Combinatorial Chemistry & High Throughput Screening

Author(s): Sharuti Mehta, Anil Kumar Sharma and Rajesh Kumar Singh*

DOI: 10.2174/1386207324666210310140611

Ethnobotany, Pharmacological Activities and Bioavailability Studies on “King of Bitters” (Kalmegh): A Review (2010-2020)

Page: [788 - 807] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Andrographis paniculata, commonly known as “Kalmegh”, is an annual herbaceous plant from the family Acanthaceae. The whole plant of A. paniculata has been explored for multiple pharmacological activities and is scientifically recognized by in-vivo and in-vitro studies. Various biotechnologically engineered techniques have been explored to enhance the bioavailability of this plant.

Objective: In this review, we aim to present comprehensive recent advances in ethnopharmacology, phytochemistry, specific pharmacology, safety and toxicology, and bioavailability of A. paniculata and its pure compounds. Possible directions for future research are also outlined in brief, which will encourage advance investigations on this plant.

Methods: Information on the recent updates of the present review is collected from different electronic scientific databases such as Science Direct, PubMed, Scopus, and Google Scholar. All the composed information is classified into different sections according to the objective of the paper.

Results: More than a hundred research and review papers have been studied and incorporated in the present manuscript. After a vast literature search on A. paniculata, we present a noteworthy report of various phytoconstituents present in the plant, which are accountable for the potential therapeutic properties of the plant. Forty-five of the studied articles gave general information about the introduction, ethnobotany, and traditional uses of the plant. Twenty-two papers enclosed information about the phytoconstituents present in different parts of A. paniculata and seventy-two papers briefly outlined the pharmacological activities like antioxidant, anti-dengue, anti-ulcerogenic, antifungal, some miscellaneous activities like activity against SARS-CoV-2, antidiarrhoeal. Nineteen studies highlighted the research work conducted by various researchers to increased the bioavailability of A. Paniculata and two studies reported the safety and toxicology of the plant.

Conclusion: This review incorporated the scientifically validated research work encompassing the ethnobotanical description of the subjected plant, phytochemical profile, various pharmacological activities, and recent approaches to enhance the bioavailability of active metabolites.

Keywords: Andrographis paniculata, King of Bitters, Kalmegh, phytochemistry, anti-dengue, antioxidant, antiulcerogenic, bioavailability.

Graphical Abstract

[1]
Hamilton, A.C. Medicinal plants, conservation and livelihoods. Biodivers. Conserv., 2004, 13(8), 1477-1517.
[http://dx.doi.org/10.1023/B:BIOC.0000021333.23413.42]
[2]
Thomson, W.A.R. Medicines from the Earth.Maidenhead; McGraw-Hill Book Co: United Kingdom, 1978.
[3]
Mahesh, B.; Satish, S. Antimicrobial activity of some important medicinal plant against plant and human pathogens. World J. Agric. Sci., 2008, 4, 839-843.
[4]
Singh, J.S. The biodiversity crisis: A multifaceted review. Curr. Sci., 2002, 82(6), 638-647.
[5]
Bamola, N.; Verma, P. Negi. C. A review on some traditional medicinal plants. Int. J. Life. Sci. Scienti. Res., 2018, 4, 1550-1556.
[6]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[7]
Izzo, A.A.; Hoon-Kim, S.; Radhakrishnan, R.; Williamson, E.M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother. Res., 2016, 30(5), 691-700.
[http://dx.doi.org/10.1002/ptr.5591] [PMID: 26887532]
[8]
Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer: Berlin, Germany, 2007.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[9]
Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants; Council of Scientific and Industrial Research: New Delhi, 1956.
[10]
Chua, L.S. Review on liver inflammation and antiinflammatory activity of Andrographis paniculata for hepatoprotection. Phytother. Res., 2014, 28(11), 1589-1598.
[http://dx.doi.org/10.1002/ptr.5193] [PMID: 25043965]
[11]
Sareer, O.; Ahmad, S.; Umar, S. Andrographis paniculata: a critical appraisal of extraction, isolation and quantification of andrographolide and other active constituents. Nat. Prod. Res., 2014, 28(23), 2081-2101.
[http://dx.doi.org/10.1080/14786419.2014.924004] [PMID: 24912126]
[12]
Hossain, M.S.; Urbi, Z.; Sule, A.; Hafizur Rahman, K.M. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. ScientificWorldJournal, 2014, 2014, 274905.
[http://dx.doi.org/10.1155/2014/274905] [PMID: 25950015]
[13]
Dai, Y.; Chen, S.R.; Chai, L.; Zhao, J.; Wang, Y.; Wang, Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit. Rev. Food Sci. Nutr., 2019, 59(sup1), S17-S29.
[http://dx.doi.org/10.1080/10408398.2018.1501657] [PMID: 30040451]
[14]
Sharma, V.K.; Diwan, R.K.; Saxena, R.C.; Shrivastava, P.N.; Saxena, R. Survey report of medicinal plant used in folk medicine in tribal areas of Pandhurna, District Chhindwara (Madhya Pradesh). Biomed. Pharmacol. J., 2010, 3, 403-408.
[15]
Anand, P. Uses of some threatened and potential ethnomedicinal plants among the tribals of Uttar Pradesh and Uttrakhand in India National Conference on Forest Biodiversity: Earth’s Living Treasure, http://www.upsbdb.org/pdf/Souvenir2011/12.pdf2011 22May;
[16]
Singh, A.; Singh, G.S.; Singh, P.K. Ethnopharmacological values of weeds in Eastern Uttar Pradesh, India. J. Med. Plants Res., 2012, 6, 4362-4367.
[17]
Lingaraju, D.P.; Sudarshana, M.S.; Rajashekar, N. Ethnopharmacological survey of traditional medicinal plants in tribal areas of Kodagu district, Karnataka, India. J. Pharm. Res., 2013, 6, 284-297.
[http://dx.doi.org/10.1016/j.jopr.2013.02.012]
[18]
Nagendrappa, P.B.; Naik, M.P.; Payyappallimana, U. Ethnobotanical survey of malaria prophylactic remedies in Odisha, India. J. Ethnopharmacol., 2013, 146(3), 768-772.
[http://dx.doi.org/10.1016/j.jep.2013.02.003] [PMID: 23434608]
[19]
Singh, A.; Singh, M.K.; Singh, R. Traditional medicinal flora of the District Buxar (Bihar, India). J. Pharmacogn. Phytochem, 2013, 2, 41-49.
[20]
Sinhababu, A.; Banerjee, A. Ethno-botanical Study of Medicinal Plants Used by Tribals of Bankura Districts, West Bengal, India. J. Med. Plants Stud, 2013, 1, 98-104.
[21]
Singh, P.; Maurya, S.K.; Nigam, G. An ethnomedicinal study of plants used for the the treatment of various skin problems in the Sidhi District of Madhya Pradesh, India. Biolife, 2014, 2, 880-884.
[22]
Kamble, T.D.; Sardesai, M.M. Lesser known ethabomedicinal plants of Hingoli District, Maharashtra, India. Int. J. Ethnobiol. Ethnomed, 2014, 1, 1-4.
[23]
Jiji, P. Endangered Plants and their uses of Sivasagar District, Assam, India. Int. Res. J. Biol. Sci., 2015, 4, 15-18.
[24]
Pani, M.; Nahak, G.; Sahu, R.K. Review on ethnomedicinal plants of Odisha for the treatment of malaria. Int. J. Pharmacogn. Phytochem. Res, 2015, 7, 156-165.
[25]
Kadir, M.F.; Karmoker, J.R.; Alam, M.R.; Jahan, S.R.; Mahbub, S.; Mia, M.M.K. Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in chittagong hill tracts, Bangladesh, for the treatment of snakebite. Evid. Based Complementary Altern. Med., 2015, 1-23.
[http://dx.doi.org/10.1155/2015/871675]
[26]
Sarkhel, S. Ethnomedicinal uses of some plants in the treatment of jaundice by tribal communities of Paschim Medinipur District, West Bengal, India. Med. Aromat. Plants, 2015, 6, 43-48.
[27]
Panda, T.; Mishra, N.; Pradhan, B.K. Folk knowledge on medicinal plants used for the treatment of skin diseases in Bhadrak District of Odisha, India. Med. Aromat. Plants, 2016, 5, 1-7.
[28]
Manna, S.S.; Mishra, S.P. Ethnomedicinal survey of plants used by tribal in Lalgarh forest range, W.B. India. J. Phytopharmacol., 2018, 7, 199-202.
[29]
Thokchom, A.D.; Talukdar, A.D.; Chingakham, B.S.; Singh, S. Ningthoujam; Choudhury, M.D. Traditional usage of ethnomedicinal plants in treating liver disorders at Manipur, North East India. Eur. Faslnamah-i Giyahan-i Daruyi, 2018, 23, 1-10.
[30]
Kondalkar, S.; Kondalkar, A.; Kumar, V.; Mangal, A.K.; Prakash, O. Weeds in Gwalior and nearby regions and their medicinal properties: A case study. J. Appl. Biol. Biotechnol., 2019, 7, 82-86.
[http://dx.doi.org/10.7324/JABB.2019.70215]
[31]
Sukumaran, S.; Sujin, R.M.; Geetha, V.S.; Jeeva, S. Ethnobotanical study of medicinal plants used by the Kani tribes of Pechiparai Hills, Western Ghats, India. Acta Ecol. Sin., 2020.
[http://dx.doi.org/10.1016/j.chnaes.2020.04.005]
[32]
Sani, Y.N.; Raj, S.D. Andrographis Paniculata Ness, An ancient herb to explore for its therapeutic benefit in Malaysia. J. Nat. Sci. Res, 2016, 6, 45-54.
[33]
Balu, S.; Alagesaboopathi, C. Nomenclatural confusion of some species of andrographis wall. Anc. Sci. Life, 1995, 14(3), 136-142.
[PMID: 22556690]
[34]
Niranjan, A.; Tewari, S.K.; Lehri, A. Biological activities of Kalmegh (Andrographis paniculataNees) and its active principles – a review. Indian J. Nat. Prod. Resour., 2010, 1, 125-135.
[35]
Zhang, X. WHO monograph on selected medicinal plants; World Health Organisation: Geneva, 2004, Vol. 2, p. 12.
[36]
Kabeeruddin, M. KitabulAdvia; Aligarh Barqi Press: Delhi, 1937, Vol. 2, p. 148.
[37]
Gabrielian, E.S.; Shukarian, A.K.; Goukasova, G.I.; Chandanian, G.L.; Panossian, A.G.; Wikman, G.; Wagner, H. A double blind, placebo-controlled study of Andrographis paniculata fixed combination Kan Jang in the treatment of acute upper respiratory tract infections including sinusitis. Phytomedicine, 2002, 9(7), 589-597.
[http://dx.doi.org/10.1078/094471102321616391] [PMID: 12487322]
[38]
Gupta, A.K.; Tandon, N., Eds.; Reviews on Indian Medicinal Plants; Indian Council of Medical Research: New Delhi, 2004, Vol. 2, pp. 283-298.
[39]
Chakraborty, M.K.; Bhattacharje, A. Some common ethnomedicinal uses for various diseases in Purulia District, West Bengal. Indian J. Tradit. Knowl., 2006, 5, 554-558.
[40]
Samy, R.P.; Thwin, M.M.; Gopalakrishnakone, P.; Ignacimuthu, S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, India. J. Ethnopharmacol., 2008, 115(2), 302-312.
[http://dx.doi.org/10.1016/j.jep.2007.10.006] [PMID: 18055146]
[41]
Kunwar, R.M.; Shrestha, K.P.; Bussmann, R.W. Traditional herbal medicine in far-west Nepal: a pharmacological appraisal. J. Ethnobiol. Ethnomed., 2010, 6, 35.
[http://dx.doi.org/10.1186/1746-4269-6-35] [PMID: 21144003]
[42]
Sharma, P.V.; Vijnana, D. Chaukhambha Bharati Academy Varanasi, 2011, 2, 544-546.
[43]
Joselin, J.; Jeeva, S. Andrographis paniculata: a review of its traditional uses, phytochemistry and pharmacology. Med. Aromat. Plants, 2014, 3, 1-15.
[44]
Kabir, M.H.; Hasan, N.; Rahman, M.M.; Rahman, M.A.; Khan, J.A.; Hoque, N.T.; Bhuiyan, M.R.; Mou, S.M.; Jahan, R.; Rahmatullah, M. A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J. Ethnobiol. Ethnomed., 2014, 10, 19.
[http://dx.doi.org/10.1186/1746-4269-10-19] [PMID: 24502444]
[45]
Zahoor, M.; Yousaf, Z.; Aqsa, T.; Haroon, M.; Saleh, N.; Aftab, A.; Javed, S.; Qadeer, M.; Ramazan, H. An ethnopharmacological evaluation of Navapind and Shahpur Virkanin district Sheikupura, Pakistan for their herbal medicines. J. Ethnobiol. Ethnomed., 2017, 13(1), 27.
[http://dx.doi.org/10.1186/s13002-017-0151-1] [PMID: 28482859]
[46]
Chao, W.W.; Lin, B.F. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin. Med., 2010, 5, 17.
[http://dx.doi.org/10.1186/1749-8546-5-17] [PMID: 20465823]
[47]
Xu, C.; Chou, G.X.; Wang, C.H.; Wang, Z.T. Rare noriridoids from the roots of Andrographis paniculata. Phytochemistry, 2012, 77, 275-279.
[http://dx.doi.org/10.1016/j.phytochem.2011.12.020] [PMID: 22342031]
[48]
Pholphana, N.; Rangkadilok, N.; Thongnest, S.; Ruchirawat, S.; Ruchirawat, M.; Satayavivad, J. Determination and variation of three active diterpenoids in Andrographis paniculata (Burm.f.). Nees. Phytochem. Anal., 2004, 15(6), 365-371.
[http://dx.doi.org/10.1002/pca.789] [PMID: 15595451]
[49]
Kulyal, P.; Tiwari, U.K.; Shukla, A.; Gaur, A.K. Chemical constituents isolated from Andrographis paniculata. Indian J. Chem., 2010, 49, 356-359.
[50]
Das, D.; Bandyopadhyay, M. Novel approaches towards over-production of andrographolide in vitro seedling cultures of Andrographis paniculata. S. Afr. J. Bot., 2020, 128, 77-86.
[http://dx.doi.org/10.1016/j.sajb.2019.10.015]
[51]
Wu, T.S.; Chern, H.J.; Damu, A.G.; Kuo, P.C.; Su, C.R.; Lee, E.J.; Teng, C.M. Flavonoids and ent-labdane diterpenoids from Andrographis paniculata and their antiplatelet aggregatory and vasorelaxing effects. J. Asian Nat. Prod. Res., 2008, 10(1-2), 17-24.
[http://dx.doi.org/10.1080/10286020701273627] [PMID: 18058376]
[52]
Sivakumar, V.; Rajeshkumar, S. Protective effect of Andrographis paniculata on hyperglycemic mediated oxidative damage in renal tissues of diabetic rats. J. Phytopharmacol., 2015, 4, 287-294.
[53]
Wang, G.Y.; Wen, T.; Liu, F.F. Two new diterpenoid lactones isolated from Andrographis paniculata. Chin. J. Nat. Med., 2017, 15, 6458-6462.
[54]
Matsuda, T.; Kuroyanagi, M.; Sugiyama, S.; Umehara, K.; Ueno, A.; Nishi, K. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem. Pharm. Bull. (Tokyo), 1994, 42(6), 1216-1225.
[http://dx.doi.org/10.1248/cpb.42.1216] [PMID: 8069972]
[55]
Shen, Y.H.; Li, R.T.; Xiao, W.L.; Xu, G.; Lin, Z.W.; Zhao, Q.S.; Sun, H.D. ent-Labdane diterpenoids from Andrographis paniculata. J. Nat. Prod., 2006, 69(3), 319-322.
[http://dx.doi.org/10.1021/np050160u] [PMID: 16562826]
[56]
Wang, G.C.; Wang, Y.; Williams, I.D.; Sung, H.H.Y.; Zhang, X.Q.; Zhang, D.M.; Jiang, R.W.; Yao, X.S.; Ye, W.C. Andrographolactone, a unique diterpene from Andrographis paniculata. Tetrahedron Lett., 2009, 50(34), 4824-4826.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.097]
[57]
Zou, Q.Y.; Li, N.; Dan, C. A new ent-labdane diterpenoid from Andrographis paniculata. Chin. Chem. Lett., 2010, 21(9), 1091-1093.
[58]
Wang, C.H.; Li, W.; Qiu, R.X.; Jiang, M.M.; Li, G.Q. A new diterpenoid from the aerial parts of Andrographis paniculata. Nat. Prod. Commun., 2014, 9(1), 13-14.
[http://dx.doi.org/10.1177/1934578X1400900105] [PMID: 24660450]
[59]
Gan, L.; Zheng, Y.; Deng, L.; Sun, P.; Ye, J.; Wei, X.; Liu, F.; Yu, L.; Ye, W.; Fan, C.; Liu, J.; Zhang, W. Diterpenoid Lactones with Anti-Inflammatory Effects from the Aerial Parts of Andrographis paniculata. Molecules, 2019, 24(15), 2726.
[http://dx.doi.org/10.3390/molecules24152726] [PMID: 31357563]
[60]
Hanh, T.T.H.; My, N.T.T.; Cham, P.T.; Quang, T.H.; Cuong, N.X.; Huong, T.T.; Nam, N.H.; Minh, C.V. Diterpenoids and Flavonoids from Andrographis paniculata. Chem. Pharm. Bull. (Tokyo), 2020, 68(1), 96-99.
[http://dx.doi.org/10.1248/cpb.c19-00662] [PMID: 31902905]
[61]
My, N.T.T.; Hanh, T.T.H.; Cham, P.T.; Cuong, N.X.; Huong, T.H.; Quang, T.H.; Nam, N.H.; Minh, C.V. Andropaniosides A and B, two new ent-labdane diterpenoid glucosides from Andrographis paniculata. Phytochem. Lett., 2020, 35, 37-40.
[http://dx.doi.org/10.1016/j.phytol.2019.10.004]
[62]
Sun, C.P.; Yang, Z.J.; Zhao, W.Y.; Zhang, R.Y.; Li, H.; Chen, L.X. A novel 15-spiro diterpenoid dimer from Andrographis paniculata with inhibitory potential against human carboxylesterase 2. Bioorg. Chem., 2020, 97, 103680.
[http://dx.doi.org/10.1016/j.bioorg.2020.103680] [PMID: 32120078]
[63]
Wen, Q.; Jin, X.; Lu, Y.; Chen, D.F. Anticomplement ent-labdane diterpenoids from the aerial parts of Andrographis paniculata. Fitoterapia, 2020, 142, 104528.
[http://dx.doi.org/10.1016/j.fitote.2020.104528] [PMID: 32114038]
[64]
Pramanick, S.; Banerjee, S.; Achari, B. Andropanolide and isoandrographolide, minor diterpenoids from Andrographis paniculata: Structure and X-ray Crystallographic analysis. J. Nat. Prod., 2006, 69, 403-405.
[65]
Shalini, V.B.; Narayanan, J.S. Characterization studies on medicinal plant of Andrographis paniculata (NEES). J Med. Plants Stud., 2015, 3, 96-102.
[66]
Dua, V.K.; Ojha, V.P.; Roy, R.; Joshi, B.C.; Valecha, N.; Devi, C.U.; Bhatnagar, M.C.; Sharma, V.P.; Subbarao, S.K. Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. J. Ethnopharmacol., 2004, 95(2-3), 247-251.
[http://dx.doi.org/10.1016/j.jep.2004.07.008] [PMID: 15507344]
[67]
Adeyeye, A.; Akinnuoye, G.A.; Akinyode, O.A. Proximate composition and fatty acid profile of Seeds of Andrographis paniculata. American J. Food. Sci. Nut. Res., 2018, 5, 71-75.
[68]
Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2017, 2525967.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[69]
Tan, B.L.; Norhaizan, M.E.; Liew, W.P.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A mutual interplay in age-related diseases. Front. Pharmacol., 2018, 9, 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162] [PMID: 30405405]
[70]
Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem., 2010, 4, 142-151.
[71]
Ricordi, C.; Garcia-Contreras, M.; Farnetti, S. Diet and inflammation: possible effects on immunity, chronic diseases, and life span. J. Am. Coll. Nutr., 2015, 34(Suppl. 1), 10-13.
[http://dx.doi.org/10.1080/07315724.2015.1080101] [PMID: 26400428]
[72]
Tanwer, B.S.; Choudhary, R.; Vijayvergia, R. In-vivo and in-vitro comparative study of primary metabolites and antioxidant activity of Andrographis paniculata. J. Chem. Pharm. Res., 2010, 2, 489-495.
[73]
Sharma, M.; Joshi, S. Comparison of anti-oxidant activity of Andrographis paniculata and Tinospora cordifolia leaves. J. Curr. Chem. Pharm. Sci., 2011, 1, 1-8.
[74]
Praveen, N.; Naik, P.M.; Nayeem, A. Polyphenol composition and antioxidant activity of Andrographis paniculataL. Nees. Mapana J. Sci., 2014, 13, 33-46.
[75]
Salleh, L.D.; Hartati, H.; Jamaludin, R. Antioxidant activity and total phenolic contents in methanol extracts from Swietenia Mahagoni and Andrographis Paniculata. JurnalTeknologi (Sciences & Engineering), 2014, 69, 51-53.
[76]
Sundaramoorthy, S.; Rastogi, A.; Sathiavelu, M.; Arunachalam, S. A detailed analysis of the antioxidant activity of the medicinal plant Andrographis paniculata. Int. J. Drug Dev. Res., 2014, 6, 231-238.
[77]
Bajpai, V.K.; Agrawal, P.; Park, Y.H. Phytochemicals, antioxidant and anti-lipid peroxidation activities of ethanolic extract of a medicinal plant, Andrographis paniculata. J. Food Biochem., 2014, 38, 1-14.
[http://dx.doi.org/10.1111/jfbc.12092]
[78]
Bhansali, S.; Bhishma, V.; Patil, S. Phytochemical screening and measurement of antioxidant activity from Andrographis paniculata. Int. J. Innov. Res. Sci. Eng. Technol., 2018, 7, 9022-9026.
[79]
Rao, P.; Rathod, V.K. Rapid extraction of andrographolide from Andrographis paniculata Nees by three phase partitioning and determination of its antioxidant activity. Biocatal. Agric. Biotechnol., 2015, 4, 586-593.
[http://dx.doi.org/10.1016/j.bcab.2015.08.016]
[80]
Rathod, V.; Rao, P. Effect of three phase extraction with ultrasound on recovery and antioxidant activity of Andrographis paniculata. Journal of Biologically Active Products from Nature., 2015, 5, 264-275.
[http://dx.doi.org/10.1080/22311866.2015.1102081]
[81]
Tan, W.S.D.; Liao, W.; Peh, H.Y.; Vila, M.; Dong, J.; Shen, H.M.; Wong, W.S.F. Andrographolide simultaneously augments Nrf2 antioxidant defense and facilitates autophagic flux blockade in cigarette smoke-exposed human bronchial epithelial cells. Toxicol. Appl. Pharmacol., 2018, 360, 120-130.
[http://dx.doi.org/10.1016/j.taap.2018.10.005] [PMID: 30291937]
[82]
Yan, H.; Huang, Z.; Bai, Q.; Sheng, Y.; Hao, Z.; Wang, Z.; Ji, L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology, 2018, 396-397, 1-12.
[http://dx.doi.org/10.1016/j.tox.2018.01.007] [PMID: 29355602]
[83]
Maity, G.N.; Maity, P.; Dasgupta, A.; Acharya, K.; Dalai, S.; Mondal, S. Structural and antioxidant studies of a new arabinoxylan from green stem Andrographis paniculata (Kalmegh). Carbohydr. Polym., 2019, 212, 297-303.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.051] [PMID: 30832860]
[84]
Luo, S.; Li, H.; Liu, J.; Xie, X.; Wan, Z.; Wang, Y.; Zhao, Z.; Wu, X.; Li, X.; Yang, M.; Li, X. Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund’s adjuvant-induced arthritis. Chem. Biol. Interact., 2020, 319, 108984.
[http://dx.doi.org/10.1016/j.cbi.2020.108984] [PMID: 32061742]
[85]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[86]
Kumar, S.; Thakur, K.; Sharma, B.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Recent advances in the vaccine development for the treatment of emerging infectious diseases. Indian J. Pharm. Edu. Res., 2019, 53, 343-354.
[http://dx.doi.org/10.5530/ijper.53.3.68]
[87]
Ling, A.P.K.; Khoo, B.F.; Seah, C.H. Inhibitory activities of methanol extracts of Andrographis paniculata and Ocimum sanctum against Dengue-1 Virus. International Conference on Biological, Environment and Food Engineering, Bali, Indonesia2014. pp. August;4-5.
[88]
Edwin, E.S.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Thanigaivel, A.; Ponsankar, A.; Pradeepa, V.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Abdel-Megeed, A.; Duraipandiyan, V.; Al-Dhabi, N.A. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop., 2016, 163, 167-178.
[http://dx.doi.org/10.1016/j.actatropica.2016.07.009] [PMID: 27443607]
[89]
Panraksa, P.; Ramphan, S.; Khongwichit, S.; Smith, D.R. Activity of andrographolide against dengue virus. Antiviral Res., 2017, 139, 69-78.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.014] [PMID: 28034742]
[90]
Ramalingam, S.; Karupannan, S.; Padmanaban, P.; Vijayan, S.; Sheriff, K.; Palani, G.; Krishnasamy, K.K. Anti-dengue activity of Andrographis paniculata extracts and quantification of dengue viral inhibition by SYBR green reverse transcription polymerase chain reaction. Ayu, 2018, 39(2), 87-91.
[http://dx.doi.org/10.4103/ayu.AYU_144_17] [PMID: 30783363]
[91]
Paemanee, A.; Hitakarun, A.; Wintachai, P.; Roytrakul, S.; Smith, D.R. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed. Pharmacother., 2019, 109, 322-332.
[http://dx.doi.org/10.1016/j.biopha.2018.10.054] [PMID: 30396090]
[92]
Panneerselvam, S.; Arumugam, G. A biochemical study on the gastroprotective effect of hydroalcoholic extract of Andrographis paniculata in rats. Indian J. Pharmacol., 2011, 43(4), 402-408.
[http://dx.doi.org/10.4103/0253-7613.83110] [PMID: 21844994]
[93]
Sahoo, S.K.; Sahoo, H.B.; Priyadarshini, D.; Soundarya, G.; Kumar, C.K.; Rani, K.U. Antiulcer activity of ethanolic extract of Salvadora indica (w.) leaves on albino rats. J. Clin. Diagn. Res., 2016, 10(9), FF07-FF10.
[http://dx.doi.org/10.7860/JCDR/2016/20384.8470] [PMID: 27790462]
[94]
Barros, M.P.; Lemos, M.; Maistro, E.L.; Leite, M.F.; Sousa, J.P.B.; Bastos, J.K.; Andrade, S.F. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J. Ethnopharmacol., 2008, 120(3), 372-377.
[http://dx.doi.org/10.1016/j.jep.2008.09.015] [PMID: 18930797]
[95]
Vimala, G.; Shoba, F.G. A review on antiulcer activity of few indian medicinal plants. Int. J. Microbiol., 2014, 1-14.519590.
[96]
Jainu, M.; Devi, C.S. Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: possible mechanism for the inhibition of acid formation. J. Ethnopharmacol., 2006, 104(1-2), 156-163.
[http://dx.doi.org/10.1016/j.jep.2005.08.064] [PMID: 16202548]
[97]
Saranya, P.; Geetha, A. Antiulcer activity of Andrographis paniculata (Burm.f.) wall. against cysteamine-induced duodenal ulcer in rats. Indian J. Exp. Biol., 2011, 49(7), 525-533.
[PMID: 21800503]
[98]
Sandborn, W.J.; Targan, S.R.; Byers, V.S.; Rutty, D.A.; Mu, H.; Zhang, X.; Tang, T. Andrographis paniculata extract (HMPL-004) for active ulcerative colitis. Am. J. Gastroenterol., 2013, 108(1), 90-98.
[http://dx.doi.org/10.1038/ajg.2012.340] [PMID: 23044768]
[99]
Shoaib, A.; Tarique, M.; Khushtar, M.; Siddiqui, H.H. Antiulcerogenic activity of hydromethanolic extract of Andrographis paniculata in Indomethacin and Indomethacin plus pylorus ligation induced gastric ulcer in rats. Asian J. Biomed. Pharm. Sci., 2014, 4, 8-15.
[http://dx.doi.org/10.15272/ajbps.v4i39.635]
[100]
Liu, W.; Guo, W.; Guo, L.; Gu, Y.; Cai, P.; Xie, N.; Yang, X.; Shu, Y.; Wu, X.; Sun, Y.; Xu, Q. Andrographolide sulfonate ameliorates experimental colitis in mice by inhibiting Th1/Th17 response. Int. Immunopharmacol., 2014, 20(2), 337-345.
[http://dx.doi.org/10.1016/j.intimp.2014.03.015] [PMID: 24704625]
[101]
Yang, Y.; Yan, H.; Jing, M.; Zhang, Z.; Zhang, G.; Sun, Y.; Shan, L.; Yu, P.; Wang, Y.; Xu, L. Andrographolide derivative AL-1 ameliorates TNBS-induced colitis in mice: involvement of NF-кB and PPAR-γ signaling pathways. Sci. Rep., 2016, 6, 29716.
[http://dx.doi.org/10.1038/srep29716] [PMID: 27435110]
[102]
Zhu, Q.; Zheng, P.; Chen, X.; Zhou, F.; He, Q.; Yang, Y. Andrographolide presents therapeutic effect on ulcerative colitis through the inhibition of IL-23/IL-17 axis. Am. J. Transl. Res., 2018, 10(2), 465-473.
[PMID: 29511440]
[103]
Zhu, Q.; Zheng, P.; Zhou, J.; Chen, X.; Feng, Y.; Wang, W.; Zhou, F.; He, Q. Andrographolide affects Th1/Th2/Th17 responses of peripheral blood mononuclear cells from ulcerative colitis patients. Mol. Med. Rep., 2018, 18(1), 622-626.
[http://dx.doi.org/10.3892/mmr.2018.8992] [PMID: 29749556]
[104]
Gao, Z.; Yu, C.; Liang, H.; Wang, X.; Liu, Y.; Li, X.; Ji, K.; Xu, H.; Yang, M.; Liu, K.; Qi, D.; Fan, H. Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Involvement of NF-κB and MAPK signalling pathways. Int. Immunopharmacol., 2018, 57, 82-90.
[http://dx.doi.org/10.1016/j.intimp.2018.02.012] [PMID: 29475099]
[105]
Jing, M.; Wang, Y.; Xu, L. Andrographolide Derivative AL-1 ameliorates dextran sodium sulfate-induced murine colitis by inhibiting NF-κB and MAPK signaling pathways. Oxid. Med. Cell. Longev., 2019, 2019, 6138723.
[http://dx.doi.org/10.1155/2019/6138723] [PMID: 31687082]
[106]
Zhang, L.; Cao, N.; Wang, Y.; Wang, Y.; Wu, C.; Cheng, X.; Wang, C. Improvement of oxazolone-induced ulcerative colitis in rats using andrographolide. Molecules, 2019, 25(1), 76.
[http://dx.doi.org/10.3390/molecules25010076] [PMID: 31878303]
[107]
Berman, J.; Krysan, D.J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol., 2020, 18(6), 319-331.
[http://dx.doi.org/10.1038/s41579-019-0322-2] [PMID: 32047294]
[108]
Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect. Dis., 2017, 17(12), e383-e392.
[http://dx.doi.org/10.1016/S1473-3099(17)30316-X] [PMID: 28774698]
[109]
Fostel, J.M.; Lartey, P.A. Emerging novel antifungal agents. Drug Discov. Today, 2000, 5(1), 25-32.
[http://dx.doi.org/10.1016/S1359-6446(99)01430-0] [PMID: 10637546]
[110]
Ahmad, M.S.; Ahmad, S.; Arshad, M.; Afzal, M. Andrographia paniculata a Miracle Herbs for cancer the treatment: In vivo and in vitro studies against Aflatoxin B1 Toxicity. Egypt. J. Med. Hum. Genet., 2014, 15, 163-171.
[http://dx.doi.org/10.1016/j.ejmhg.2013.12.006]
[111]
Donadu, M.G.; Usai, D.; Marchetti, M.; Usai, M.; Mazzarello, V.; Montesu, M.A.; Delogu, G.; Zanetti, S.; Molicotti, P. Antifungal activity of oil macerates of north Sardinia plants against Candidia species isolated from clinical patients of cadidiasis. Nat. Prod. Res., 2019, 1-5.
[http://dx.doi.org/10.1080/14786419.2018.1557175] [PMID: 30676066]
[112]
Fortes, T.O.; Alviano, D.S.; Tupinambá, G.; Padrón, T.S.; Antoniolli, A.R.; Alviano, C.S.; Seldin, L. Production of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasiliensis. Microbiol. Res., 2008, 163(2), 200-207.
[http://dx.doi.org/10.1016/j.micres.2006.05.003] [PMID: 16790336]
[113]
Mathur, A.; Singh, R.; Yousuf, S.; Bhardwaj, A.; Verma, S.K.; Babu, P.; Gupta, V.; Prasad, G.B.K.S.; Dua, V.K. Antifungal activity of some plant extracts against Clinical Pathogens. Adv. Appl. Sci. Res., 2011, 2, 260-264.
[114]
Sule, A.; Ahmed, Q.U.; Latip, J.; Samah, O.A.; Omar, M.N.; Umar, A.; Dogarai, B.B. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. Pharm. Biol., 2012, 50(7), 850-856.
[http://dx.doi.org/10.3109/13880209.2011.641021] [PMID: 22587518]
[115]
Rajalakshmi, G.; Aruna, D.B.; Bhuvaneswari, R.S. Prophylactic effect of Andrographis paniculata extracts against fungal species. J. App. Pharm. Sci., 2012, 2
[116]
Nidiry, E.S.; Ganeshan, G.; Lokesha, A.N. Antifungal activity of the extract of Andrographis paniculataand andrographolide. J. Pharmacog. Phytochem., 2015, 4, 8-10.
[117]
Kushram, A.; Mir, S.A. Antifungal activity of andrographolide compound extracted from Andrographis paniculata. Int. Res. J. Pharm., 2017, 8, 120-122.
[http://dx.doi.org/10.7897/2230-8407.0811229]
[118]
Gurupriya, S.; Cathrine, L. Antimicrobial activity of Andrographis paniculata stem extracts. Int. J. Sci. Eng. Res., 2016, 7, 105-113.
[119]
Dedhia, J.; Mukharjee, E.; Luke, A.M.; Mathew, S.; Pawar, A.M. Efficacy of Andrographis paniculata compared to Azadirachta indica, Curcuma longa, and sodium hypochlorite when used as root canal irrigants against Candida albicans and Staphylococcus aureus: An in vitro antimicrobial study. J. Conserv. Dent., 2018, 21(6), 642-645.
[http://dx.doi.org/10.4103/JCD.JCD_118_18] [PMID: 30546211]
[120]
Gupta, Y.K.; Peshin, S.S. Do herbal medicines have potential for managing snake bite envenomation? Toxicol. Int., 2012, 19(2), 89-99.
[http://dx.doi.org/10.4103/0971-6580.97194] [PMID: 22778503]
[121]
Nayak, A.G.; Ahammad, J.; Kumar, N.; Shenoy, S.; Roche, M. Can the methanolic extract of Andrographis paniculata be used as a supplement to anti-snake venom to normalize hemostatic parameters: A thromboelastographic study. J. Ethnopharmacol., 2020, 252, 112480.
[http://dx.doi.org/10.1016/j.jep.2019.112480] [PMID: 31857127]
[122]
Soares, A.M.; Ticli, F.K.; Marcussi, S.; Lourenço, M.V.; Januário, A.H.; Sampaio, S.V.; Giglio, J.R.; Lomonte, B.; Pereira, P.S. Medicinal plants with inhibitory properties against snake venoms. Curr. Med. Chem., 2005, 12(22), 2625-2641.
[http://dx.doi.org/10.2174/092986705774370655] [PMID: 16248818]
[123]
Santosh, R.F.; Shivaji, P.G. Preliminary screening of herbal plant extract for anti-venom activity against common sea snake (Enhydrinaschistosa) poisioning. Pharmacogn. Mag., 2004, 16, 56-60.
[124]
Kumarapppan, C.; Jaswanth, A.; Kumarasunderi, K. Antihaemolytic and snake venom neutralizing effect of some Indian medicinal plants. Asian Pac. J. Trop. Med., 2011, 4(9), 743-747.
[http://dx.doi.org/10.1016/S1995-7645(11)60185-5] [PMID: 21967700]
[125]
Kadiyala, G.; Kadali, R.; Raj, M.; Kumar, D.; Muthuvelan, B. The neutralization effect of methanol extract of Andrographis paniculata on Indian cobra Najanaja snake venom. J. Pharm. Res., 2011, 4, 1010-1012.
[126]
Govindarajan, M. Evaluation of Andrographis paniculata Burm.f. (Family:Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera:Culicidae). Asian Pac. J. Trop. Med., 2011, 4(3), 176-181.
[http://dx.doi.org/10.1016/S1995-7645(11)60064-3] [PMID: 21771448]
[127]
Sheeja, B.D.; Sindhu, D.; Ebanasar, J. Larvicidal activity of Andrographis paniculata (Burm.f) Nees against Culex quinquefasciatus Say (Insecta: Diptera-Culicidae), a filarial vector. Asian Pac. J. Trop. Dis., 2012, 2, 574-578.
[128]
Jeyasankar, A.; Ramar, G. Larvicidal activity of Andrographis paniculata (Acanthaceae) against important human vector mosquitoes (Diptera: Culicidae). Int. J. Adv. Res. Biol. Sci., 2015, 2, 156-160.
[129]
Banerjee, T.; Singh, A.; Kumar, S.; Dhanani, T.; Gajbhiye, N.A.; Koley, T.K.; Maurya, A.; Filgona, J. Ovicidal and larvicidal effects of extracts from leaves of Andrographis paniculata (Burm. f.) Wall.ex Nees against field isolates of human hookworm (Ancylostoma duodenale). J. Ethnopharmacol., 2019, 235, 489-500.
[http://dx.doi.org/10.1016/j.jep.2019.02.021] [PMID: 30763693]
[130]
Snyder, J.D.; Merson, M.H. The magnitude of the global problem of acute diarrhoeal disease: a review of active surveillance data. Bull. World Health Organ., 1982, 60(4), 605-613.
[PMID: 6982783]
[131]
Gupta, S.; Choudhry, M.A.; Yadava, J.N.S.; Srivastava, V.; Tandon, J.S. Antidiarrhoeal activity of diterpenes of Andrographis paniculata (Kal-Megh) against Escherichia coli Enterotoxin in in vivo Models. Int. J. Crude Drug Res., 1990, 28, 273-283.
[http://dx.doi.org/10.3109/13880209009082833]
[132]
Ukpanukpong, R.U.; Bassey, S.O.; Akindahunsi, D.O.; Omang, W.A.; Ugor, J.A. Antidirrheal and antihepatic effect of Andrographis paniculata leaf extract on castor oil induced diarrhea in wistar rats. Pharm. Chem. J., 2018, 5, 62-76.
[133]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for covid-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[134]
Cheng, V.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev., 2007, 20(4), 660-694.
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
[135]
Murugan, N.A.; Pandian, C.J.; Jeyakanthan, J. Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. J. Biomol. Struct. Dyn., 2020, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1777901] [PMID: 32543978]
[136]
Sukardiman, M.S.; Ervina, M.; Fadhil Pratama, M.R.; Poerwono, H.; Siswodihardjo, S. The coronavirus disease 2019 main protease inhibitor from Andrographis paniculata (Burm. f). Ness. J. Adv. Pharm. Technol. Res., 2020, 11(4), 157-162.
[http://dx.doi.org/10.4103/japtr.JAPTR_84_20] [PMID: 33425697]
[137]
Rajagopal, K.; Varakumar, P.; Baliwada, A.; Byran, G. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach. Futur J Pharm Sci, 2020, 6(1), 104.
[http://dx.doi.org/10.1186/s43094-020-00126-x] [PMID: 33215042]
[138]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J. Biomol. Struct. Dyn., 2020, 1-7.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[139]
Shi, T.H.; Huang, Y.L.; Chen, C.C.; Pi, W.C.; Hsu, Y.L.; Lo, L.C.; Chen, W.Y.; Fu, S.L.; Lin, C.H. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem. Biophys. Res. Commun., 2020, 533(3), 467-473.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.086] [PMID: 32977949]
[140]
Casamonti, M.; Risaliti, L.; Vanti, G.; Piazzini, V.; Bergonzi, M.C.; Bilia, A.R. Andrographolide loaded in micro- and nano-formulations: Improved bioavailability, target-tissue distribution, and efficacy of the “King of Bitters”. Engineering, 2019, 5, 69-75.
[http://dx.doi.org/10.1016/j.eng.2018.12.004]
[141]
Maiti, K.; Mukherjee, K.; Murugan, V.; Saha, B.P.; Mukherjee, P.K. Enhancing bioavailability and hepatoprotective activity of andrographolide from Andrographis paniculata, a well-known medicinal food, through its herbosome. J. Sci. Food Agric., 2010, 90(1), 43-51.
[http://dx.doi.org/10.1002/jsfa.3777] [PMID: 20355010]
[142]
Yang, T.; Sheng, H.H.; Feng, N.P.; Wei, H.; Wang, Z.T.; Wang, C.H. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J. Pharm. Sci., 2013, 102(12), 4414-4425.
[http://dx.doi.org/10.1002/jps.23758] [PMID: 24166599]
[143]
Parveen, R.; Ahmad, F.J.; Iqbal, Z.; Samim, M.; Ahmad, S. Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2014, 40(9), 1206-1212.
[http://dx.doi.org/10.3109/03639045.2013.810636] [PMID: 23826860]
[144]
Xu, J.; Ma, Y.; Xie, Y.; Chen, Y.; Liu, Y.; Yue, P.; Yang, M. Design and evaluation of novel solid self-nanodispersion delivery system for andrographolide. AAPS PharmSciTech, 2017, 18(5), 1572-1584.
[http://dx.doi.org/10.1208/s12249-016-0627-7] [PMID: 27620195]
[145]
Chen, Y.; Liu, Y.; Xu, J.; Xie, J.; Ma, Y.; Yue, P.; Zheng, Q.; Yang, M. Design and evaluation of nanocomposite microparticles to enhance dissolution and oral bioavailability of andrographolide. Powder Technol., 2018, 323, 219-229.
[http://dx.doi.org/10.1016/j.powtec.2017.10.010]
[146]
Syukri, Y.; Martien, R.; Lukitaningsih, E.; Nugroho, A.E. Novel self-nano emulsifying drug delivery system (SNEDDS) of andrographolide isolated from Andrographis paniculata Nees: Characterization, in-vitro and in-vivo assessment. J. Drug Deliv. Sci. Technol., 2018, 47, 514-520.
[http://dx.doi.org/10.1016/j.jddst.2018.06.014]
[147]
Zhang, D.; Lin, J.; Zhang, F.; Han, X.; Han, L.; Yang, M.; Zou, W. Preparation and evaluation of andrographolide solid dispersion vectored by silicon dioxide. Pharmacogn. Mag., 2016, 12(2)(Suppl. 2), S245-S252.
[PMID: 27279715]
[148]
Chellampillai, B.; Pawar, A.P. Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles. Eur. J. Drug Metab. Pharmacokinet., 2011, 35(3-4), 123-129.
[http://dx.doi.org/10.1007/s13318-010-0016-7] [PMID: 21302039]
[149]
Sermkaew, N.; Ketjinda, W.; Boonme, P.; Phadoongsombut, N.; Wiwattanapatapee, R. Liquid and solid self-microemulsifying drug delivery systems for improving the oral bioavailability of andrographolide from a crude extract of Andrographis paniculata. Eur. J. Pharm. Sci., 2013, 50(3-4), 459-466.
[http://dx.doi.org/10.1016/j.ejps.2013.08.006] [PMID: 23973887]
[150]
Zhang, Y.; Hu, X.; Liu, X.; Dandan, Y.; Di, D.; Yin, T.; Zhang, S.; Tang, X. Dry state microcrystals stabilized by an HPMC film to improve the bioavailability of andrographolide. Int. J. Pharm., 2015, 493(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.057] [PMID: 26216414]
[151]
Pholphana, N.; Panomvana, D.; Rangkadilok, N.; Suriyo, T.; Puranajoti, P.; Ungtrakul, T.; Pongpun, W.; Thaeopattha, S.; Songvut, P.; Satayavivad, J. Andrographis paniculata: Dissolution investigation and pharmacokinetic studies of four major active diterpenoids after multiple oral dose administration in healthy Thai volunteers. J. Ethnopharmacol., 2016, 194, 513-521.
[http://dx.doi.org/10.1016/j.jep.2016.09.058] [PMID: 27702690]
[152]
Guccione, C.; Oufir, M.; Piazzini, V.; Eigenmann, D.E.; Jähne, E.A.; Zabela, V.; Faleschini, M.T.; Bergonzi, M.C.; Smiesko, M.; Hamburger, M.; Bilia, A.R. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line. Eur. J. Pharm. Biopharm., 2017, 119, 253-263.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.018] [PMID: 28652141]
[153]
Piazzini, V.; Landucci, E.; Graverini, G.; Pellegrini-Giampietro, D.E.; Bilia, A.R.; Bergonzi, M.C. Stealth and cationic nanoliposomes as drug delivery systems to increase andrographolide BBB permeability. Pharmaceutics, 2018, 10(3), 128.
[http://dx.doi.org/10.3390/pharmaceutics10030128] [PMID: 30104484]
[154]
Li, M.; Zhang, T.; Zhu, L.; Wang, R.; Jin, Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int. J. Pharm., 2017, 528(1-2), 163-171.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.005] [PMID: 28583330]
[155]
Ma, Y.; Yang, Y.; Xie, J.; Xu, J.; Yue, P.; Yang, M. Novel nanocrystal-based solid dispersion with high drug loading, enhanced dissolution, and bioavailability of andrographolide. Int. J. Nanomedicine, 2018, 13, 3763-3779.
[http://dx.doi.org/10.2147/IJN.S164228] [PMID: 29988798]
[156]
Yen, C.C.; Liu, Y.T.; Lin, Y.J.; Yang, Y.C.; Chen, C.C.; Yao, H.T.; Chen, H.W.; Lii, C.K. Bioavailability of the diterpenoid 14-deoxy-11,12-didehydroandrographolide in rats and up-regulation of hepatic drug-metabolizing enzyme and drug transporter expression. Phytomedicine, 2019, 61, 152841.
[http://dx.doi.org/10.1016/j.phymed.2019.152841] [PMID: 31035043]
[157]
Yen, C.C.; Liang, Y.K.; Cheng, C.P.; Hsu, M.C.; Wu, Y.T. Oral bioavailability enhancement and anti-fatigue assessment of the andrographolide loaded solid dispersion. Int. J. Mol. Sci., 2020, 21(7), 1-18.
[http://dx.doi.org/10.3390/ijms21072506] [PMID: 32260319]
[158]
Verma, V.K.; Zaman, M.K.; Verma, S.; Verma, S.K.; Sarwaf, K.K. Role of semi-purified andrographolide from Andrographis paniculata extract as nano-phytovesicular carrier for enhancing oral absorption and hypoglycemic activity. Chin. Herb. Med., 2020, 12, 142-155.
[http://dx.doi.org/10.1016/j.chmed.2019.12.004]
[159]
Eugine, L.P.S.; Manavalan, R. Acute toxicity studies of Andrographolide. Res. J. Pharm. Biol. Chem. Sci., 2011, 2, 547-552.
[160]
Worasuttayangkurn, L.; Nakareangrit, W.; Kwangjai, J.; Sritangos, P.; Pholphana, N.; Watcharasit, P.; Rangkadilok, N.; Thiantanawat, A.; Satayavivad, J. Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicol. Rep., 2019, 6, 426-430.
[http://dx.doi.org/10.1016/j.toxrep.2019.05.003] [PMID: 31193040]