Type 2 Diabetes Mellitus with Early Dry Skin Disorder: A Comparison Study Between Primary and Tertiary Care in Indonesia

Article ID: e060821195350 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The prevalence of Type 2 Diabetes Mellitus (T2DM) in Indonesia has continued to increase over the years. Management of T2DM is challenging across clinical settings, including primary and tertiary care. Uncontrolled T2DM puts patients at risk of the development of T2DM complications, especially early-stage dry skin that is neglected by most of the patients. This study aimed to investigate the comparison between the T2DM management profile and dry skin clinical profile of T2DM patients in primary care and tertiary care settings.

Methods: The study was conducted as a cross-sectional epidemiological study by comparing T2DM patient profiles in primary and tertiary care. The data collected included sociodemographic, clinical, and laboratory data that were correlated with T2DM and early dry skin related-T2DM. This study included early dry skin within the SRRC score of 3-11 and excluded infection, ulcer, and severe erythema.

Results: The patients in primary and tertiary care presented poorly controlled T2DM with median HbA1c levels of 7.8% and 7.6%. The patients in primary care also presented with high triglyceride, 179 mg/dl. Furthermore, several significant differences were found in the duration of T2DM, duration of dry skin, and DM treatment (OAD and insulin).

Conclusion: Significant differences in the duration of T2DM, duration of dry skin, and DM treatment (OAD and insulin) might be affected by the parameter of T2DM glycemic control (Blood pressure (BP), body mass index (BMI), HbA1c, random blood glucose (RBG), and triglyceride).

Keywords: Diabetes mellitus, dry skin, primary care, tertiary care, SRRC, T2DM.

[1]
International Diabetes Federation. IDF Diabetes Atlas. (9th ed.), Brussels, Belgium: International Diabetes Federation 2019.
[2]
Indonesian Ministry of Health. Jakarta: Indonesian Ministry of Health 2018.
[3]
Chatterjee N, Chattopadhyay C, Sengupta N, Das C, Sarma N, Pal SK. An observational study of cutaneous manifestations in diabetes mellitus in a tertiary care Hospital of Eastern India. Indian J Endocrinol Metab 2014; 18(2): 217-20.
[http://dx.doi.org/10.4103/2230-8210.129115] [PMID: 24741520]
[4]
Coderch L, López O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol 2003; 4(2): 107-29.
[http://dx.doi.org/10.2165/00128071-200304020-00004] [PMID: 12553851]
[5]
Dutra LMA, Novaes MRCG, Melo MC, Veloso DLC, Faustino DL, Sousa LMS. Assessment of ulceration risk in diabetic individuals. Rev Bras Enferm 2018; 71(Suppl. 2): 733-9.
[http://dx.doi.org/10.1590/0034-7167-2017-0337] [PMID: 29791638]
[6]
Lechner A, Lahmann N, Neumann K, Blume-Peytavi U, Kottner J. Dry skin and pressure ulcer risk: A multi-center cross-sectional prevalence study in German hospitals and nursing homes. Int J Nurs Stud 2017; 73: 63-9.
[http://dx.doi.org/10.1016/j.ijnurstu.2017.05.011] [PMID: 28535399]
[7]
Wang YR, Margolis D. The prevalence of diagnosed cutaneous manifestations during ambulatory diabetes visits in the United States, 1998-2002. Dermatology 2006; 212(3): 229-34.
[http://dx.doi.org/10.1159/000091249] [PMID: 16549918]
[8]
Kim JH, Yoon NY, Kim DH, et al. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end-product. Exp Dermatol 2018; 27(8): 815-23.
[http://dx.doi.org/10.1111/exd.13466] [PMID: 29151267]
[9]
Park HY, Kim JH, Jung M, et al. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp Dermatol 2011; 20(12): 969-74.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01364.x] [PMID: 22017743]
[10]
Agustina R, Dartanto T, Sitompul R, et al. Universal health coverage in Indonesia: Concept, progress, and challenges. Lancet 2019; 393(10166): 75-102.
[http://dx.doi.org/10.1016/S0140-6736(18)31647-7] [PMID: 30579611]
[11]
Widyahening IS, Soewondo P. Capacity for Management of Type 2 Diabetes Mellitus (T2 DM) in Primary Health Centers in Indonesia. J Indon Med Assoc 2012; 62(11): 439-43.
[12]
Indonesian Ministry of Health (2015). Jakarta: Indonesian Ministry of Health 2018.
[13]
Arifin B, van Asselt ADI, Setiawan D, Atthobari J, Postma MJ, Cao Q. Diabetes distress in Indonesian patients with type 2 diabetes: A comparison between primary and tertiary care. BMC Health Serv Res 2019; 19(1): 773-84.
[http://dx.doi.org/10.1186/s12913-019-4515-1] [PMID: 31666053]
[14]
Koo BK, Moon MK. Are We in the same risk of diabetes mellitus? Gender and age-specific epidemiology of diabetes in 2001 to 2014 in the Korean population. Diabetes Metab J 2016; 40(3): 175-81.
[http://dx.doi.org/10.4093/dmj.2016.40.3.175] [PMID: 27273907]
[15]
Mauvais-Jarvis F. Epidemiology of gender differences in diabetes and obesity. Adv Exp Med Biol 2017; 1043: 3-8.
[http://dx.doi.org/10.1007/978-3-319-70178-3_1] [PMID: 29224087]
[16]
Targets G. Glycemic targets: Standards of medical care in diabetes-2020. Diabetes Care 2020; 43(Suppl. 1): S66-76.
[http://dx.doi.org/10.2337/dc20-S006] [PMID: 31862749]
[17]
Cholil A, Lindarto D, Pemayun T, Wisnu W, Kumala P, Puteri H. DiabCare Asia 2012: Diabetes management, control, and complications in patients with type 2 diabetes in Indonesia. Med J Indones 2019; 28(1): 47-56.
[http://dx.doi.org/10.13181/mji.v28i1.2931]
[18]
Seo DH, Kang S, Lee YH, et al. Current management of type 2 diabetes mellitus in primary care clinics in Korea. Endocrinol Metab (Seoul) 2019; 34(3): 282-90.
[http://dx.doi.org/10.3803/EnM.2019.34.3.282] [PMID: 31565881]
[19]
Alawadi F, Abdelgadir E, Bashier A, et al. Glycemic control in patients with diabetes across primary and tertiary government health sectors in the Emirate of Dubai, United Arab Emirates: A five-year pattern. Oman Med J 2019; 34(1): 20-5.
[http://dx.doi.org/10.5001/omj.2019.04] [PMID: 30671180]
[20]
Indonesian endocrinologist association publishing. Management and prevention of Type 2 diabetes mellitus 2015. pbperkeni.or.id/wp-content/upload/2019/4.-Konsensus-Pengelolaan-dan-Pencegahan-Diabetes-melitus-tipe-2-di-Indonesia-PERKENI-2015.pdf
[21]
Matheus AS, Tannus LR, Cobas RA, Palma CC, Negrato CA, Gomes MB. Impact of diabetes on cardiovascular disease: An update. Int J Hypertens 2013; 2013: 653789.
[http://dx.doi.org/10.1155/2013/653789] [PMID: 23533715]
[22]
Tarigan TJE, Yunir E, Subekti I, Pramono LA, Martina D. Profile and analysis of diabetic chronic complication in outpatient diabetes clinic of ciptomangunkusumo hospital, Jakarta. Med J Indones 2015; 24(3): 156-62.
[http://dx.doi.org/10.13181/mji.v24i3.1249]
[23]
Sherling DH, Perumareddi P, Hennekens CH. Metabolic syndrome. J Cardiovasc Pharmacol Ther 2017; 22(4): 365-7.
[http://dx.doi.org/10.1177/1074248416686187] [PMID: 28587579]
[24]
Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther 2016; 7(2): 203-19.
[http://dx.doi.org/10.1007/s13300-016-0167-x] [PMID: 27056202]
[25]
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 2018; 27(6): 1212-1221.e3.
[http://dx.doi.org/10.1016/j.cmet.2018.04.010] [PMID: 29754952]
[26]
Hutchison AT, Regmi P, Manoogian ENC, et al. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: A randomized crossover trial. Obesity (Silver Spring) 2019; 27(5): 724-32.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[27]
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu Rev Nutr 2019; 39: 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320] [PMID: 31180809]
[28]
Liu H, Javaheri A, Godar RJ, et al. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 2017; 13(11): 1952-68.
[http://dx.doi.org/10.1080/15548627.2017.1368596] [PMID: 28853981]
[29]
Ji J, Petropavlovskaia M, Khatchadourian A, et al. Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in β-cells. J Cell Mol Med 2019; 23(4): 2890-900.
[http://dx.doi.org/10.1111/jcmm.14172] [PMID: 30710421]
[30]
Yu B, Yu B, Yu L. Commentary: Reconciling hygiene and cleanliness: A new perspective from human microbiome. Indian J Microbiol 2020; 60(2): 259-61.
[http://dx.doi.org/10.1007/s12088-020-00863-w] [PMID: 32255860]
[31]
Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering 2017; 3(1): 71-82.
[http://dx.doi.org/10.1016/J.ENG.2017.01.008]
[32]
Indonesia healthcare and social security agency. Practical Guidelines for Chronic Disease Program. Jakarta 2014.
[33]
Al-Rubeaan K, Al Derwish M, Ouizi S, et al. Diabetic foot complications and their risk factors from a large retrospective cohort study. PLoS One 2015; 10(5): e0124446.
[http://dx.doi.org/10.1371/journal.pone.0124446] [PMID: 25946144]
[34]
Legiawati L, Bramono K, Indriatmi W, et al. Oral and topical Centella asiatica in type 2 diabetes mellitus patients with dry skin: A three-arm prospective randomized double-blind controlled trial. Evid Based Complement Alternat Med 2020; 2020: 7253560.
[http://dx.doi.org/10.1155/2020/7253560] [PMID: 32908567]
[35]
Heimisdottir F, Gudnason V, Sigurdsson G, Benediktsson R. Foot disease in Icelandic patients with established type 2 diabetes. Laeknabladid 2008; 94(2): 109-14.
[PMID: 18310775]
[36]
Kamel MI, Elhenawy YI, Saudi WM. Relation between cutaneous and extracutaneous complications in pediatric patients with type 1 diabetes. Dermatoendocrinol 2018; 10(1): e1467717.
[http://dx.doi.org/10.1080/19381980.2018.1467717] [PMID: 30279952]
[37]
Quondamatteo F. Skin and diabetes mellitus: What do we know? Cell Tissue Res 2014; 355(1): 1-21.
[http://dx.doi.org/10.1007/s00441-013-1751-2] [PMID: 24318789]
[38]
Gandecka A, Araszkiewicz A, Piłaciński S, Wierusz-Wysocka B, Zozulińska-Ziółkiewicz D. The relationship between sudomotor function and skin microvascular reactivity in individuals with type 1 diabetes of long duration. Microvasc Res 2018; 120: 84-9.
[http://dx.doi.org/10.1016/j.mvr.2018.07.002] [PMID: 30044961]
[39]
Bentata R, Cougnard-Grégoire A, Delyfer MN, et al. Skin autofluorescence, renal insufficiency and retinopathy in patients with type 2 diabetes. J Diabetes Complications 2017; 31(3): 619-23.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.10.028] [PMID: 28063765]
[40]
Ninomiya H, Katakami N, Sato I, et al. Association between subclinical atherosclerosis markers and the level of accumulated advanced glycation end-products in the skin of patients with diabetes. J Atheroscler Thromb 2018; 25(12): 1274-84.
[http://dx.doi.org/10.5551/jat.44859] [PMID: 29962379]
[41]
U.K. Prospective diabetes study 16: Overview of 6 years' therapy of type II diabetes: A progressive disease: U.K. Prospective Diabetes Study Group. Diabetes 1995; 44: 1249-58.
[http://dx.doi.org/10.2337/diab.44.11.1249] [PMID: 7589820]
[42]
Proksch E. Antilipemic drug-induced skin manifestations. Hautarzt 1995; 46(2): 76-80.
[http://dx.doi.org/10.1007/s001050050213] [PMID: 7706076]
[43]
Mullugeta Y, Chawla R, Kebede T, Worku Y. Dyslipidemia associated with poor glycemic control in type 2 diabetes mellitus and the protective effect of metformin supplementation. Indian J Clin Biochem 2012; 27(4): 363-9.
[http://dx.doi.org/10.1007/s12291-012-0225-8] [PMID: 24082461]