Combinatorial Chemistry & High Throughput Screening

Author(s): Xiaojin Feng, Fenfang Zhan, Jialing Hu, Fuzhou Hua and Guohai Xu*

DOI: 10.2174/1386207324666210208110517

LncRNA-mRNA Expression Profiles and Functional Networks Associated with Cognitive Impairment in Folate-deficient Mice

Page: [847 - 860] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Cognitive impairment is a common neurocognitive disorder that affects the health of millions of people worldwide, related to folate deficiency.

Objective: The present study aimed to investigate the lncRNA-mRNA functional networks associated with cognitive impairment in folate-deficient mice and elucidate their possible molecular mechanisms.

Methods: We downloaded the gene expression profile (GSE148126) of lncRNAs and mRNAs from NCBI Gene Expression Omnibus (GEO) database. Four groups of mouse hippocampi were analyzed, including 4 months (4mo) and 18 months (18mo) of folic acid (FA) deficiency/supplementation. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were identified using gplots and heatmap packages. The functions of the DEmRNAs were evaluated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The hub genes were identified by CytoHubba plugins of Cytoscape, and protein-protein interaction (PPI) network of deregulated mRNAs was performed using the STRING database. Finally, lncRNA-mRNA co-expression and competitive endogenous RNA (ceRNA) network analyses were constructed.

Results: In total, we screened 67 lncRNAs with 211 mRNAs, and 89 lncRNAs with 229 mRNAs were differentially expressed in 4mo_FA and 18mo_FA deficient mice, respectively. GO analyses indicated that DEmRNAs were highly related to terms involved in binding and biological regulation. KEGG pathway analyses demonstrated that these genes were significantly enriched for renin secretion, pancreatic secretion, and AMPK signaling pathways in the 18mo_FA deficiency group. Subsequently, the top 5 hub genes were screened from the PPI network, which may be key genes with the progression of folate deficiency. Upon the lncRNA-mRNA co-expression network analysis, we identified the top 10 lncRNAs having the maximum number of connections with related mRNAs. Finally, a ceRNA network was constructed for DE lncRNAs and DEmRNAs, and several pivotal miRNAs were predicted.

Conclusions: This study identified the lncRNA-mRNA expression profiles and functional networks associated with cognitive impairment in folate-deficient mice by bioinformatics analysis, which provided support for the possible mechanisms and therapy for this disease.

Keywords: Folate deficiency, cognitive impairment, lncRNA, mRNA, molecular mechanism, bioinformatic analysis.

Graphical Abstract

[1]
van der Flier, W.M.; Skoog, I.; Schneider, J.A.; Pantoni, L.; Mok, V.; Chen, C.L.H.; Scheltens, P. Vascular cognitive impairment. Nat. Rev. Dis. Primers, 2018, 4, 18003.
[http://dx.doi.org/10.1038/nrdp.2018.3] [PMID: 29446769]
[2]
Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med., 2017, 33(3), 325-337.
[http://dx.doi.org/10.1016/j.cger.2017.02.005] [PMID: 28689566]
[3]
Langa, K.M.; Levine, D.A. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA, 2014, 312(23), 2551-2561.
[http://dx.doi.org/10.1001/jama.2014.13806] [PMID: 25514304]
[4]
Kim, J.M.; Stewart, R.; Kim, S.W.; Shin, I.S.; Yang, S.J.; Shin, H.Y.; Yoon, J.S. Changes in folate, vitamin B12 and homocysteine associated with incident dementia. J. Neurol. Neurosurg. Psychiatry, 2008, 79(8), 864-868.
[http://dx.doi.org/10.1136/jnnp.2007.131482] [PMID: 18252751]
[5]
Ma, F.; Wu, T.; Zhao, J.; Ji, L.; Song, A.; Zhang, M.; Huang, G. Plasma homocysteine and serum folate and vitamin B12 levels in mild cognitive impairment and Alzheimer’s disease: A case-control study. Nutrients, 2017, 9(7), 725.
[http://dx.doi.org/10.3390/nu9070725] [PMID: 28698453]
[6]
An, Y.; Feng, L.; Zhang, X.; Wang, Y.; Wang, Y.; Tao, L.; Qin, Z.; Xiao, R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenetics, 2019, 11(1), 139.
[http://dx.doi.org/10.1186/s13148-019-0741-y] [PMID: 31601260]
[7]
Moore, E.; Mander, A.; Ames, D.; Carne, R.; Sanders, K.; Watters, D. Cognitive impairment and vitamin B12: a review. Int. Psychogeriatr., 2012, 24(4), 541-556.
[http://dx.doi.org/10.1017/S1041610211002511] [PMID: 22221769]
[8]
Arlt, S.; Schwedhelm, E.; Kölsch, H.; Jahn, H.; Linnebank, M.; Smulders, Y.; Jessen, F.; Böger, R.H.; Popp, J. Dimethylarginines, homocysteine metabolism, and cerebrospinal fluid markers for Alzheimer’s disease. J. Alzheimers Dis., 2012, 31(4), 751-758.
[http://dx.doi.org/10.3233/JAD-2012-112138] [PMID: 22710910]
[9]
Herrmann, W.; Obeid, R. Homocysteine: a biomarker in neurodegenerative diseases. Clin. Chem. Lab. Med., 2011, 49(3), 435-441.
[PMID: 21388339]
[10]
Kong, H.Y.; Cheng, D.M.; Pang, W.; Sun, S.D.; Liu, J.; Huang, C.Y.; Jiang, Y.G. Homocysteine levels and cognitive function scores measured with MMSE and BCAT of middle-aged and elderly subjects in Tianjin City. J. Nutr. Health Aging, 2013, 17(6), 527-532.
[http://dx.doi.org/10.1007/s12603-013-0026-7] [PMID: 23732549]
[11]
Elias, M.F.; Sullivan, L.M.; D’Agostino, R.B.; Elias, P.K.; Jacques, P.F.; Selhub, J.; Seshadri, S.; Au, R.; Beiser, A.; Wolf, P.A. Homocysteine and cognitive performance in the Framingham offspring study: age is important. Am. J. Epidemiol., 2005, 162(7), 644-653.
[http://dx.doi.org/10.1093/aje/kwi259] [PMID: 16107567]
[12]
Enderami, A.; Zarghami, M.; Darvishi-Khezri, H. The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review. Neurol. Sci., 2018, 39(10), 1667-1675.
[http://dx.doi.org/10.1007/s10072-018-3473-4] [PMID: 29936555]
[13]
Ma, F.; Wu, T.; Zhao, J.; Song, A.; Liu, H.; Xu, W.; Huang, G. Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI. Sci. Rep., 2016, 6, 37486.
[http://dx.doi.org/10.1038/srep37486] [PMID: 27876835]
[14]
Jiang, J.; Lv, X.; Liang, B.; Jiang, H. Circulating TNF-α levels increased and correlated negatively with IGF-I in postoperative cognitive dysfunction. Neurol. Sci., 2017, 38(8), 1391-1392.
[http://dx.doi.org/10.1007/s10072-017-2962-1] [PMID: 28497311]
[15]
Barua, S.; Kuizon, S.; Junaid, M.A. Folic acid supplementation in pregnancy and implications in health and disease. J. Biomed. Sci., 2014, 21(1), 77.
[http://dx.doi.org/10.1186/s12929-014-0077-z] [PMID: 25135350]
[16]
Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; Xue, C.; Marinov, G.K.; Khatun, J.; Williams, B.A.; Zaleski, C.; Rozowsky, J.; Röder, M.; Kokocinski, F.; Abdelhamid, R.F.; Alioto, T.; Antoshechkin, I.; Baer, M.T.; Bar, N.S.; Batut, P.; Bell, K.; Bell, I.; Chakrabortty, S.; Chen, X.; Chrast, J.; Curado, J.; Derrien, T.; Drenkow, J.; Dumais, E.; Dumais, J.; Duttagupta, R.; Falconnet, E.; Fastuca, M.; Fejes-Toth, K.; Ferreira, P.; Foissac, S.; Fullwood, M.J.; Gao, H.; Gonzalez, D.; Gordon, A.; Gunawardena, H.; Howald, C.; Jha, S.; Johnson, R.; Kapranov, P.; King, B.; Kingswood, C.; Luo, O.J.; Park, E.; Persaud, K.; Preall, J.B.; Ribeca, P.; Risk, B.; Robyr, D.; Sammeth, M.; Schaffer, L.; See, L.H.; Shahab, A.; Skancke, J.; Suzuki, A.M.; Takahashi, H.; Tilgner, H.; Trout, D.; Walters, N.; Wang, H.; Wrobel, J.; Yu, Y.; Ruan, X.; Hayashizaki, Y.; Harrow, J.; Gerstein, M.; Hubbard, T.; Reymond, A.; Antonarakis, S.E.; Hannon, G.; Giddings, M.C.; Ruan, Y.; Wold, B.; Carninci, P.; Guigó, R.; Gingeras, T.R. Landscape of transcription in human cells. Nature, 2012, 489(7414), 101-108.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[17]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[18]
Tseng, Y.Y.; Moriarity, B.S.; Gong, W.; Akiyama, R.; Tiwari, A.; Kawakami, H.; Ronning, P.; Reuland, B.; Guenther, K.; Beadnell, T.C.; Essig, J.; Otto, G.M.; O’Sullivan, M.G.; Largaespada, D.A.; Schwertfeger, K.L.; Marahrens, Y.; Kawakami, Y.; Bagchi, A. PVT1 dependence in cancer with MYC copy-number increase. Nature, 2014, 512(7512), 82-86.
[http://dx.doi.org/10.1038/nature13311] [PMID: 25043044]
[19]
Spizzo, R.; Almeida, M.I.; Colombatti, A.; Calin, G.A. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene, 2012, 31(43), 4577-4587.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[20]
Sallam, T.; Sandhu, J.; Tontonoz, P. Long Noncoding RNA Discovery in Cardiovascular Disease: Decoding Form to Function. Circ. Res., 2018, 122(1), 155-166.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311802] [PMID: 29301847]
[21]
Maniati, M.S.; Maniati, M.; Yousefi, T.; Ahmadi-Ahangar, A.; Tehrani, S.S. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases. J. Cell. Biochem., 2019, 120(6), 8908-8918.
[http://dx.doi.org/10.1002/jcb.28361] [PMID: 30663117]
[22]
Li, C.; Gao, Y.; Li, Y.; Ding, D. TUG1 mediates methotrexate resistance in colorectal cancer via miR-186/CPEB2 axis. Biochem. Biophys. Res. Commun., 2017, 491(2), 552-557.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.042] [PMID: 28302487]
[23]
Wu, K.F.; Liang, W.C.; Feng, L.; Pang, J.X.; Waye, M.M.; Zhang, J.F.; Fu, W.M. H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway. Exp. Cell Res., 2017, 350(2), 312-317.
[http://dx.doi.org/10.1016/j.yexcr.2016.12.003] [PMID: 27919747]
[24]
Wu, S.; Guo, W.; Li, X.; Liu, Y.; Li, Y.; Lei, X.; Yao, J.; Yang, X. Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens. Proc. Biol. Sci., 2019, 286(1910), 20191653.
[http://dx.doi.org/10.1098/rspb.2019.1653] [PMID: 31506054]
[25]
Zhang, L.; Fang, W.J.; Zhang, K.M.; Jiang, W.W.; Chen, M.; Liao, W.Q.; Pan, W.H. Long noncoding RNA expression profile from cryptococcal meningitis patients identifies DPY19L1p1 as a new disease marker. CNS Neurosci. Ther., 2019, 25(6), 772-782.
[http://dx.doi.org/10.1111/cns.13109] [PMID: 30767376]
[26]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[27]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[28]
Kohl, M.; Wiese, S.; Warscheid, B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol. Biol., 2011, 696, 291-303.
[http://dx.doi.org/10.1007/978-1-60761-987-1_18] [PMID: 21063955]
[29]
Li, M.; Chen, C.; Zhang, W.; Gao, R.; Wang, Q.; Chen, H.; Zhang, S.; Mao, X.; Leblanc, M.; Behensky, A.; Zhang, Z.; Gan, L.; Yu, H.; Zhu, T.; Liu, J. Identification of the potential key long noN-coding RNAs in aged mice with postoperative cognitive dysfunction. Front. Aging Neurosci., 2019, 11, 181.
[http://dx.doi.org/10.3389/fnagi.2019.00181] [PMID: 31379560]
[30]
Sengupta, S. Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases. J. Genet., 2017, 96(1), 203-210.
[http://dx.doi.org/10.1007/s12041-017-0747-1] [PMID: 28360406]
[31]
Zhang, Y.; Liu, Y.X.; Xiao, Q.X.; Liu, Q.; Deng, R.; Bian, J.; Deng, I.B.; Al-Hawwas, M.; Yu, F.X. Microarray expression profiles of lncRNAs and mRNAs in postoperative cognitive dysfunction. Front. Neurosci., 2018, 12, 694.
[http://dx.doi.org/10.3389/fnins.2018.00694] [PMID: 30349449]
[32]
Wang, J.Y.; Feng, Y.; Fu, Y.H.; Liu, G.L. Effect of sevoflurane anesthesia on brain is mediateD by lncRNA HOTAIR. J. Mol. Neurosci., 2018, 64(3), 346-351.
[http://dx.doi.org/10.1007/s12031-018-1029-y] [PMID: 29352445]
[33]
Hu, X.; Hu, X.; Huang, G. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats. J. Cell. Biochem., 2019, 120(10), 18209-18218.
[http://dx.doi.org/10.1002/jcb.29127] [PMID: 31190336]
[34]
Zhao, Y.; Ai, Y. Overexpression of lncRNA Gm15621 alleviates apoptosis and inflammation response resulting from sevoflurane treatment through inhibiting miR-133a/Sox4. J. Cell. Physiol., 2020, 235(2), 957-965.
[http://dx.doi.org/10.1002/jcp.29011] [PMID: 31264218]
[35]
Pouresmaeili, F.; Azari, I.; Arsang-Jang, S.; Taheri, M.; Ghafouri-Fard, S. Association between expression of long noncoding RNAs in placenta and pregnancy features. Per. Med., 2019, 16(6), 457-466.
[http://dx.doi.org/10.2217/pme-2018-0078] [PMID: 31691644]
[36]
Nauman, N.; Jalali, S.; Shami, S.; Rafiq, S.; Große, G.; Hilger, A.C.; Zhang, R.; Mansoor, S.; Ludwig, M.; Reutter, H. Low maternal folate concentrations and maternal MTHFR C677T polymorphism are associated with an increased risk for neural tube defects in offspring: a case-control study among Pakistani case and control mothers. Asia Pac. J. Clin. Nutr., 2018, 27(1), 253-260.
[PMID: 29222906]
[37]
Lintas, C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin. Genet., 2019, 95(2), 241-252.
[http://dx.doi.org/10.1111/cge.13421] [PMID: 30047142]
[38]
Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol., 2013, 10(6), 925-933.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[39]
Prensner, J.R.; Iyer, M.K.; Balbin, O.A.; Dhanasekaran, S.M.; Cao, Q.; Brenner, J.C.; Laxman, B.; Asangani, I.A.; Grasso, C.S.; Kominsky, H.D.; Cao, X.; Jing, X.; Wang, X.; Siddiqui, J.; Wei, J.T.; Robinson, D.; Iyer, H.K.; Palanisamy, N.; Maher, C.A.; Chinnaiyan, A.M. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol., 2011, 29(8), 742-749.
[http://dx.doi.org/10.1038/nbt.1914] [PMID: 21804560]
[40]
Villegas, V.E.; Zaphiropoulos, P.G. Neighboring gene regulation by antisense long non-coding RNAs. Int. J. Mol. Sci., 2015, 16(2), 3251-3266.
[http://dx.doi.org/10.3390/ijms16023251] [PMID: 25654223]
[41]
Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell, 2011, 43(6), 904-914.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[42]
Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the Brain: The renin angiotensin system. Int. J. Mol. Sci., 2018, 19(3), E876.
[http://dx.doi.org/10.3390/ijms19030876] [PMID: 29543776]
[43]
Fouda, A.Y.; Fagan, S.C.; Ergul, A. brain vasculature and cognition. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4), 593-602.
[http://dx.doi.org/10.1161/ATVBAHA.118.311906] [PMID: 30816798]
[44]
Banerjee, I.; Salomon-Estebanez, M.; Shah, P.; Nicholson, J.; Cosgrove, K.E.; Dunne, M.J. Therapies and outcomes of congenital hyperinsulinism-induced hypoglycaemia. Diabet. Med., 2019, 36(1), 9-21.
[http://dx.doi.org/10.1111/dme.13823] [PMID: 30246418]
[45]
Huang, L.; Huang, K.; Ning, H. Autophagy induction by hispidulin provides protection against sevoflurane-induced neuronal apoptosis in aged rats. Biomed. Pharmacother., 2018, 98, 460-468.
[http://dx.doi.org/10.1016/j.biopha.2017.12.097] [PMID: 29287193]
[46]
Qiu, W.Q.; Pan, R.; Tang, Y.; Zhou, X.G.; Wu, J.M.; Yu, L.; Law, B.Y.; Ai, W.; Yu, C.L.; Qin, D.L.; Wu, A.G. Lychee seed polyphenol inhibits Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction. Biomed. Pharmacother., 2020, 130, 110575.
[http://dx.doi.org/10.1016/j.biopha.2020.110575] [PMID: 32768883]
[47]
Claus, S.P.; Ellero, S.L.; Berger, B.; Krause, L.; Bruttin, A.; Molina, J.; Paris, A.; Want, E.J.; de Waziers, I.; Cloarec, O.; Richards, S.E.; Wang, Y.; Dumas, M.E.; Ross, A.; Rezzi, S.; Kochhar, S.; Van Bladeren, P.; Lindon, J.C.; Holmes, E.; Nicholson, J.K. Colonization-induced host-gut microbial metabolic interaction. MBio, 2011, 2(2), e00271-e10.
[http://dx.doi.org/10.1128/mBio.00271-10] [PMID: 21363910]
[48]
Patrick, S.; Corrigan, R.; Grizzanti, J.; Mey, M.; Blair, J.; Pallas, M.; Camins, A.; Lee, H.G.; Casadesus, G. neuroprotective effects of the amylin analog, pramlintide, on Alzheimer’s disease are associated with oxidative stress regulation mechanisms. J. Alzheimers Dis., 2019, 69(1), 157-168.
[http://dx.doi.org/10.3233/JAD-180421] [PMID: 30958347]
[49]
Tran, T.V.; Shin, E.J.; Nguyen, L.T.T.; Lee, Y.; Kim, D.J.; Jeong, J.H.; Jang, C.G.; Nah, S.Y.; Toriumi, K.; Nabeshima, T.; Yamada, K.; Kim, H.C. Protein Kinase Cδ gene depletion protects against methamphetamine-induced impairments in recognition memory and ERK1/2 signaling via upregulation of glutathione peroxidase-1 gene. Mol. Neurobiol., 2018, 55(5), 4136-4159.
[PMID: 28597397]
[50]
Fu, P.; Wen, Y.; Xiong, Y.; Zhang, Y.; Zhang, H.; Xie, Y.; Shi, Q. Abnormal Expression of FBXL20 in Refractory epilepsy patients and a pilocarpine-induced rat model. Neurochem. Res., 2016, 41(11), 3020-3031.
[http://dx.doi.org/10.1007/s11064-016-2021-y] [PMID: 27502938]