Abstract
Brain ischemia, also known as ischemic stroke, occurs when there is a lack of blood supply
into the brain. When an ischemic insult appears, both neurons and glial cells can react in several
ways that will determine the severity and prognosis. This high heterogeneity of responses has been
a major obstacle in developing effective treatments or preventive methods for stroke. Although
white matter pathophysiology has not been deeply assessed in stroke, its remodelling can greatly
influence the clinical outcome and the disability degree. Oligodendrocytes, the unique cell type
implied in CNS myelination, are sensible to ischemic damage. Loss of myelin sheaths can compromise
axon survival, so new Oligodendrocyte Precursor Cells are required to restore brain function.
Stroke can, therefore, enhance oligodendrogenesis to regenerate those new oligodendrocytes that
will ensheath the damaged axons. Given that myelination is a highly complex process that requires
coordination of multiple pathways such as Sonic Hedgehog, RTKs or Wnt/β-catenin, we will analyse
new research highlighting their importance after brain ischemia. In addition, oligodendrocytes
are not isolated cells inside the brain, but rather form part of a dynamic environment of interactions
between neurons and glial cells. For this reason, we will put some context into how microglia and
astrocytes react against stroke and influence oligodendrogenesis to highlight the relevance of remyelination
in the ischemic brain. This will help to guide future studies to develop treatments focused
on potentiating the ability of the brain to repair the damage.
Keywords:
Cerebral ischemia, stroke, oligodendrocyte, oligodendrocyte precursor cell, remyelination, glial cells.
Graphical Abstract
[1]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
Circulation, 2019,
139(10), e56-e528.
[
http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID:
30700139]
[14]
Rock, K.L.; Kono, H.; Adriano, A.; Christina, S. The inflammatory response to cell death. Annu. Rev. Pathol. Dis., 2008, 3, 67-97.
[59]
Alvarez, J.I.; Dodelet-Devillers, A.; Kebir, H.; Ifergan, I.; Fabre, P.J.; Terouz, S.; Sabbagh, M.; Wosik, K.; Bourbonnière, L.; Bernard, M.; Van Horssen, J.; De Vries, H.E.; Charron, F.; Prat, A. The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science, 2011, 334(6063), 1727-1731.
[95]
Zhang, S.; Kim, B.; Zhu, X.; Gui, X.; Wang, Y.; Lan, Z.; Prabhu, P.; Fond, K.; Wang, A.; Guo, F. Glial type specific regulation of CNS angiogenesis by hifα-activated different signaling pathways. Nat. Commun., 2020, 11(1), 1-17.
[100]
Zhang, S.; Wang, Y.; Zhu, X.; Song, L.; Zhan, X.; Ma, E.; McDonough, J.; Fu, H.; Cambi, F.; Grinspan, J.; Guo, F. The wnt effector tcf7l2 promotes oligodendroglial differentiation by repressing autocrine bmp4-mediated signaling. J. Neurosci., 2021, 41(8), 1650-1664.
[149]
Preston, A.N.; Cervasio, D.A.; Laughlin, S.T. Visualizing the brain’s astrocytes, 1st; Elsevier Inc., 2019, p. 622.