2-Methoxy-6-Acetyl-7-Methyljuglone: A Bioactive Phytochemical with Potential Pharmacological Activities

Page: [687 - 693] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Natural products have been the focus of biomedical and pharmaceutical research to develop new therapies in recent years. 2-methoxy-6-acetyl-7-methyljuglone (2-methoxystypandrone, MAM) a natural bioactive juglone derivative, is known to have various levels of pharmacotherapeutic efficacies as an anti-inflammatory, anticancer, antioxidant, antimicrobial, and anti-HIV activities. MAM fights cancer progression by inducing apoptosis, necroptosis and deregulating signaling pathways through H2O2-induced JNK/iNOS/NO and MAPK, ERK1/2 pathways, JNK activation, and the RIP1/RIP3 complex. In this review, we summarize the pharmacological importance of MAM in the field of drug discovery. Furthermore, this review not only emphasizes the medicinal properties of MAM, but also discusses its potential efficacy in future medicinal products.

Keywords: 2-Methoxy-6-acetyl-7-methyljuglone, antioxidant, anticancer, anti-inflammatory, antibacterial, MAPK.

Graphical Abstract

[1]
Gurib-Fakim, A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol. Aspects Med., 2006, 27(1), 1-93.
[http://dx.doi.org/10.1016/j.mam.2005.07.008] [PMID: 16105678]
[2]
Xie, T.; Song, S.; Li, S.; Ouyang, L.; Xia, L.; Huang, J. Review of natural product databases. Cell Prolif., 2015, 48(4), 398-404.
[http://dx.doi.org/10.1111/cpr.12190] [PMID: 26009974]
[3]
Jaradat, N.A.; Al-Ramahi, R.; Zaid, A.N.; Ayesh, O.I.; Eid, A.M. Ethnopharmacological survey of herbal remedies used for treatment of various types of cancer and their methods of preparations in the West Bank-Palestine. BMC Complement. Altern. Med., 2016, 16(1), 93.
[http://dx.doi.org/10.1186/s12906-016-1070-8] [PMID: 26955822]
[4]
Silver, B.V.; Blanchard, E.B. Biofeedback and relaxation training in the treatment of psychophysiological disorders: or are the machines really necessary? J. Behav. Med., 1978, 1(2), 217-239.
[http://dx.doi.org/10.1007/BF00846641] [PMID: 387967]
[5]
Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res. Int., 2013, 2013 379850
[http://dx.doi.org/10.1155/2013/379850] [PMID: 23984355]
[6]
Sarfraz, I.; Rasul, A.; Jabeen, F.; Younis, T.; Zahoor, M.K.; Arshad, M.; Ali, M. Fraxinus: a plant with versatile pharmacological and biological activities. Evid. Based Complement. Alternat. Med., 2017, 2017 4269868
[http://dx.doi.org/10.1155/2017/4269868] [PMID: 29279716]
[7]
Gullo, V.P.; McAlpine, J.; Lam, K.S.; Baker, D.; Petersen, F. Drug discovery from natural products. J. Ind. Microbiol. Biotechnol., 2006, 33(7), 523-531.
[http://dx.doi.org/10.1007/s10295-006-0107-2] [PMID: 16544162]
[8]
Guarrera, P.M. Traditional antihelmintic, antiparasitic and repellent uses of plants in Central Italy. J. Ethnopharmacol., 1999, 68(1-3), 183-192.
[http://dx.doi.org/10.1016/S0378-8741(99)00089-6] [PMID: 10624877]
[9]
Alaniia, M.; Shalashvili, K.; Sagareishvili, T.; Kavtaradze, N.; Sutiashvili, M. Study of antioxidant activity of phenolic compounds from some species of Georgian flora. Georgian Med. News, 2013, (222), 69-72.
[PMID: 24099817]
[10]
Son, M.; Lee, M.; Sung, G-H.; Lee, T.; Shin, Y.S.; Cho, H.; Lieberman, P.M.; Kang, H. Bioactive activities of natural products against herpesvirus infection. J. Microbiol., 2013, 51(5), 545-551.
[http://dx.doi.org/10.1007/s12275-013-3450-9] [PMID: 24173639]
[11]
Zhu, F.; Ma, X.H.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Zhang, C.L.; Tan, C.Y.; Chen, Y.Z.; Jiang, Y.Y. Drug discovery prospect from untapped species: indications from approved natural product drugs. PLoS One, 2012, 7(7) e39782
[http://dx.doi.org/10.1371/journal.pone.0039782] [PMID: 22808057]
[12]
Choudhary, M.I. Editorial for special issue of Fitoterapia. Fitoterapia, 2012, 83(8), 1299-1301.
[http://dx.doi.org/10.1016/j.fitote.2012.10.015] [PMID: 23200512]
[13]
Gezici, S.; Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents. Anticancer. Agents Med. Chem., 2019, 19(1), 101-111.
[http://dx.doi.org/10.2174/1871520619666181224121004] [PMID: 30582485]
[14]
Patocka, J.; Navratilova, Z.; Ovando, M. Biologically active compounds of Knotweed (Reynoutria spp.). Mil. Med. Sci. Lett., 2017, 86(1), 17-31.
[http://dx.doi.org/10.31482/mmsl.2017.004]
[15]
Peng, W.; Qin, R.; Li, X.; Zhou, H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. J. Ethnopharmacol., 2013, 148(3), 729-745.
[http://dx.doi.org/10.1016/j.jep.2013.05.007] [PMID: 23707210]
[16]
Khalil, A.A.K.; Park, W.S.; Kim, H.J.; Akter, K.M.; Ahn, M-J. Anti-helicobacter pylori compounds from Polygonum cuspidatum. Nat. Prod. Sci., 2016, 22(3), 220-224.
[http://dx.doi.org/10.20307/nps.2016.22.3.220]
[17]
Khalil, A.A.K.; Akter, K-M.; Kim, H-J.; Park, W.S.; Kang, D-M.; Koo, K.A.; Ahn, M-J. Comparative inner morphological and chemical studies on Reynoutria species in Korea. Plants (Basel), 2020, 9(2), 222.
[http://dx.doi.org/10.3390/plants9020222] [PMID: 32050420]
[18]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[19]
Bishayee, A.; Ahmed, S.; Brankov, N.; Perloff, M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci.: J. Virt. Libr., 2011, 16, 980.
[20]
Fulda, S. The mechanism of necroptosis in normal and cancer cells. Cancer Biol. Ther., 2013, 14(11), 999-1004.
[http://dx.doi.org/10.4161/cbt.26428] [PMID: 24025353]
[21]
Brown, J.C.; Winters-Stone, K.; Lee, A.; Schmitz, K.H. Cancer, physical activity, and exercise. Compr. Physiol., 2012, 2(4), 2775-2809.
[PMID: 23720265]
[22]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[23]
Bray, F.; Ren, J.S.; Masuyer, E.; Ferlay, J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer, 2013, 132(5), 1133-1145.
[http://dx.doi.org/10.1002/ijc.27711] [PMID: 22752881]
[24]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin., 2012, 62(1), 10-29.
[http://dx.doi.org/10.3322/caac.20138] [PMID: 22237781]
[25]
Cho, C-H.; Yu, J. From Inflammation to Cancer: Advances in Diagnosis and Therapy for Gastrointestinal and Hepatological Diseases; World Scientific: Singapore, 2012.
[http://dx.doi.org/10.1142/8117]
[26]
David, H. Rudolf Virchow and modern aspects of tumor pathology. Pathol. Res. Pract., 1988, 183(3), 356-364.
[http://dx.doi.org/10.1016/S0344-0338(88)80138-9] [PMID: 3047716]
[27]
Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: facts and fiction. Phytochemistry, 2007, 68(22-24), 2986-3008.
[http://dx.doi.org/10.1016/j.phytochem.2007.09.014] [PMID: 17976666]
[28]
Khan, M.; Maryam, A.; Qazi, J.I.; Ma, T. Targeting apoptosis and multiple signaling pathways with icariside II in cancer cells. Int. J. Biol. Sci., 2015, 11(9), 1100-1112.
[http://dx.doi.org/10.7150/ijbs.11595] [PMID: 26221076]
[29]
Pratheeshkumar, P.; Sreekala, C.; Zhang, Z.; Budhraja, A.; Ding, S.; Son, Y.-O.; Wang, X.; Hitron, A.; Hyun-Jung, K.; Wang, L. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer Agents Med. Chem.,, 2012, (12)10, 1159-1184.
[http://dx.doi.org/10.2174/187152012803833035] [PMID: 22583402]
[30]
Park, C-S.; Lee, Y-C.; Kim, J-D.; Kim, H-M.; Kim, C-H. Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component rasveratrol on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vascul. Pharmacol., 2004, 40(6), 279-284.
[http://dx.doi.org/10.1016/j.vph.2004.01.003] [PMID: 15063831]
[31]
Pereyra, C.E.; Dantas, R.F.; Ferreira, S.B.; Gomes, L.P.; Silva-Jr, F.P. The diverse mechanisms and anticancer potential of naphthoquinones. Cancer Cell Int., 2019, 19(1), 207.
[http://dx.doi.org/10.1186/s12935-019-0925-8] [PMID: 31388334]
[32]
Wu, H-Y.; Yang, F-L.; Li, L-H.; Rao, Y.K.; Ju, T-C.; Wong, W-T.; Hsieh, C-Y.; Pivkin, M.V.; Hua, K-F.; Wu, S-H. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci. Rep., 2018, 8(1), 17956.
[http://dx.doi.org/10.1038/s41598-018-36411-2] [PMID: 30560887]
[33]
Sun, W.; Bao, J.; Lin, W.; Gao, H.; Zhao, W.; Zhang, Q.; Leung, C-H.; Ma, D-L.; Lu, J.; Chen, X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM), a natural naphthoquinone, induces NO-dependent apoptosis and necroptosis by H2O2-dependent JNK activation in cancer cells. Free Radic. Biol. Med., 2016, 92, 61-77.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.01.014] [PMID: 26802903]
[34]
Sun, W.; Yu, J.; Gao, H.; Wu, X.; Wang, S.; Hou, Y.; Lu, J-J.; Chen, X. Inhibition of lung cancer by 2-methoxy-6-acetyl-7-methyljuglone through induction of necroptosis by targeting receptor-interacting protein 1. Antioxid. Redox Signal., 2019, 31(2), 93-108.
[http://dx.doi.org/10.1089/ars.2017.7376] [PMID: 30556404]
[35]
Niu, Y.; Yuan, R.; Gao, H.; Lu, J-J.; Kong, Q.; Chen, X. 2-Methoxy-6-Acetyl-7-Methyljuglone (MAM) induces iNOS/NO-mediated DNA damage response through activation of MAPKs pathways. Anticancer. Agents Med. Chem., 2018, 18(6), 903-913.
[http://dx.doi.org/10.2174/1871520618666180411111950] [PMID: 29637869]
[36]
Monteiro, H.P.; Rodrigues, E.G.; Amorim Reis, A.K.C.; Longo, L.S., Jr; Ogata, F.T.; Moretti, A.I.S.; da Costa, P.E.; Teodoro, A.C.S.; Toledo, M.S.; Stern, A. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: a redox signaling perspective. Nitric Oxide, 2019, 89, 1-13.
[http://dx.doi.org/10.1016/j.niox.2019.04.009] [PMID: 31009708]
[37]
Ray, P.D.; Huang, B-W.; Tsuji, Y. Reactive Oxygen Species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[38]
Chowdhury, A.A.; Chaudhuri, J.; Biswas, N.; Manna, A.; Chatterjee, S.; Mahato, S.K.; Chaudhuri, U.; Jaisankar, P.; Bandyopadhyay, S. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway. PLoS One, 2013, 8(9) e73672
[http://dx.doi.org/10.1371/journal.pone.0073672] [PMID: 24040019]
[39]
Sun, W.; Wu, X.; Gao, H.; Yu, J.; Zhao, W.; Lu, J-J.; Wang, J.; Du, G.; Chen, X. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic. Biol. Med., 2017, 108, 433-444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.010] [PMID: 28414098]
[40]
Nathan, C. Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest., 1997, 100(10), 2417-2423.
[http://dx.doi.org/10.1172/JCI119782] [PMID: 9366554]
[41]
Xu, W.; Liu, L.Z.; Loizidou, M.; Ahmed, M.; Charles, I.G. The role of nitric oxide in cancer. Cell Res., 2002, 12(5-6), 311-320.
[http://dx.doi.org/10.1038/sj.cr.7290133] [PMID: 12528889]
[42]
Yu, J.; Zhong, B.; Jin, L.; Hou, Y.; Ai, N.; Ge, W.; Li, L.; Liu, S.; Lu, J-J.; Chen, X. 2-Methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: Quinone oxidoreductase 1 (NQO1). Free Radic. Biol. Med., 2020, 152, 336-347.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.026] [PMID: 32234332]
[43]
Ross, D.; Siegel, D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol., 2004, 382, 115-144.
[http://dx.doi.org/10.1016/S0076-6879(04)82008-1] [PMID: 15047100]
[44]
Matthews, J.R.; Botting, C.H.; Panico, M.; Morris, H.R.; Hay, R.T. Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res., 1996, 24(12), 2236-2242.
[http://dx.doi.org/10.1093/nar/24.12.2236] [PMID: 8710491]
[45]
Li, Y.B.; Lin, Z.Q.; Zhang, Z.J.; Wang, M.W.; Zhang, H.; Zhang, Q.W.; Lee, S.M.Y.; Wang, Y.T.; Hoi, P.M. Protective, antioxidative and antiapoptotic effects of 2-methoxy-6-acetyl-7-methyljuglone from Polygonum cuspidatum in PC12 cells. Planta Med., 2011, 77(4), 354-361.
[http://dx.doi.org/10.1055/s-0030-1250385] [PMID: 20922651]
[46]
Alu, A.; Han, X.; Ma, X.; Wu, M.; Wei, Y.; Wei, X. The role of lysosome in regulated necrosis. Acta Pharm. Sin. B, 2020, 10(10), 1880-1903.
[http://dx.doi.org/10.1016/j.apsb.2020.07.003] [PMID: 33163342]
[47]
Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res., 2019, 29(5), 347-364.
[http://dx.doi.org/10.1038/s41422-019-0164-5] [PMID: 30948788]
[48]
Mohadjerani, M. Antioxidant activity and total phenolic content of Nerium oleander L. grown in North of Iran. Iran. J. Pharm. Res., 2012, 11(4), 1121-1126.
[PMID: 24250545]
[49]
Mesalam, A.; Khan, I.; Lee, K-L.; Song, S-H.; Chowdhury, M.M.R.; Uddin, Z.; Park, K.H.; Kong, I-K. 2-Methoxystypandrone improves in vitro-produced bovine embryo quality through inhibition of IKBKB. Theriogenology, 2017, 99, 10-20.
[http://dx.doi.org/10.1016/j.theriogenology.2017.05.012] [PMID: 28708489]
[50]
Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. A, 2004, 108(22), 4916-4922.
[http://dx.doi.org/10.1021/jp037247d]
[51]
Nishina, A.; Kubota, K.; Osawa, T. Antimicrobial components, trachrysone and 2-methoxystypandrone, in Rumex japonicus Houtt. J. Agric. Food Chem., 1993, 41(10), 1772-1775.
[http://dx.doi.org/10.1021/jf00034a047]
[52]
Khalil, A.A.K.; Park, W.S.; Lee, J.; Kim, H-J.; Akter, K-M.; Goo, Y-M.; Bae, J-Y.; Chun, M-S.; Kim, J-H.; Ahn, M-J. A new anti-Helicobacter pylori juglone from Reynoutria japonica. Arch. Pharm. Res., 2019, 42(6), 505-511.
[http://dx.doi.org/10.1007/s12272-019-01160-x] [PMID: 31073878]
[53]
Wang, J.; Cheng, Y.; Wu, R.; Jiang, D.; Bai, B.; Tan, D.; Yan, T.; Sun, X.; Zhang, Q.; Wu, Z. Antibacterial activity of juglone against Staphylococcus aureus: from apparent to proteomic. Int. J. Mol. Sci., 2016, 17(6), 965.
[http://dx.doi.org/10.3390/ijms17060965] [PMID: 27322260]
[54]
Wu, Y.; Antony, S.; Meitzler, J.L.; Doroshow, J.H. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett., 2014, 345(2), 164-173.
[http://dx.doi.org/10.1016/j.canlet.2013.08.014] [PMID: 23988267]
[55]
Kamp, D.W.; Shacter, E.; Weitzman, S.A. Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park), 2011, 25(5), 400-410.
[PMID: 21710835]
[56]
Shalapour, S.; Karin, M. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Invest., 2015, 125(9), 3347-3355.
[http://dx.doi.org/10.1172/JCI80007] [PMID: 26325032]
[57]
Han, J-H.; Koh, W.; Lee, H-J.; Lee, H-J.; Lee, E-O.; Lee, S.J.; Khil, J-H.; Kim, J.T.; Jeong, S-J.; Kim, S-H. Analgesic and anti-inflammatory effects of ethyl acetate fraction of Polygonum cuspidatum in experimental animals. Immunopharmacol. Immunotoxicol., 2012, 34(2), 191-195.
[http://dx.doi.org/10.3109/08923973.2011.590499] [PMID: 21711083]
[58]
Chern, C-M.; Wang, Y-H.; Liou, K-T.; Hou, Y-C.; Chen, C-C.; Shen, Y-C. 2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke. Biochem. Pharmacol., 2014, 87(3), 502-514.
[http://dx.doi.org/10.1016/j.bcp.2013.11.018] [PMID: 24342702]
[59]
Zhang, H.; Bai, L.; He, J.; Zhong, L.; Duan, X.; Ouyang, L.; Zhu, Y.; Wang, T.; Zhang, Y.; Shi, J. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur. J. Med. Chem., 2017, 141, 257-272.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.068] [PMID: 29031072]