Femtomolar Dengue Virus Type-2 DNA Detection in Back-gated Silicon Nanowire Field-effect Transistor Biosensor

Page: [139 - 146] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Dengue is known as the most severe arboviral infection in the world spread by Aedes aegypti. However, conventional and laboratory-based enzyme-linked immunosorbent assays (ELISA) are the current approaches in detecting dengue virus (DENV), requiring skilled and well-trained personnel to operate. Therefore, the ultrasensitive and label-free technique of the Silicon Nanowire (SiNW) biosensor was chosen for rapid detection of DENV.

Methods: In this study, a SiNW field-effect transistor (FET) biosensor integrated with a back-gate of the low-doped p-type Silicon-on-insulator (SOI) wafer was fabricated through conventional photolithography and Inductively Coupled Plasma – Reactive Ion Etching (ICP-RIE) for Dengue Virus type-2 (DENV-2) DNA detection. The morphological characteristics of back-gated SiNW-FET were examined using a field-emission scanning electron microscope supported by the elemental analysis via energy-dispersive X-ray spectroscopy.

Results and Discussion: A complementary (target) single-stranded deoxyribonucleic acid (ssDNA) was recognized when the target DNA was hybridized with the probe DNA attached to SiNW surfaces. Based on the slope of the linear regression curve, the back-gated SiNW-FET biosensor demonstrated the sensitivity of 3.3 nAM-1 with a detection limit of 10 fM. Furthermore, the drain and back-gate voltages were also found to influence the SiNW conductance changed.

Conclusion: Thus, the results obtained suggest that the back-gated SiNW-FET shows good stability in both biosensing applications and medical diagnosis throughout the conventional photolithography method.

Keywords: Field-effect transistor, biosensor, silicon nanowire, back-gate, conventional photolithography, dengue virus.

Graphical Abstract

[1]
Pachauri, V.; Ingebrandt, S. Biologically sensitive field-effect transistors: from ISFETs to NanoFETs. Essays Biochem., 2016, 60(1), 81-90.
[http://dx.doi.org/10.1042/EBC20150009] [PMID: 27365038]
[2]
Di Pietrantonio, F.; Cannatà, D.; Benetti, M. Biosensor Technologies Based on Nanomaterials; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814401-5.00008-6]
[3]
Gasparyan, F.; Khondkaryan, H.; Arakelyan, A.; Zadorozhnyi, I.; Pud, S.; Vitusevich, S. Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties. J. Appl. Phys., 2016, 120(6)064902
[http://dx.doi.org/10.1063/1.4960704]
[4]
Pullano, S.A.; Tasneem, N.T.; Mahbub, I.; Shamsir, S.; Greco, M.; Islam, S.K.; Fiorillo, A.S. Deep submicron EGFET based on transistor association technique for chemical sensing. Sensors (Basel), 2019, 19(5), 1-13.
[http://dx.doi.org/10.3390/s19051063] [PMID: 30832331]
[5]
Islam, S.; Shukla, S.; Bajpai, V.K.; Han, Y.K.; Huh, Y.S.; Kumar, A.; Ghosh, A.; Gandhi, S. A smart nanosensor for the detection of human immunodeficiency virus and associated cardiovascular and arthritis diseases using functionalized graphene-based transistors. Biosens. Bioelectron., 2019, 126(126), 792-799.
[http://dx.doi.org/10.1016/j.bios.2018.11.041] [PMID: 30557838]
[6]
Presnova, G.; Presnov, D.; Krupenin, V.; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron., 2017, 88, 283-289.
[http://dx.doi.org/10.1016/j.bios.2016.08.054] [PMID: 27567265]
[7]
Singh, N.K.; Thungon, P.D.; Estrela, P.; Goswami, P. Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosens. Bioelectron., 2019, 123(123), 30-35.
[http://dx.doi.org/10.1016/j.bios.2018.09.085] [PMID: 30308419]
[8]
Wu, C.C.; Manga, Y.B.; Yang, M-H.; Chien, Z-S.; Lee, K-S. Label-free detection of BRAF V599E gene mutation using side-gated nanowire field effect transistors. J. Electrochem. Soc., 2018, 165(13), B576-B581.
[http://dx.doi.org/10.1149/2.0641813jes]
[9]
Zainol Abidin, W.A.B.; Md Nor, M.N.; Md Arshad, M.K.; Fathil, M.F.M.; Talik Sisin, N.A.; Letchumanan, I.; Ibau, C.; Azlan, A.S. Fabrication and characterization of back-gate controlled silicon nanowire based field-effect PH sensor. 2019 IEEE International Conference on Sensors and Nanotechnology, 2019, pp. 1-4.
[10]
Ahmad, A.; Ahmad, M.; Khan, S.; Ullah, I. Cytotoxic, phytotoxic and antimicrobial characterization of Meliltous parviflora. Int., 2014, 2(3), 8-13.
[11]
Dai, P.; Gao, A.; Lu, N.; Li, T.; Wang, Y. A back-gate controlled silicon nanowire sensor with sensitivity improvement for DNA and PH detection. Jpn. J. Appl. Phys., 2013, 52(12)121301
[http://dx.doi.org/10.7567/JJAP.52.121301]
[12]
Dehzangi, A.; Abdullah, A.M.; Larki, F.; Hutagalung, S.D.; Saion, E.B.; Hamidon, M.N.; Hassan, J.; Gharayebi, Y. Electrical property comparison and charge transmission in p-type double gate and single gate junctionless accumulation transistor fabricated by AFM nanolithography. Nanoscale Res. Lett., 2012, 7(1), 381.
[http://dx.doi.org/10.1186/1556-276X-7-381] [PMID: 22781031]
[13]
N, M. N. M.; Hashim, U.; Arshad, M.K.M.; Ruslinda, A.R.; Rahman, S.F.A.; Fathil, M.F.M.; Ismail, M.H. Top-down nanofabrication and characterization of 20 Nm silicon nanowires for biosensing applications. PLoS One, 2016, 11(3), 20-23.
[http://dx.doi.org/10.1371/journal.pone.0152318]
[14]
Tan, G.; Ouyang, K.; Wang, H.; Zhou, L.; Wang, X.; Liu, Y.; Zhang, L.; Ning, C. Effect of amino-, methyl- and epoxy-silane coupling as a molecular bridge for formatting a biomimetic hydroxyapatite coating on titanium by electrochemical deposition. J. Mater. Sci. Technol., 2016, 32(9), 956-965.
[http://dx.doi.org/10.1016/j.jmst.2016.07.012]
[15]
Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.K.; Green, N.G. Field-effect sensors - from pH sensing to biosensing: sensitivity enhancement using streptavidin-biotin as a model system. Analyst (Lond.), 2017, 142(22), 4173-4200.
[http://dx.doi.org/10.1039/C7AN00455A] [PMID: 29072718]