An Optimal Combination of Chemically Pure Compounds from Salvia miltiorrhiza for Inhibiting Cell Proliferation

Page: [34 - 42] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: Salvia miltiorrhiza (SM) is a traditional Chinese medicine used clinically to treat cardiovascular diseases, including atherosclerosis and myocardial infarction. Its therapeutic effect has been confirmed by many clinical and pharmacological studies. However, the optimal formulation of active ingredients in SM for treating cardiovascular diseases remains unclear. In this study, we determined the ratio of the optimal compatibility of SM ingredients DSS, Sal-A, Sal-B, and PAL (SABP)with a uniform and orthogonal optimized experimental design. In addition, we determined the anti-oxidation effect of SABP using Adventitial Fibroblasts (AFs).

Methods: By using a combination of uniform and orthogonal designs, we determined the optimal formulation of aqueous extract from SM. MTT assay was used to determine the inhibitory effects of these 4 components of SM on the AFs, which were isolated and cultured from the aorta. The reactive oxygen species (ROS) production in AFs was compared before and after SABP treatment.

Results: The optimal formulation of these 4 aqueous extracts from SM were 150 : 7 : 300 : 500, and their concentrations were S(1.5×10-4 mol/L), A(7×10-6 mol/L), B(3×10-4 mol/L), and P(5×10-4 mol/L). There were some synergies between these 4 components. Moreover, SABP decreased ROS production in AFs.

Conclusion: These findings suggest that SABP inhibits the proliferation and oxidation stress in AFs. The present study provides new evidence that the efficacy and function generated from the optimal formulation of active ingredients in SM are better than lyophilized powder of SM.

Keywords: Aqueous extract of salvia, uniform design, orthogonal design, formulation, oxidative stress, herb medicine.

Graphical Abstract

Animated Abstract

[1]
Xie, X.; Sun, W.; Miao, J.; Huang, J.; Xu, J.; Liu, X.; Sun, H.; Tong, L.; Sun, G. Development and validation of a UFLC-MS/MS method for determination of 7‘(Z)-(8″S, 8‴S)-epi-salvianolic acid E, (7’R, 8'R, 8″S, 8‴S)-epi-salvianolic acid B and salvianolic acid B in rat plasma and its application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1022, 6-12.
[http://dx.doi.org/10.1016/j.jchromb.2016.03.042] [PMID: 27064533]
[2]
Liu, T.; Guo, L.; Pan, Y.; Zhao, Q.; Wang, J.; Song, Z. Construction of the first high-density genetic linkage map of Salvia miltiorrhiza using specific length amplified fragment (SLAF) sequencing. Sci. Rep., 2016, 6, 24070.
[http://dx.doi.org/10.1038/srep24070] [PMID: 27040179]
[3]
Zhou, Y.; Sun, W.; Chen, J.; Tan, H.; Xiao, Y.; Li, Q.; Ji, Q.; Gao, S.; Chen, L.; Chen, S.; Zhang, L.; Chen, W. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Sci. Rep., 2016, 6, 22852.
[http://dx.doi.org/10.1038/srep22852] [PMID: 26947390]
[4]
Fan, G.; Yu, J.; Asare, P.F.; Wang, L.; Zhang, H.; Zhang, B.; Zhu, Y.; Gao, X. Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling. J. Cell. Mol. Med., 2016, 20(10), 1908-1919.
[http://dx.doi.org/10.1111/jcmm.12883] [PMID: 27385290]
[5]
Kim, S.J.; Kwon, D.Y.; Kim, Y.S.; Kim, Y.C. Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants. Arch. Pharm. Res., 2010, 33(6), 867-873.
[http://dx.doi.org/10.1007/s12272-010-0609-3] [PMID: 20607491]
[6]
Lin, C.; Liu, Z.; Lu, Y.; Yao, Y.; Zhang, Y.; Ma, Z.; Kuai, M.; Sun, X.; Sun, S.; Jing, Y.; Yu, L.; Li, Y.; Zhang, Q.; Bian, H. Cardioprotective effect of Salvianolic acid B on acute myocardial infarction by promoting autophagy and neovascularization and inhibiting apoptosis. J. Pharm. Pharmacol., 2016, 68(7), 941-952.
[http://dx.doi.org/10.1111/jphp.12567] [PMID: 27139338]
[7]
Su, P.; Tong, Y.; Cheng, Q.; Hu, Y.; Zhang, M.; Yang, J.; Teng, Z.; Gao, W.; Huang, L. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway. Sci. Rep., 2016, 6, 23057.
[http://dx.doi.org/10.1038/srep23057] [PMID: 26971881]
[8]
Chen, H.M.; Luo, H.; Zeng, W.B.; Liu, B.; Huang, J.C.; Liu, M.; Zeng, Y.J.; Zheng, Q.; Li, J.Q.; Sun, X.G.; Zhou, Y.C. Salvianolic acid B attenuates oxidized low-density lipoprotein-induced endothelial cell apoptosis through inhibition of oxidative stress, p53, and caspase-3 pathways. Chin. J. Integr. Med., 2017, 1-7.
[http://dx.doi.org/10.1007/s11655-016-2645-4] [PMID: 28116660]
[9]
Fang, X.; Liu, Y.; Lu, J.; Hong, H.; Yuan, J.; Zhang, Y.; Wang, P.; Liu, P.; Ye, J. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(12), 1373-1385.
[http://dx.doi.org/10.1007/s00210-018-1556-7] [PMID: 30132020]
[10]
Su, C.Y.; Ming, Q.L.; Rahman, K.; Han, T.; Qin, L.P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin. J. Nat. Med., 2015, 13(3), 163-182.
[http://dx.doi.org/10.1016/S1875-5364(15)30002-9] [PMID: 25835361]
[11]
Tong, Y.; Ye, C.; Ren, X.S.; Qiu, Y.; Zang, Y.H.; Xiong, X.Q.; Wang, J.J.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. Exosome- Mediated Transfer of ACE (Angiotensin-Converting Enzyme) From Adventitial Fibroblasts of Spontaneously Hypertensive Rats Promotes Vascular Smooth Muscle Cell Migration. Hypertension, 2018, 72(4), 881-888.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11375] [PMID: 30354715]
[12]
An, S.J.; Liu, P.; Shao, T.M.; Wang, Z.J.; Lu, H.G.; Jiao, Z.; Li, X.; Fu, J.Q. Characterization and functions of vascular adventitial fibroblast subpopulations. Cell. Physiol. Biochem., 2015, 35(3), 1137-1150.
[http://dx.doi.org/10.1159/000373939] [PMID: 25766526]
[13]
Wang, P.; Li, M.; Zhao, L.; Yang, Y.; Ding, X. Uniform and orthogonal designs on experimental design and optimization of micellar electrokinetic capillary chromatographic method for the simultaneous analysis of three nucleoside antivirus drugs in disinfectant and anti/bacteriostatic products. Se Pu, 2018, 36(9), 931-937.
[http://dx.doi.org/10.3724/SP.J.1123.2018.04003] [PMID: 30251523]
[14]
Thomas, S.R.; Witting, P.K.; Drummond, G.R. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid. Redox Signal., 2008, 10(10), 1713-1765.
[http://dx.doi.org/10.1089/ars.2008.2027] [PMID: 18707220]
[15]
Qian, S.; Huo, D.; Wang, S.; Qian, Q. Inhibition of glucose-induced vascular endothelial growth factor expression by Salvia miltiorrhiza hydrophilic extract in human microvascular endothelial cells: evidence for mitochondrial oxidative stress. J. Ethnopharmacol., 2011, 137(2), 985-991.
[http://dx.doi.org/10.1016/j.jep.2011.07.018] [PMID: 21782920]
[16]
Virdis, A.; Duranti, E.; Taddei, S. Oxidative Stress and Vascular Damage in Hypertension: Role of Angiotensin II. Int. J. Hypertens., 2011, 2011, 916310.
[http://dx.doi.org/10.4061/2011/916310] [PMID: 21747985]
[17]
Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]