochemistry 2000; 39(32): 9859-67.
[http://dx.doi.org/10.1021/bi000428a] [PMID: 10933804]
[185]
Hammouda MB, Riahi-Chebbi I, Souid S, et al. Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochim Biophys Acta, Gen Subj 2018; 1862(3): 600-14.
[http://dx.doi.org/10.1016/j.bbagen.2017.11.019] [PMID: 29196192]
[186]
Sarray S, Delamarre E, Marvaldi J, El Ayeb M, Marrakchi N, Luis J. Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and alphaV-containing integrins. Matrix Biol 2007; 26(4): 306-13.
[http://dx.doi.org/10.1016/j.matbio.2007.01.001] [PMID: 17300927]
[187]
Nolte S, de Castro Damasio D, Baréa AC, et al. BJcuL, a lectin purified from Bothrops jararacussu venom, induces apoptosis in human gastric carcinoma cells accompanied by inhibition of cell adhesion and actin cytoskeleton disassembly. Toxicon 2012; 59(1): 81-5.
[http://dx.doi.org/10.1016/j.toxicon.2011.10.012] [PMID: 22079298]
[188]
Damasio D de C, Nolte S, Polak LP, et al. The lectin BJcuL induces apoptosis through TRAIL expression, caspase cascade activation and mitochondrial membrane permeability in a human colon adenocarcinoma cell line. Toxicon 2014; 90: 299-307.
[http://dx.doi.org/10.1016/j.toxicon.2014.08.062] [PMID: 25194746]
[189]
dos Santos Nunes E, de Souza MAA, de Melo Vaz AF, et al. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp Biochem Physiol B Biochem Mol Biol 2011; 159(1): 57-63.
[http://dx.doi.org/10.1016/j.cbpb.2011.02.001] [PMID: 21334449]
[190]
Yang C-A, Cheng C-H, Liu S-Y, Lo C-T, Lee J-W, Peng K-C. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 2011; 278(18): 3381-94.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08262.x] [PMID: 21781279]
[191]
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017; 482(3): 419-25.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[192]
Alves RM, Antonucci GA, Paiva HH, et al. Evidence of caspase-mediated apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom. Comp Biochem Physiol A Mol Integr Physiol 2008; 151(4): 542-50.
[http://dx.doi.org/10.1016/j.cbpa.2008.07.007] [PMID: 18804547]
[193]
Tavares C, Maciel T, Burin S, et al. l-Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines. Rev Bras Hematol Hemoter 2016; 38(2): 128-34.
[http://dx.doi.org/10.1016/j.bjhh.2016.03.004] [PMID: 27208571]
[194]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016; 1863(12): 2977-92.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[195]
Shen H-M, Liu ZG. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 2006; 40(6): 928-39.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.10.056] [PMID: 16540388]
[196]
Leslie NR. The redox regulation of PI 3-kinase-dependent signaling. Antioxid Redox Signal 2006; 8(9-10): 1765-74.
[http://dx.doi.org/10.1089/ars.2006.8.1765] [PMID: 16987030]
[197]
Zhu X, Zhou M, Liu G, et al. Autophagy activated by the c-Jun N-terminal kinase-mediated pathway protects human prostate cancer PC3 cells from celecoxib-induced apoptosis. Exp Ther Med 2017; 13(5): 2348-54.
[http://dx.doi.org/10.3892/etm.2017.4287] [PMID: 28565848]
[198]
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene 2008; 27(48): 6245-51.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[199]
Costal-Oliveira F, Stransky S, Guerra-Duarte C, et al. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Sci Rep 2019; 9(1): 781.
[http://dx.doi.org/10.1038/s41598-018-37435-4] [PMID: 30692577]
[200]
Park MH, Jo M, Won D, et al. Snake venom toxin from Vipera lebetina turanica induces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression. BMC Cancer 2012; 12: 228.
[http://dx.doi.org/10.1186/1471-2407-12-228] [PMID: 22681760]
[201]
Cao XH, Wang AH, Wang CL, et al. Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 2010; 183(3): 357-62.
[http://dx.doi.org/10.1016/j.cbi.2009.11.027] [PMID: 19954742]
[202]
Li X, Zhu F, Jiang J, et al. Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett 2015; 357(1): 219-30.
[http://dx.doi.org/10.1016/j.canlet.2014.11.026] [PMID: 25444914]
[203]
Cao J, Xu D, Wang D, et al. ROS-driven Akt dephosphorylation at Ser-473 is involved in 4-HPR-mediated apoptosis in NB4 cells. Free Radic Biol Med 2009; 47(5): 536-47.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.024] [PMID: 19482076]
[204]
Wen C, Wang H, Wu X, et al. ROS-mediated inactivation of the PI3K/AKT pathway is involved in the antigastric cancer effects of thioredoxin reductase-1 inhibitor chaetocin. Cell Death Dis 2019; 10(11): 809.
[http://dx.doi.org/10.1038/s41419-019-2035-x] [PMID: 31649256]
[205]
Páramo L, Lomonte B, Pizarro-Cerdá J, Bengoechea J-A, Gorvel J-P, Moreno E. Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom--synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. Eur J Biochem 1998; 253(2): 452-61.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2530452.x] [PMID: 9654096]
[206]
Valentin E, Lambeau G. What can venom phospholipases A(2) tell us about the functional diversity of mammalian secreted phospholipases A(2)? Biochimie 2000; 82(9-10): 815-31.
[http://dx.doi.org/10.1016/S0300-9084(00)01168-8] [PMID: 11086212]
[207]
Nevalainen TJ, Graham GG, Scott KF. Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys Acta 2008; 1781(1-2): 1-9.
[http://dx.doi.org/10.1016/j.bbalip.2007.12.001] [PMID: 18177747]
[208]
Almeida JR, Palacios ALV, Patiño RSP, et al. Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2019; 80(1): 68-85.
[http://dx.doi.org/10.1002/ddr.21456] [PMID: 30255943]
[209]
Soares AM, Guerra-Sá R, Borja-Oliveira CR, et al. Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom. Arch Biochem Biophys 2000; 378(2): 201-9.
[http://dx.doi.org/10.1006/abbi.2000.1790] [PMID: 10860537]
[210]
Perumal Samy R, Gopalakrishnakone P, Bow H, Puspharaj PN, Chow VTK. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie 2010; 92(12): 1854-66.
[http://dx.doi.org/10.1016/j.biochi.2010.07.012] [PMID: 20723574]
[211]
Hancock REW, Lehrer R. Cationic peptides: A new source of antibiotics. Trends Biotechnol 1998; 16(2): 82-8.
[http://dx.doi.org/10.1016/S0167-7799(97)01156-6] [PMID: 9487736]
[212]
Muller SP, Silva VAO, Silvestrini AVP, et al. Crotoxin from Crotalus durissus terrificus venom: in vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon 2018; 156: 13-22.
[http://dx.doi.org/10.1016/j.toxicon.2018.10.306] [PMID: 30395843]
[213]
Prinholato da Silva C, Costa TR, Paiva RMA, et al. Antitumor potential of the myotoxin BthTX-I from Bothrops jararacussu snake venom: evaluation of cell cycle alterations and death mechanisms induced in tumor cell lines. J Venom Anim Toxins Incl Trop Dis 2015; 21: 44.
[http://dx.doi.org/10.1186/s40409-015-0044-5] [PMID: 26539212]
[214]
Calderon LA, Sobrinho JC, Zaqueo KD, et al. Antitumoral activity of snake venom proteins: New trends in cancer therapy. Biomed Res Int 2014; 2014: 203639.
[http://dx.doi.org/10.1155/2014/203639] [PMID: 24683541]
[215]
Osipov AV, Utkin YN. Antiproliferative effects of snake venom phospholipases a2 and their perspectives for cancer treatment.Toxins and drug discovery. Dordrecht: Springer Netherlands 2017; pp. 129-46.
[http://dx.doi.org/10.1007/978-94-007-6452-1_13]
[216]
Rodrigues RS, Izidoro LFM, de Oliveira RJ Jr, Sampaio SV, Soares AM, Rodrigues VM. Snake venom phospholipases A2: A new class of antitumor agents. Protein Pept Lett 2009; 16(8): 894-8.
[http://dx.doi.org/10.2174/092986609788923266] [PMID: 19689415]
[217]
Ganguly KK, Pal S, Moulik S, Chatterjee A. Integrins and metastasis. Cell Adhes Migr 2013; 7(3): 251-61.
[http://dx.doi.org/10.4161/cam.23840] [PMID: 23563505]
[218]
Mirzaei S, Fekri HS, Hashemi F, et al. Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 105327
[http://dx.doi.org/10.1016/j.phrs.2020.105327] [PMID: 33276098]
[219]
Bazaa A, Luis J, Srairi-Abid N, et al. MVL-PLA2, a phospholipase A2 from Macrovipera lebetina transmediterranea venom, inhibits tumor cells adhesion and migration. Matrix Biol 2009; 28(4): 188-93.
[http://dx.doi.org/10.1016/j.matbio.2009.03.007] [PMID: 19351557]
[220]
Klein RC, Fabres-Klein MH, de Oliveira LL, Feio RN, Malouin F, Ribon A de OB. A C-type lectin from Bothrops jararacussu venom disrupts Staphylococcal biofilms. PLoS One 2015; 10(3): e0120514.
[http://dx.doi.org/10.1371/journal.pone.0120514] [PMID: 25811661]
[221]
Aguilar AP, Onofre TS, Fabres-Klein MH, et al. Carbohydrate-independent antibiofilm effect of Bothrops jararacussu lectin BJcuL on Staphylococcus aureus. Microb Pathog 2019; 137: 103745.
[http://dx.doi.org/10.1016/j.micpath.2019.103745] [PMID: 31520734]
[222]
Okamoto DN, Kondo MY, Oliveira LCG, et al. P-I class metalloproteinase from Bothrops moojeni venom is a post-proline cleaving peptidase with kininogenase activity: insights into substrate selectivity and kinetic behavior. Biochim Biophys Acta 2014; 1844(3): 545-52.
[http://dx.doi.org/10.1016/j.bbapap.2013.12.014] [PMID: 24373874]
[223]
Zhao YS, Yang HL, Liu CZ. Inhibitory effects of immunotargeting of Chinese cobra cytotoxin and iodine-131 against nasopharyngeal carcinoma cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2008; 28(7): 1235-6.
[PMID: 18676272]
[224]
Biswas A, Gomes A, Sengupta J, et al. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential. J Venom Res 2012; 3: 15-21.
[PMID: 23236583]
[225]
Al-Sadoon MK, Abdel-Maksoud MA, Rabah DM, Badr G. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia aegyptia) venom combined with silica nanoparticles: crosstalk between Bcl2 and caspase 3. Cell Physiol Biochem 2012; 30(3): 653-65.
[http://dx.doi.org/10.1159/000341446] [PMID: 22854437]
[226]
Al-Sadoon MK, Rabah DM, Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol 2013; 284(1-2): 129-38.
[http://dx.doi.org/10.1016/j.cellimm.2013.07.016] [PMID: 23973876]
[227]
Soman NR, Baldwin SL, Hu G, et al. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 2009; 119(9): 2830-42.
[http://dx.doi.org/10.1172/JCI38842] [PMID: 19726870]
[228]
Yu X, Chen L, Liu J, et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun 2019; 10(1): 574.
[http://dx.doi.org/10.1038/s41467-019-08538-x] [PMID: 30718511]
[229]
Pornpattananangkul D, Zhang L, Olson S, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc 2011; 133(11): 4132-9.
[http://dx.doi.org/10.1021/ja111110e] [PMID: 21344925]
[230]
Okada M, Ortiz E, Corzo G, Possani LD. Pore-forming spider venom peptides show cytotoxicity to hyperpolarized cancer cells expressing K+ channels: A lentiviral vector approach. PLoS One 2019; 14(4): e0215391.
[http://dx.doi.org/10.1371/journal.pone.0215391] [PMID: 30978253]
[231]
Benati RB, Costa TR, Cacemiro MDC, Sampaio SV, de Castro FA, Burin SM. Cytotoxic and pro-apoptotic action of MjTX-I, a phospholipase A2 isolated from Bothrops moojeni snake venom, towards leukemic cells. J Venom Anim Toxins Incl Trop Dis 2018; 24: 40.
[http://dx.doi.org/10.1186/s40409-018-0180-9] [PMID: 30598659]
[232]
Liu H, Lee JI, Ahn T-G. Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice. Obstet Gynecol Sci 2019; 62(4): 242-8.
[http://dx.doi.org/10.5468/ogs.2019.62.4.242] [PMID: 31338341]
[233]
Graf N, Mokhtari TE, Papayannopoulos IA, Lippard SJ. Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells. J Inorg Biochem 2012; 110: 58-63.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.02.012] [PMID: 22465700]
[234]
Zhu H, Yang X, Liu J, et al. Melittin radiosensitizes esophageal squamous cell carcinoma with induction of apoptosis in vitro and in vivo. Tumour Biol 2014; 35(9): 8699-705.
[http://dx.doi.org/10.1007/s13277-014-2146-z] [PMID: 24870598]
[235]
Li L, Huang J, Lin Y. Snake venoms in cancer therapy: Past, present and future. Toxins (Basel) 2018; 10(9): E346.
[http://dx.doi.org/10.3390/toxins10090346] [PMID: 30158426]
[236]
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; S1044-579X(20): 30102-4.
[http://dx.doi.org/10.1016/j.semcancer.2020.05.006] [PMID: 32428714]