Current Pharmaceutical Analysis

Author(s): Ping Nan*

DOI: 10.2174/1573412917999201217163607

Detection of Diuretic Doping by Capillary Electrophoresis and Electrochemical Technology: A Mini-Review

Page: [34 - 42] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Athletes are not allowed to use performance-enhancing drugs. Despite many efforts, the use of performance-enhancing drugs still persists in sports. Doping testing in athletes is the main way to determine drug consumption. Taking biological samples from athletes can be used to detect doping. The least invasive method is urine, while hair and saliva can be sampled using a minimally invasive procedure. In contrast, blood sampling is the most invasive method. The development of sample analysis and detection technology is crucial for any kind of sampling method. This review details the progress of electrophoresis and electrochemical detection of diuretics in stimulants.

Keywords: Capillary electrophoresis, electrochemistry, doping, diuretic, detection liquid chromatography, hormones.

Graphical Abstract

[1]
Hopker, J.; Schumacher, Y.O.; Fedoruk, M.; Mørkeberg, J.; Bermon, S.; Iljukov, S.; Aikin, R.; Sottas, P-E. Athlete performance monitoring in anti-doping. Front. Physiol., 2018, 9, 232.
[http://dx.doi.org/10.3389/fphys.2018.00232] [PMID: 29636696]
[2]
Toohey, K.; Beaton, A. International cross-sector social partnerships between sport and governments: the world anti-doping agency. Sport Manage. Rev., 2017, 20(5), 483-496.
[http://dx.doi.org/10.1016/j.smr.2016.12.004]
[3]
Chan, D.K.C.; Dimmock, J.A.; Donovan, R.J.; Hardcastle, S.; Lentillon-Kaestner, V.; Hagger, M.S. Self-determined motivation in sport predicts anti-doping motivation and intention: a perspective from the trans-contextual model. J. Sci. Med. Sport, 2015, 18(3), 315-322.
[http://dx.doi.org/10.1016/j.jsams.2014.04.001] [PMID: 24793786]
[4]
Engelberg, T.; Moston, S.; Skinner, J. The final frontier of anti-doping: a study of athletes who have committed doping violations. Sport Manage. Rev., 2015, 18(2), 268-279.
[http://dx.doi.org/10.1016/j.smr.2014.06.005]
[5]
Schubert, M.; Könecke, T. ‘Classical’ doping, financial doping and beyond: uefa’s financial fair play as a policy of anti-doping. Int. J. Sport Policy Polit., 2015, 7(1), 63-86.
[6]
Allen, H.; Backhouse, S.H.; Hull, J.H.; Price, O.J. Anti-doping policy, therapeutic use exemption and medication use in athletes with asthma: a narrative review and critical appraisal of current regulations. Sports Med., 2019, 49(5), 659-668.
[http://dx.doi.org/10.1007/s40279-019-01075-z] [PMID: 30887312]
[7]
Barkoukis, V.; Kartali, K.; Lazuras, L.; Tsorbatzoudis, H. Evaluation of an anti-doping intervention for adolescents: findings from a school-based study. Sport Manage. Rev., 2016, 19(1), 23-34.
[http://dx.doi.org/10.1016/j.smr.2015.12.003]
[8]
Chan, D.K.C.; Hardcastle, S.; Dimmock, J.A.; Lentillon-Kaestner, V.; Donovan, R.J.; Burgin, M.; Hagger, M.S. Modal salient belief and social cognitive variables of anti-doping behaviors in sport: examining an extended model of the theory of planned behavior. Psychol. Sport Exerc., 2015, 16, 164-174.
[http://dx.doi.org/10.1016/j.psychsport.2014.03.002]
[9]
Fincoeur, B.; Van de Ven, K.; Mulrooney, K.J. The symbiotic evolution of anti-doping and supply chains of doping substances: how criminal networks may benefit from anti-doping policy. Trends Organ. Crime, 2015, 18(3), 229-250.
[http://dx.doi.org/10.1007/s12117-014-9235-7]
[10]
Helmlin, H-J.; Mürner, A.; Steiner, S.; Kamber, M.; Weber, C.; Geyer, H.; Guddat, S.; Schänzer, W.; Thevis, M. Detection of the diuretic hydrochlorothiazide in a doping control urine sample as the result of a non-steroidal anti-inflammatory drug (NSAID) tablet contamination. Forensic Sci. Int., 2016, 267, 166-172.
[http://dx.doi.org/10.1016/j.forsciint.2016.08.029] [PMID: 27611956]
[11]
Gheddar, L.; Raul, J.S.; Kintz, P. First identification of a diuretic, hydrochlorothiazide, in hair: Application to a doping case and interpretation of the results. Drug Test. Anal., 2019, 11(1), 157-161.
[http://dx.doi.org/10.1002/dta.2445] [PMID: 29920984]
[12]
De Wilde, L.; Roels, K.; Polet, M.; Van Eenoo, P.; Deventer, K. Identification and confirmation of diuretics and masking agents in urine by turbulent flow online solid-phase extraction coupled with liquid chromatography-triple quadrupole mass spectrometry for doping control. J. Chromatogr. A, 2018, 1579, 31-40.
[http://dx.doi.org/10.1016/j.chroma.2018.10.032] [PMID: 30430987]
[13]
Alquraini, H.; Auchus, R.J. Strategies that athletes use to avoid detection of androgenic-anabolic steroid doping and sanctions. Mol. Cell. Endocrinol., 2018, 464, 28-33.
[http://dx.doi.org/10.1016/j.mce.2017.01.028] [PMID: 28130115]
[14]
Hudari, F.F.; Zanoni, M.V.B. A glassy carbon electrode modified with reduced graphene oxide for sensitive determination of bumetanide in urine at levels required for doping analysis. Mikrochim. Acta, 2017, 184(10), 4117-4124.
[http://dx.doi.org/10.1007/s00604-017-2443-5]
[15]
Imanishi, T.; Kawabata, T.; Takayama, A. Current status of doping in japan based on japan anti-doping disciplinary panels of the japan anti-doping agency (JADA): a suggestion on anti-doping activities by pharmacists in japan. Yakugaku Zasshi, 2017, 137(7), 883-891.
[http://dx.doi.org/10.1248/yakushi.16-00260] [PMID: 28674304]
[16]
da Silva, H.C.; de Miranda, Ê.F.; de Andrade, M.C.; Brandão, F.M.V.; Couteiro, R.P.; Brito, M.V.H.; Furtado, J.C.C.; Chaves, R.O. Heart at risk: electronic educational game with information on doping in athletes. Rev. Bras. Med. Esporte, 2019, 25(5), 379-383.
[http://dx.doi.org/10.1590/1517-869220192505217459]
[17]
Luiz, V.H.M.; Lima, L.S.; Rossini, E.L.; Pezza, L.; Pezza, H.R. Paper platform for determination of bumetanide in human urine samples to detect doping in sports using digital image analysis. Microchem. J., 2019, 147, 43-48.
[http://dx.doi.org/10.1016/j.microc.2019.03.006]
[18]
Mazzarino, M.; Cesarei, L.; de la Torre, X.; Fiacco, I.; Robach, P.; Botrè, F. A multi-targeted liquid chromatography-mass spectrometry screening procedure for the detection in human urine of drugs non-prohibited in sport commonly used by the athletes. J. Pharm. Biomed. Anal., 2016, 117, 47-60.
[http://dx.doi.org/10.1016/j.jpba.2015.08.007] [PMID: 26342446]
[19]
Müller, L.S.; Muratt, D.T.; Dal Molin, T.R.; Urquhart, C.G.; Viana, C.; de Carvalho, L.M. Analysis of pharmacologic adulteration in dietary supplements by capillary zone electrophoresis using simultaneous contactless conductivity and UV detection. Chromatographia, 2018, 81(4), 689-698.
[http://dx.doi.org/10.1007/s10337-018-3496-2]
[20]
Wooten, W.M.; Shaffer, L.E.T.; Hamilton, L.A. Bedside ultrasound versus chest radiography for detection of pulmonary edema: a prospective cohort study. J. Ultrasound Med., 2019, 38(4), 967-973.
[http://dx.doi.org/10.1002/jum.14781] [PMID: 30280401]
[21]
Sabo Müller, L.; Dal Molin, T.R.; Tomazi Muratt, D.; Camera Leal, G.; Gonzalez Urquhart, C.; Viana, C.; de Carvalho, L.M. Determination of stimulants and diuretics in dietary supplements for weight loss and physical fitness by ion-pair chromatography and Pulsed Amperometric Detection (PAD). Curr. Anal. Chem., 2018, 14(6), 562-570.
[http://dx.doi.org/10.2174/1573411014666171229155726]
[22]
Thevis, M.; Geyer, H.; Thomas, A.; Tretzel, L.; Bailloux, I.; Buisson, C.; Lasne, F.; Schaefer, M.S.; Kienbaum, P.; Mueller-Stoever, I.; Schänzer, W. Formation of the diuretic chlorazanil from the antimalarial drug proguanil--implications for sports drug testing. J. Pharm. Biomed. Anal., 2015, 115, 208-213.
[http://dx.doi.org/10.1016/j.jpba.2015.07.017] [PMID: 26226108]
[23]
Hudari, F.F.; Bessegato, G.G.; Bedatty Fernandes, F.C.; Zanoni, M.V.B.; Bueno, P.R. Reagentless detection of low-molecular-weight triamterene using self-doped TiO2 nanotubes. Anal. Chem., 2018, 90(12), 7651-7658.
[http://dx.doi.org/10.1021/acs.analchem.8b01501] [PMID: 29767498]
[24]
Moreira, A.P.L.; Gobo, L.A.; Viana, C.; de Carvalho, L.M. Simultaneous analysis of antihypertensive drugs and diuretics as adulterants in herbal-based products by ultra-high performance liquid chromatography-electrospray tandem mass spectrometry. Anal. Methods, 2016, 8(8), 1881-1888.
[http://dx.doi.org/10.1039/C5AY02408K]
[25]
Sanchez, F.G.; Diaz, A.N.; Lopez Guerrero, M. Time-resolved spectroscopy for selective determination of fluorescent diuretics. Spectrosc. Lett., 2015, 48(7), 481-486.
[http://dx.doi.org/10.1080/00387010.2014.895385]
[26]
Sá, A.C.C.; Webb, A.; Gong, Y.; McDonough, C.W.; Datta, S.; Langaee, T.Y.; Turner, S.T.; Beitelshees, A.L.; Chapman, A.B.; Boerwinkle, E.; Gums, J.G.; Scherer, S.E.; Cooper-DeHoff, R.M.; Sadee, W.; Johnson, J.A. Whole transcriptome sequencing analyses reveal molecular markers of blood pressure response to thiazide diuretics. Sci. Rep., 2017, 7(1), 16068.
[http://dx.doi.org/10.1038/s41598-017-16343-z] [PMID: 29167564]
[27]
Rahman, N.; Sameen, S.; Kashif, M. Application of Box-Behnken Design and desirability function in the optimization of spectrophotometric method for the quantification of WADA Banned Drug: Acetazolamide. J. Mol. Liq., 2019, 274, 270-277.
[http://dx.doi.org/10.1016/j.molliq.2018.10.120]
[28]
Rahman, N.; Anwar, N.; Kashif, M.; Hoda, M.; Rahman, H. Determination of labetalol hydrochloride by kinetic spectrophotometry using potassium permanganate as oxidant. J. Mex. Chem. Soc., 2011, 55(2), 105-112.
[29]
Rahman, N.; Haque, S.M.; Azmi, S.N.H. Kinetic spectrophotometric determination of metoprolol tartrate in commercial dosage forms. J. Chin. Chem. Soc. (Taipei), 2007, 54(6), 1511-1520.
[http://dx.doi.org/10.1002/jccs.200700213]
[30]
Rahman, N.; Haque, S.M.; Hossain, S.Z. Rapid and simple spectrophotometric analysis of labetalol hydrochloride in pharmaceutical, urine and blood samples. Can. Chem. Trans., 2013, 1(1), 66-77.
[http://dx.doi.org/10.13179/canchemtrans.2013.01.01.0014]
[31]
Rahman, N.; Haque, S.M. Spectrofluorimetric determination of labetalol hydrochloride in pharmaceutical preparations and urine samples. Int. J. Biomed. Sci., 2008, 4(2), 140-146.
[PMID: 23675081]
[32]
Rahman, N.; Rahman, H.; Azmi, S.N.H. Validated kinetic spectrophotometric method for the determination of metoprolol tartrate in pharmaceutical formulations. Chem. Pharm. Bull. (Tokyo), 2005, 53(8), 942-948.
[http://dx.doi.org/10.1248/cpb.53.942] [PMID: 16079525]
[33]
Rahman, N.; Singh, M.; Hoda, N. Md.; Zaidi, S. M. K. R.; Banu, N. Validation of an optimized spectrophotometric method for the selective determination of labetalol hydrochloride. Chin. J. Chem., 2005, 23(12), 1611-1617.
[http://dx.doi.org/10.1002/cjoc.200591611]
[34]
Fu, L.; Liu, Z.; Ge, J.; Guo, M.; Zhang, H.; Chen, F.; Su, W.; Yu, A. (001) Plan manipulation of α-Fe2O3 nanostructures for enhanced electrochemical Cr(VI) sensing. J. Electroanal. Chem. (Lausanne Switz.), 2019, 841, 142-147.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.046]
[35]
Zhou, J.; Zheng, Y.; Zhang, J.; Karimi-Maleh, H.; Xu, Y.; Zhou, Q.; Fu, L.; Wu, W. Characterization of the electrochemical profiles of lycoris seeds for species identification and infrageneric relationships. Anal. Lett., 2020, 53(15), 2517-2528.
[http://dx.doi.org/10.1080/00032719.2020.1746327]
[36]
Medeiros, R.A.; Baccarin, M.; Fatibello-Filho, O.; Rocha-Filho, R.C.; Deslouis, C.; Debiemme-Chouvy, C. Comparative study of basal-plane pyrolytic graphite, boron-doped diamond, and amorphous carbon nitride electrodes for the voltammetric determination of furosemide in pharmaceutical and urine samples. Electrochim. Acta, 2016, 197, 179-185.
[http://dx.doi.org/10.1016/j.electacta.2015.10.065]
[37]
Kuzmanović, D.; Khan, M.; Mehmeti, E.; Nazir, R.; Amaizah, N.R.R.; Stanković, D.M. Determination of Pyridoxine (Vitamin B6) in pharmaceuticals and urine samples using unmodified boron-doped diamond electrode. Diamond Related Materials, 2016, 64, 184-189.
[http://dx.doi.org/10.1016/j.diamond.2016.02.018]
[38]
Xie, S.; Liu, Y.; Deng, J.; Zang, S.; Zhang, Z.; Arandiyan, H.; Dai, H. Efficient removal of methane over cobalt-monoxide-doped AuPd nanocatalysts. Environ. Sci. Technol., 2017, 51(4), 2271-2279.
[http://dx.doi.org/10.1021/acs.est.6b03983] [PMID: 28103021]
[39]
Silva, T.A.; Pereira, G.F.; Fatibello-Filho, O.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Electroanalytical sensing of indigo carmine dye in water samples using a cathodically pretreated boron-doped diamond electrode. J. Electroanal. Chem. (Lausanne Switz.), 2016, 769, 28-34.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.015]
[40]
Brycht, M.; Kaczmarska, K.; Uslu, B.; Ozkan, S.A.; Skrzypek, S. Sensitive determination of anticancer drug imatinib in spiked human urine samples by differential pulse voltammetry on anodically pretreated boron-doped diamond electrode. Diamond Related Materials, 2016, 68, 13-22.
[http://dx.doi.org/10.1016/j.diamond.2016.05.007]
[41]
Cinková, K.; Švorc, Ľ.; Šatkovská, P.; Vojs, M.; Michniak, P.; Marton, M. Simple and rapid quantification of folic acid in pharmaceutical tablets using a cathodically pretreated highly boron-doped polycrystalline diamond electrode. Anal. Lett., 2016, 49(1), 107-121.
[http://dx.doi.org/10.1080/00032719.2014.999272]
[42]
Moraes, J.T.; Eisele, A.P.; Salamanca-Neto, C.A.; Scremin, J.; Sartori, E.R. Simultaneous voltammetric determination of antihypertensive drugs amlodipine and atenolol in pharmaceuticals using a cathodically pretreated boron-doped diamond electrode. J. Braz. Chem. Soc., 2016, 27(7), 1264-1272.
[http://dx.doi.org/10.5935/0103-5053.20160023]
[43]
Santos, A.M.; Vicentini, F.C.; Deroco, P.B.; Rocha-Filho, R.C.; Fatibello-Filho, O. Square-wave voltammetric determination of paracetamol and codeine in pharmaceutical and human body fluid samples using a cathodically pretreated boron-doped diamond electrode. J. Braz. Chem. Soc., 2015, 26(10), 2159-2168.
[http://dx.doi.org/10.5935/0103-5053.20150203]
[44]
Garbellini, G.S.; Rocha-Filho, R.C.; Fatibello-Filho, O. Voltammetric Determination of ciprofloxacin in urine samples and its interaction with dsdna on a cathodically pretreated boron-doped diamond electrode. Anal. Methods, 2015, 7(8), 3411-3418.
[http://dx.doi.org/10.1039/C5AY00625B]
[45]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: a review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[46]
Alothman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products: an analytical approach. Rev. Adv. Sci. Eng., 2013, 2(2), 155-166.
[http://dx.doi.org/10.1166/rase.2013.1039]
[47]
Rahman, N.; Azmi, S.N.H.; Wu, H-F. The importance of impurity analysis in pharmaceutical products: an integrated approach. Accredit. Qual. Assur., 2006, 11(1–2), 69-74.
[http://dx.doi.org/10.1007/s00769-006-0095-y]
[48]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; Cai, W.; Lin, C-T. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry, 2019, 129, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.001] [PMID: 31200249]
[49]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Xu, Y.; Zhou, J.; Zhang, H.; Karimi-Maleh, H.; Lai, G.; Zhao, S.; Su, W.; Yu, J.; Lin, C-T. Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. Biosens. Bioelectron., 2020.159112212
[http://dx.doi.org/10.1016/j.bios.2020.112212] [PMID: 32364933]
[50]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene Oxide/FeNi3-Ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[51]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[52]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movaghgharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-Hydroxysuccinimide in water samples. J. Mol. Liq., 2020.310113185
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[53]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2020, 20(7), 682-692.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[54]
Zhang, X.; Yang, R.; Li, Z.; Zhang, M.; Wang, Q.; Xu, Y.; Fu, L.; Du, J.; Zheng, Y.; Zhu, J. Electroanalytical study of infrageneric relationship of lagerstroemia using glassy carbon electrode recorded voltammograms. Rev. Mex. Ing. Quim., 2020, 19(1), 281-291.
[55]
Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; Ruan, S. Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens. Actuators B Chem., 2020.304127390
[http://dx.doi.org/10.1016/j.snb.2019.127390]
[56]
Moraes, J.T.; Salamanca-Neto, C.A.R.; Švorc, Ľ.; Sartori, E.R. Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode. Microchem. J., 2017, 134, 173-180.
[http://dx.doi.org/10.1016/j.microc.2017.06.001]
[57]
Sanjuán, I.; Brotons, A.; Hernández-Ibáñez, N.; Foster, C.W.; Banks, C.E.; Iniesta, J. Boron-doped diamond electrodes explored for the electroanalytical detection of 7-methylguanine and applied for its sensing within urine samples. Electrochim. Acta, 2016, 197, 167-178.
[http://dx.doi.org/10.1016/j.electacta.2015.11.026]
[58]
Mansano, G.R.; Eisele, A.P.P.; Dall’Antonia, L.H.; Afonso, S.; Sartori, E.R. Electroanalytical application of a boron-doped diamond electrode: improving the simultaneous voltammetric determination of amlodipine and valsartan in urine and combined dosage forms. J. Electroanal. Chem. (Lausanne Switz.), 2015, 738, 188-194.
[http://dx.doi.org/10.1016/j.jelechem.2014.11.034]
[59]
Figueiredo-Filho, L.C.; Sartori, E.R.; Fatibello-Filho, O. Electroanalytical determination of the linuron herbicide using a cathodically pretreated boron-doped diamond electrode: comparison with a boron-doped diamond electrode modified with platinum nanoparticles. Anal. Methods, 2015, 7(2), 643-649.
[http://dx.doi.org/10.1039/C4AY02182G]
[60]
Mansano, G.R.; Eisele, A.P.P.; Sartori, E.R. Electrochemical evaluation of a boron-doped diamond electrode for simultaneous determination of an antihypertensive ternary mixture of amlodipine, hydrochlorothiazide and valsartan in pharmaceuticals. Anal. Methods, 2015, 7(3), 1053-1060.
[http://dx.doi.org/10.1039/C4AY02511C]
[61]
Duarte, E.H.; Casarin, J.; Sartori, E.R.; Tarley, C.R.T. Highly improved simultaneous herbicides determination in water samples by differential pulse voltammetry using boron-doped diamond electrode and solid phase extraction on cross-linked poly (Vinylimidazole). Sens. Actuators B Chem., 2018, 255, 166-175.
[http://dx.doi.org/10.1016/j.snb.2017.08.021]
[62]
Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y-L.; Zhou, C.; Wang, C.; Ruan, S. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta, 2019, 1081, 51-58.
[http://dx.doi.org/10.1016/j.aca.2019.06.055] [PMID: 31446963]
[63]
Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C-T.; Yu, A. Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. Bioelectrochemistry, 2020.133107455
[http://dx.doi.org/10.1016/j.bioelechem.2020.107455] [PMID: 31978859]
[64]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A Nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[65]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel Nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020.250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[66]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[67]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[68]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[69]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[70]
He, L.; Xu, Z.; Hirokawa, T.; Shen, L. Simultaneous determination of aliphatic, aromatic and heterocyclic biogenic amines without derivatization by capillary electrophoresis and application in beer analysis. J. Chromatogr. A, 2017, 1482, 109-114.
[http://dx.doi.org/10.1016/j.chroma.2016.12.067] [PMID: 28041619]
[71]
Wang, N.; Su, M.; Liang, S.; Sun, H. Investigation of six bioactive anthraquinones in slimming tea by accelerated solvent extraction and high performance capillary electrophoresis with diode-array detection. Food Chem., 2016, 199, 1-7.
[http://dx.doi.org/10.1016/j.foodchem.2015.11.083] [PMID: 26775937]
[72]
Cunha, R.R.; Chaves, S.C.; Ribeiro, M.M.; Torres, L.M.; Muñoz, R.A.; Dos Santos, W.T.; Richter, E.M. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection. J. Sep. Sci., 2015, 38(10), 1657-1662.
[http://dx.doi.org/10.1002/jssc.201401387] [PMID: 25773878]
[73]
Chen, L.; Hu, J.; Zhang, W.; Zhang, J.; Guo, P.; Sun, C. Simultaneous determination of nine banned azo dyes in foodstuffs and beverages by high-performance capillary electrophoresis. Food Anal. Methods, 2015, 8(8), 1903-1910.
[http://dx.doi.org/10.1007/s12161-014-0074-6]
[74]
Ying, J.; Zheng, Y.; Zhang, H.; Fu, L. Room temperature biosynthesis of gold nanoparticles with lycoris aurea leaf extract for the electrochemical determination of aspirin. Rev. Mex. Ing. Quim., 2020, 19(2), 585-592.
[http://dx.doi.org/10.24275/rmiq/Mat741]
[75]
Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the electrochemical profile of pueraria leaves for polyphyly analysis. ChemistrySelect, 2020, 5(17), 5035-5040.
[http://dx.doi.org/10.1002/slct.202001100]
[76]
Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; Yu, A.; Cai, W.; Lin, C-T. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sens. Actuators B Chem., 2019.298126836
[http://dx.doi.org/10.1016/j.snb.2019.126836]
[77]
Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; Yu, J.; Lin, C.T. Electrochemical sex determination of dioecious plants using polydopamine-functionalized graphene sheets. Front Chem., 2020, 8, 92.
[http://dx.doi.org/10.3389/fchem.2020.00092] [PMID: 32211371]
[78]
Qu, H.; Mudalige, T.K.; Linder, S.W. Arsenic speciation in rice by capillary electrophoresis/inductively coupled plasma mass spectrometry: enzyme-assisted water-phase microwave digestion. J. Agric. Food Chem., 2015, 63(12), 3153-3160.
[http://dx.doi.org/10.1021/acs.jafc.5b00446] [PMID: 25751525]
[79]
Zhang, W.; Hankemeier, T.; Ramautar, R. Next-generation capillary electrophoresis-mass spectrometry approaches in metabolomics. Curr. Opin. Biotechnol., 2017, 43, 1-7.
[http://dx.doi.org/10.1016/j.copbio.2016.07.002] [PMID: 27455398]
[80]
Tascon, M.; Gagliardi, L.G.; Benavente, F. Parts-per-trillion detection of harmala alkaloids in Undaria pinnatifida algae by on-line solid phase extraction capillary electrophoresis mass spectrometry. Anal. Chim. Acta, 2017, 954, 60-67.
[http://dx.doi.org/10.1016/j.aca.2016.12.012] [PMID: 28081815]
[81]
Lee, H.G.; Kwon, J.Y.; Chung, D.S. Sensitive arsenic speciation by capillary electrophoresis using UV absorbance detection with on-line sample preconcentration techniques. Talanta, 2018, 181, 366-372.
[http://dx.doi.org/10.1016/j.talanta.2018.01.034] [PMID: 29426526]
[82]
Gulersonmez, M.C.; Lock, S.; Hankemeier, T.; Ramautar, R. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling. Electrophoresis, 2016, 37(7-8), 1007-1014.
[http://dx.doi.org/10.1002/elps.201500435] [PMID: 26593113]
[83]
Zhang, Z.; Kwok, R.T.K.; Yu, Y.; Tang, B.Z.; Ng, K.M. Aggregation-induced emission luminogen-based fluorescence detection of hypoxanthine: a probe for biomedical diagnosis of energy metabolism-related conditions. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(28), 4575-4578.
[http://dx.doi.org/10.1039/C8TB00803E] [PMID: 32254400]
[84]
Dresler, S.; Kubrak, T.; Rutkowska, E.; Gagoś, M.; Bogucka-Kocka, A.; Świeboda, R.; Wójcik, M. Comparison of analytical methods in chemometric fingerprinting of metallicolous and non-metallicolous populations of Echium vulgare L. Phytochem. Anal., 2016, 27(5), 239-248.
[http://dx.doi.org/10.1002/pca.2620] [PMID: 27438582]
[85]
Ma, X-L.; Song, F.F.; Zhang, H.; Huan, X.; Li, S.Y. Compositional monosaccharide analysis of Morus nigra Linn by HPLC and HPCE quantitative determination and comparison of polysaccharide from Morus nigra Linn by HPCE and HPLC. Curr. Pharm. Anal., 2017, 13(5), 433-437.
[http://dx.doi.org/10.2174/1573412913666170330150807] [PMID: 29213223]
[86]
Zeng, X.; Yang, Y.; Chen, Z.; Tang, Q.; Shi, L. Contents determination of luteoloside, quercetin and hyperoside in the extract of Lonicera Japonica by HPCE. China Pharm., 2017, 28(18), 2543-2545.
[87]
Urbaniak, B.; Plewa, S.; Kokot, Z.J.; Kokot, Z. Preliminary High Performance Capillary Electrophoresis (HPCE) studies of enzymatic degradation of hyaluronic acid by hyaluronidase in the presence of polyvalent metal ions. Acta Pol. Pharm., 2017, 74(1), 41-51.
[PMID: 29474760]
[88]
Chen, N.D.; Meng, Y.F.; Yao, H.J.; Cao, C.Y.; Chen, C.; Li, J. Study on monosaccharide compositions of polysaccharide in dendrobium stems of different resources by PMP-HPCE. Zhong Yao Cai, 2015, 38(8), 1607-1610.
[PMID: 26983229]
[89]
Bai, H.; Wang, C.; Chen, J.; Peng, J.; Cao, Q. A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens. Bioelectron., 2015, 64, 352-358.
[http://dx.doi.org/10.1016/j.bios.2014.09.034] [PMID: 25259878]
[90]
Su, M.; Chen, P.; Sun, H. Development and analytical application of chemiluminescence with some super normal metal complexes as oxidant. TrAC. Trends Analyt. Chem., 2018, 100, 36-52.
[http://dx.doi.org/10.1016/j.trac.2017.11.018]
[91]
Visioli, G.; Comastri, A.; Imperiale, D.; Paredi, G.; Faccini, A.; Marmiroli, N. Gel-based and gel-free analytical methods for the detection of HMW-GS and LMW-GS in Wheat Flour. Food Anal. Methods, 2016, 9(2), 469-476.
[http://dx.doi.org/10.1007/s12161-015-0218-3]
[92]
Shahzad, F.; Zaidi, S.A.; Koo, C.M. Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection. Sens. Actuators B Chem., 2017, 241, 716-724.
[http://dx.doi.org/10.1016/j.snb.2016.10.144]
[93]
Oriana, B.; Sabrina, F.; Cecilia, D.; Manuela, M.; Valeria, T.; Silvia, L. LC-MS/MS method applied to the detection and quantification of ursodeoxycholic acid related substances in raw material and pharmaceutical formulation. J. Pharm. Pharmacol., 2018, 6, 448-455.
[94]
Luan, F.; Lu, Y.; Tang, L.; Liu, H. Determination of Cd2+, Cr3+, Cu2+ and Zn2+ in traditional chinese medicine shuanghuanglian oral liquid by high performance capillary electrophoresis. Curr. Anal. Chem., 2017, 13(3), 250-255.
[http://dx.doi.org/10.2174/1573412912666161013144007]
[95]
Orozco, C.; Elementi, L.; Feher, S.; Friedsam, H.W.; Grudzinski, J.J.; Hejdukova, J.; Lamm, M.J.; Nogiec, J.M.; Pollack, B.; Schmitt, M.H. Hall probe calibration system design for the Mu2e solenoid field mapping system. IEEE Trans. Appl. Supercond., 2018, 28(3), 1-4.
[http://dx.doi.org/10.1109/TASC.2018.2805830]
[96]
Shishkanová, T.V.; Řezanková, K.; Řezanka, P. Influence of surface properties on the deposition of a polyaniline film and detection of tumor markers. Chem. Pap., 2017, 71(2), 489-494.
[http://dx.doi.org/10.1007/s11696-016-0067-6]
[97]
Zhou, J.; Sun, X.; Wang, K. Sensitive artemisinin electrochemical sensor based on polymerized molecularly imprinted membranes. Int. J. Electrochem. Sci., 2016, 11(4), 3114-3122.
[http://dx.doi.org/10.20964/110403114]
[98]
Wu, J.; Wang, Q.; Xie, J.; Pan, Y-B.; Zhou, F.; Guo, Y.; Chang, H.; Xu, H.; Zhang, W.; Zhang, C. SSR Marker-assisted management of parental germplasm in sugarcane (Saccharum Spp. Hybrids) breeding programs. Agronomy (Basel), 2019, 9(8), 449.
[http://dx.doi.org/10.3390/agronomy9080449]
[99]
Huang, X.; Zare, R.N.; Sloss, S.; Ewing, A.G. End-column detection for capillary zone electrophoresis. Anal. Chem., 1991, 63(2), 189-192.
[http://dx.doi.org/10.1021/ac00002a020] [PMID: 1812795]
[100]
Gonzalez, E.; Laserna, J.J. Capillary zone electrophoresis for the rapid screening of banned drugs in sport. Electrophoresis, 1994, 15(2), 240-243.
[http://dx.doi.org/10.1002/elps.1150150141] [PMID: 7913016]
[101]
González, E.; Becerra, A.; Laserna, J.J. Direct determination of diuretic drugs in urine by capillary zone electrophoresis using fluorescence detection. J. Chromatogr. B Biomed. Appl., 1996, 687(1), 145-150.
[http://dx.doi.org/10.1016/S0378-4347(96)00100-4] [PMID: 9001961]
[102]
Vadillo, J.M.; Gonzalez, M.E.; Carretero, I.; Laserna, J.J. Evaluation of micellar liquid chromatography and capillary zone electrophoresis for dope control in sport. Mikrochim. Acta, 1995, 118(3–4), 273-282.
[http://dx.doi.org/10.1007/BF01244368]
[103]
Lu, M.; Tong, P.; Xiao, H.; Xia, S.; Zheng, X.; Liu, W.; Zhang, L.; Chen, G. A new method for screening and determination of diuretics by on-line CE-ESI-MS. Electrophoresis, 2007, 28(9), 1461-1471.
[http://dx.doi.org/10.1002/elps.200600543] [PMID: 17367107]
[104]
Chen, G.; Zhang, L.; Wu, X.; Ye, J. Determination of mannitol and three sugars in ligustrum lucidum ait. by capillary electrophoresis with electrochemical detection. Anal. Chim. Acta, 2005, 530(1), 15-21.
[http://dx.doi.org/10.1016/j.aca.2004.08.053]
[105]
Alnajjar, A.O.; Idris, A.M.; Attimarad, M.V.; Aldughaish, A.M.; Elgorashe, R.E. Capillary electrophoresis assay method for metoprolol and hydrochlorothiazide in their combined dosage form with multivariate optimization. J. Chromatogr. Sci., 2013, 51(1), 92-97.
[http://dx.doi.org/10.1093/chromsci/bms107] [PMID: 22752183]
[106]
Liu, T-T.; Xiang, L-L.; Wang, J-L.; Chen, D-Y. Application of capillary electrophoresis-frontal analysis for comparative evaluation of the binding interaction of captopril with human serum albumin in the absence and presence of hydrochlorothiazide. J. Pharm. Biomed. Anal., 2015, 115, 31-35.
[http://dx.doi.org/10.1016/j.jpba.2015.06.022] [PMID: 26142561]
[107]
de Carvalho, L.M.; Viana, C.; Moreira, A.P.L.; do Nascimento, P.C.; Bohrer, D.; Motta, M.J.; da Silveira, G.D. Pulsed Amperometric Detection (PAD) of diuretic drugs in herbal formulations using a gold electrode following ion-pair chromatographic separation. J. Solid State Electrochem., 2013, 17(6), 1601-1608.
[http://dx.doi.org/10.1007/s10008-013-2115-2]
[108]
Al Azzam, K.M.; Saad, B.; Aboul-Enein, H.Y. Simultaneous determination of atenolol, chlorthalidone and amiloride in pharmaceutical preparations by capillary zone electrophoresis with ultraviolet detection. Biomed. Chromatogr., 2010, 24(9), 977-981.
[http://dx.doi.org/10.1002/bmc.1395] [PMID: 20066730]
[109]
Zheng, L.; Zhang, L.; Tong, P.; Zheng, X.; Chi, Y.; Chen, G. Highly sensitive transient isotachophoresis sample stacking coupling with capillary electrophoresis-amperometric detection for analysis of doping substances. Talanta, 2010, 81(4-5), 1288-1294.
[http://dx.doi.org/10.1016/j.talanta.2010.02.023] [PMID: 20441897]
[110]
Li, L.; Huang, Y.; Zhao, W.; Zhang, G.; Zhang, H.; Chen, A. Simultaneous separation and rapid determination of spironolactone and its metabolite canrenone in different pharmaceutical formulations and urinary matrices by capillary zone electrophoresis. J. Sep. Sci., 2016, 39(14), 2869-2875.
[http://dx.doi.org/10.1002/jssc.201600255] [PMID: 27257119]
[111]
Nezhadali, A.; Mojarrab, M. Computational study and multivariate optimization of hydrochlorothiazide analysis using molecularly imprinted polymer electrochemical sensor based on carbon nanotube/polypyrrole film. Sens. Actuators B Chem., 2014, 190, 829-837.
[http://dx.doi.org/10.1016/j.snb.2013.08.086]
[112]
Alghamdi, A.F. Electrochemical oxidation behavior of hydrochlorothiazide on a glassy carbon electrode and its voltammetric determination in pharmaceutical formulations and biological fluids. Yao Wu Shi Pin Fen Xi, 2014, 22(3), 363-369.
[http://dx.doi.org/10.1016/j.jfda.2013.12.003] [PMID: 28911427]
[113]
Smajdor, J.; Piech, R.; Paczosa-Bator, B. Spironolactone voltammetric determination on renewable amalgam film electrode. Steroids, 2018, 130, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2017.12.007] [PMID: 29247657]