Herbal Medicines for Diabetes Management and its Secondary Complications

Page: [437 - 456] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Diabetic Mellitus (DM) is a metabolic disorder that is concerning for people all over the world. DM is caused due to lack of insulin or ineffective production of insulin in the pancreas. A total of 463 million people were reported to have diabetes mellitus in 2019 and this number is predicted to rise up to 578 million by the year 2030 and 700 million by 2045. High blood sugar gives rise to many complications like diabetic retinopathy, diabetic nephropathy, atherosclerosis, hypercoagulability, cardiovascular disease, coronary heart disease, abdominal obesity, hypertension, hyperlipidemia, cerebrovascular disease, coronary artery disease, foot damage, skin complications, Alzheimer’s disease, hearing impairment, and depression. These life-threatening complications make diabetes more severe than other diseases. Many synthetic drugs have been developed, but still, a complete cure is not provided by any of the molecules. Continuous use of some synthetic agents causes severe side effects, and thus the demand for non-toxic, affordable drugs still persists. Traditional treatments have been an extremely valued source of medicine all over human history. These are extensively used throughout the world, indicating that herbs are a growing part of modern and high-tech medicines. The World Health Organization (WHO) has listed a total of 21,000 plants, which are used for medicinal purposes around the world. Among them, more than 400 plants are available for the treatment of diabetes. Despite the fact that there are many herbal drugs available for treating diabetes, only a small number of these plants have undergone scientific and medical evaluation to assess their efficacy. Trigonella foenum-graecum, Allium sativum, Caesalpinia bonduc, Ferula assafoetida,etc., are some of the medicinal plants used for antidiabetic therapy. The presence of phenolic compounds, flavonoids, terpenoids, and coumarins is responsible for the antidiabetic nature of the medicinal plants. These constituents have shown a reduction in blood glucose levels. Pycnogenol, acarbose, miglitol, and voglibose are some of the examples of marketed drugs, which are obtained from natural origin and used as antidiabetic drugs. The active principles derived from the plants work through many antidiabetic mechanisms, which include inhibition of α-glucosidase, α-amylase, and protein tyrosine phosphatase 1B activities. One of the major advantages of herbal drugs is the low level of side effects attributed to these medicines, and this attracted various researchers to develop new molecules for the treatment of diabetes. In this review, recent advances in the field of herbal drugs to treat diabetes, prevent secondary complications from arising due to diabetes, and various herbal molecules in different stages of clinical trials will be emphasized upon.

Keywords: Diabetic mellitus, hyperlipidemia, herbal medicines, nephropathy, renal dysfunction, retinopathy, secondary complications.

[1]
Bastaki A. Diabetes mellitus and its treatment. Int J Diabetes Metab 2005; 13: 111-34.
[http://dx.doi.org/10.1159/000497580]
[2]
Bharatam PV, Patel DS, Adane L, Mittal A, Sundriyal S. Modeling and informatics in designing anti-diabetic agents. Curr Pharm Des 2007; 13(34): 3518-30.
[http://dx.doi.org/10.2174/138161207782794239] [PMID: 18220788]
[3]
Khatik GL, Datusalia AK, Ahsan W, et al. A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr Drug Discov Technol 2018; 15(3): 163-77.
[http://dx.doi.org/10.2174/1570163814666170915134018] [PMID: 28914188]
[4]
Federation ID. International Diabetes Federation: Latest Figures Show 463 Million People Now Living With Diabetes Worldwide as Numbers Continue to Rise 2019. 2019. https://www.prnewswire.com/news-releases/international-diabetes-federation-latest-figures-show-463-million-people-now-living-with- diabetes-worldwide-as-numbers-continue-to-rise-300956922.html
[5]
Eknoyan G, Nagy J. A history of diabetes mellitus or how a disease of the kidneys evolved into a kidney disease. Adv Chronic Kidney Dis 2005; 12(2): 223-9.
[http://dx.doi.org/10.1053/j.ackd.2005.01.002] [PMID: 15822058]
[6]
Kaur P, Mittal A, Nayak SK, Vyas M, Mishra V, Khatik GL. Current strategies and drug targets in the management of type 2 diabetes mellitus. Curr Drug Targets 2018; 19(15): 1738-66.
[http://dx.doi.org/10.2174/1389450119666180727142902] [PMID: 30051787]
[7]
Kumar S, Khatik GL, Mittal A. Recent Developments in Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors as a Valuable Tool in the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2020; 20(3): 170-82.
[http://dx.doi.org/10.2174/1389557519666191009163519] [PMID: 32134370]
[8]
Birdee GS, Yeh G. Complementary and alternative medicine therapies for diabetes: A clinical review. Clin Diabetes 2010; 28: 147-55.
[http://dx.doi.org/10.2337/diaclin.28.4.147]
[9]
Vishnu N, Mini GK, Thankappan KR. Complementary and alternative medicine use by diabetes patients in Kerala, India. Glob Health Epidemiol Genom 2017; 2: e6.
[http://dx.doi.org/10.1017/gheg.2017.6] [PMID: 29868217]
[10]
Bhalerao MS, Bolshete PM, Swar BD, et al. Use of and satisfaction with complementary and alternative medicine in four chronic diseases: a cross-sectional study from India. Natl Med J India 2013; 26(2): 75-8.
[PMID: 24093979]
[11]
Ekar T, Kreft S. Common risks of adulterated and mislabeled herbal preparations. Food Chem Toxicol 2019; 123: 288-97.
[http://dx.doi.org/10.1016/j.fct.2018.10.043] [PMID: 30339960]
[12]
Adeniyi A, Asase A, Ekpe PK, Asitoakor BK, Adu-Gyamfi A, Avekor PY. Ethnobotanical study of medicinal plants from Ghana; confirmation of ethnobotanical uses, and review of biological and toxicological studies on medicinal plants used in Apra Hills Sacred Grove. J Herb Med 2018; 14: 76-87.
[http://dx.doi.org/10.1016/j.hermed.2018.02.001]
[13]
Khursheed R, Singh SK, Wadhwa S, et al. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862: 172625.
[http://dx.doi.org/10.1016/j.ejphar.2019.172625] [PMID: 31449807]
[14]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30.
[PMID: 28197471]
[15]
Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 2014; 1840(9): 2709-29.
[http://dx.doi.org/10.1016/j.bbagen.2014.05.017] [PMID: 24905298]
[16]
Gallagher EJ, LeRoith D. Obesity and diabetes: the increased risk of cancer and cancer-related mortality. Physiol Rev 2015; 95(3): 727-48.
[http://dx.doi.org/10.1152/physrev.00030.2014] [PMID: 26084689]
[17]
Cameron AR, Morrison VL, Levin D, et al. Anti inflammatory effects of metformin irrespective of diabetes status. Circ Res 2016; 119(5): 652-65.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[18]
Holekamp NM. Overview of diabetic macular edema. Am J Manag Care 2016; 22(10)(Suppl.): s284-91.
[PMID: 27668630]
[19]
Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med 2015; 81(12-13): 975-94.
[http://dx.doi.org/10.1055/s-0035-1546131] [PMID: 26132858]
[20]
Dwivedi C, Daspaul S. Antidiabetic herbal drugs and polyherbal formulation used for diabetes: A review. J Phytopharmacol 2013; 2: 44-51.
[21]
Fujisawa T, Ikegami H, Inoue K, Kawabata Y, Ogihara T. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism 2005; 54(3): 387-90.
[http://dx.doi.org/10.1016/j.metabol.2004.10.004] [PMID: 15736118]
[22]
Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008; 53(4): 163-6.
[http://dx.doi.org/10.4103/0019-5154.44785] [PMID: 19882025]
[23]
Tabolacci C, Lentini A, Mattioli P, et al. Antitumor properties of aloe-emodin and induction of transglutaminase 2 activity in B16-F10 melanoma cells. Life Sci 2010; 87(9-10): 316-24.
[http://dx.doi.org/10.1016/j.lfs.2010.07.003] [PMID: 20624404]
[24]
Chatterjee P, Mukherjee A, Nandy S. Protective effects of the aqueous leaf extract of Aloe barbadensis on gentamicin and cisplatin-induced nephrotoxic rats. Asian Pac J Trop Biomed 2012; 2: S1754-63.
[http://dx.doi.org/10.1016/S2221-1691(12)60490-0]
[25]
Sahu PK, Giri DD, Singh R, Pandey P, Gupta S, Shrivastava AK, et al. Therapeutic and medicinal uses of Aloe vera: a review. Pharmacol Pharm 2013; 4: 599-610.
[http://dx.doi.org/10.4236/pp.2013.48086]
[26]
Yasin MS, Ferdosi MF, Nasir F, Shahzad M, Malik A. Effect of Aloe vera gel on lipid profile in alloxan induced diabetic mice. Mycopath 2011; 9: 67-70.
[27]
Mohamed EAK. Antidiabetic, antihypercholestermic and antioxidative effect of Aloe vera gel extract in alloxan induced diabetic rats. Aust J Basic Appl Sci 2011; 5: 1321-7.
[28]
Yeggnisetty Ramachandraiahgari RM, Somesula SR, Adi PJ, Mannur IS, Enamala M, Matcha B. Protective role of ethanolic extract of aloe vera antioxidant properties on liver and kidney of streptozotocin-induced diabetic rats. Dig J Nanomater Biostruct 2012; 7: 175-84.
[29]
Mohapatra S, Rath B, Maharana C, Pradhan S, Tripathy S. Hypoglycemic, hypolipidemic properties of aloe vera in streptozotocin induced diabetic rats. Int J Biol Med Res 2013; 4: 2783-7.
[30]
Mude RN. Regulation of type-ii diabetes treatment with aloe vera extract on lipid metabolism status in liver alloxan induced male rats, World. J Pharm Res 2015; 4: 1401-13.
[31]
Arora MK, Sarup Y, Tomar R, Singh M, Kumar P. Amelioration of diabetes-induced diabetic nephropathy by aloe vera: implication of oxidative stress and hyperlipidemia. J Diet Suppl 2019; 16(2): 227-44.
[http://dx.doi.org/10.1080/19390211.2018.1449159] [PMID: 29621403]
[32]
Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-a review. J Ethnopharmacol 2011; 134(1): 1-10.
[http://dx.doi.org/10.1016/j.jep.2010.11.067] [PMID: 21130854]
[33]
Dehpour AA, Ebrahimzadeh MA, Fazel NS, Mohammad NS. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition, Grasas. Y. Aceites 2009; 60: 405-12.
[http://dx.doi.org/10.3989/gya.010109]
[34]
Lee C-L, Chiang L-c, Cheng L-H, et al. Influenza A (H1N1) antiviral and cytotoxic agents from Ferula assa-foetida. J Nat Prod 2009; 72(9): 1568-72.
[http://dx.doi.org/10.1021/np900158f] [PMID: 19691312]
[35]
Saleem M, Alam A, Sultana S. Asafoetida inhibits early events of carcinogenesis: a chemopreventive study. Life Sci 2001; 68(16): 1913-21.
[http://dx.doi.org/10.1016/S0024-3205(01)00977-8] [PMID: 11292069]
[36]
Latifi E, Mohammadpour AA, H BF, Nourani H. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed Pharmacother 2019; 110: 197-202.
[http://dx.doi.org/10.1016/j.biopha.2018.10.152] [PMID: 30471513]
[37]
Yusufoglu HS, Soliman GA, Abdel-Rahman RF, Abdel-Kader MS, Ganaie MA, Bedir E, et al. Antihyperglycemic and antihyperlipidemic effects of Ferula assa-foetida and Ferula tenuissima extracts in diabetic rats. Pak J Biol Sci 2015; 18: 314-23.
[http://dx.doi.org/10.3923/pjbs.2015.314.323]
[38]
Iranshahi M, Alizadeh M. Antihyperglycemic effect of Asafoetida (Ferula assafoetida Oleo-Gum-Resin) in streptozotocin-induced diabetic rats. World Appl Sci J 2012; 17: 157-62.
[39]
Díaz-de-Cerio E, Verardo V, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A. Health effects of Psidium guajava L. Leaves: An overview of the last decade. Int J Mol Sci 2017; 18(4): 897-928.
[http://dx.doi.org/10.3390/ijms18040897] [PMID: 28441777]
[40]
Wang H, Du Y-J, Song H-C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem 2010; 123: 6-13.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.088]
[41]
Wang B, Liu HC, Hong JR, Li HG, Huang CY. Effect of Psidium guajava leaf extract on alpha-glucosidase activity in small intestine of diabetic mouse. 2007; 38(2): 298-301.
[PMID: 17441354]
[42]
Vinayagam R, Jayachandran M, Chung SSM, Xu B. Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 103: 1012-7.
[http://dx.doi.org/10.1016/j.biopha.2018.04.127] [PMID: 29710658]
[43]
Beidokhti MN, Eid HM, Villavicencio MLS, et al. Evaluation of the antidiabetic potential of Psidium guajava L. (Myrtaceae) using assays for α-glucosidase, α-amylase, muscle glucose uptake, liver glucose production, and triglyceride accumulation in adipocytes. J Ethnopharmacol 2020; 257: 112877.
[http://dx.doi.org/10.1016/j.jep.2020.112877] [PMID: 32305639]
[44]
Ghosh R, Jana P, Sinha AK. The control of hyperglycemia in alloxan treated diabetic mice through the stimulation of hepatic insulin synthesis due to the production of nitric oxide. Exp Clin Endocrinol Diabetes 2012; 120(3): 145-51.
[http://dx.doi.org/10.1055/s-0031-1291298] [PMID: 22231923]
[45]
Bhattacharya S, Chakraborty Patra S, Basu Roy S, Kahn NN, Sinha AK. Purification and properties of insulin-activated nitric oxide synthase from human erythrocyte membranes. Arch Physiol Biochem 2001; 109(5): 441-9.
[http://dx.doi.org/10.1076/apab.109.5.441.8042] [PMID: 11935386]
[46]
Bauer D, Redmon N, Mazzio E, et al. Diallyl disulfide inhibits TNFα induced CCL2 release through MAPK/ERK and NF-Kappa-B signaling. Cytokine 2015; 75(1): 117-26.
[http://dx.doi.org/10.1016/j.cyto.2014.12.007] [PMID: 26100848]
[47]
Karagodin VP, Sobenin IA, Orekhov AN. A Sobenin I, N Orekhov A, Antiatherosclerotic and cardioprotective effects of time-released garlic powder pills. Curr Pharm Des 2016; 22(2): 196-213.
[http://dx.doi.org/10.2174/1381612822666151112153351] [PMID: 26561055]
[48]
Ariga T, Seki T. Antithrombotic and anticancer effects of garlic-derived sulfur compounds: a review. Biofactors 2006; 26(2): 93-103.
[http://dx.doi.org/10.1002/biof.5520260201] [PMID: 16823096]
[49]
Srivastava KC, Tyagi OD. Effects of a garlic-derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets. Prostagl Leukot Essent Fatt Aci 1993; 49(2): 587-95.
[http://dx.doi.org/10.1016/0952-3278(93)90165-S] [PMID: 8415808]
[50]
Liu CT, Sheen LY, Lii CK. Does garlic have a role as an antidiabetic agent? Mol Nutr Food Res 2007; 51(11): 1353-64.
[http://dx.doi.org/10.1002/mnfr.200700082] [PMID: 17918164]
[51]
Bhattacharya S, Maji U, Khan GA, et al. Antidiabetic role of a novel protein from garlic via NO in expression of Glut-4/insulin in liver of alloxan induced diabetic mice. Biomed Pharmacother 2019; 111: 1302-14.
[http://dx.doi.org/10.1016/j.biopha.2019.01.036] [PMID: 30841444]
[52]
Ziamajidi N, Nasiri A, Abbasalipourkabir R, Sadeghi Moheb S. Effects of garlic extract on TNF-α expression and oxidative stress status in the kidneys of rats with STZ + nicotinamide-induced diabetes. Pharm Biol 2017; 55(1): 526-31.
[http://dx.doi.org/10.1080/13880209.2016.1255978] [PMID: 27937047]
[53]
Mackeen M, Ali A, El-Sharkawy S, Manap M, Salleh K, Lajis N, et al. Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables (ulam). Int J Pharmacol 1997; 35: 174-8.
[54]
Pushparaj P, Tan CH, Tan BK. Effects of Averrhoa bilimbi leaf extract on blood glucose and lipids in streptozotocin-diabetic rats. J Ethnopharmacol 2000; 72(1-2): 69-76.
[http://dx.doi.org/10.1016/S0378-8741(00)00200-2] [PMID: 10967456]
[55]
Ambili S, Subramoniam A, Nagarajan NS. Studies on the antihyperlipidemic properties of Averrhoa bilimbi fruit in rats. Planta Med 2009; 75(1): 55-8.
[http://dx.doi.org/10.1055/s-0028-1088361] [PMID: 19031370]
[56]
Kurup SB, Mini S. Attenuation of hyperglycemia and oxidative stress in streptozotocin-induced diabetic rats by aqueous extract of Averrhoa bilimbi LINN fruits. Int J Pharm Sci Res 2014; 5: 4979-86.
[57]
Kurup SB, Mini S. Averrhoa bilimbi fruits attenuate hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Yao Wu Shi Pin Fen Xi 2017; 25(2): 360-8.
[http://dx.doi.org/10.1016/j.jfda.2016.06.007] [PMID: 28911678]
[58]
Gurusamy K, Kokilavani R, Teepa KS. Effect of Syzygium calophyllifolium Walp. seed extract on transaminases and phosphatases in alloxan induced diabetic rats. Anc Sci Life 2007; 27(2): 28-33.
[PMID: 22557266]
[59]
Saravanan G, Leelavinothan P. Effects of Syzygium Cumini bark on blood glucose, plasma insulin and C-peptide in streptozotocininduced diabetic rats. Int J Endocrinol Metab 2006; 4: 96-105.
[60]
Chandran R, Parimelazhagan T, George BP. Antihyperglycemic activity of the bark methanolic extract of Syzygium mundagam in diabetic rats. Alex J Med 2017; 53: 317-24.
[http://dx.doi.org/10.1016/j.ajme.2016.12.001]
[61]
Chandran R, George BP, Abrahamse H, Parimelazhagan T. Therapeutic effects of Syzygium mundagam bark methanol extract on type-2 diabetic complications in rats. Biomed Pharmacother 2017; 95: 167-74.
[http://dx.doi.org/10.1016/j.biopha.2017.08.061] [PMID: 28843148]
[62]
Rajan S, Jayendran M, Sethuraman M. Folk herbal practices among Toda tribe of the Nilgiri Hills in Tamil Nadu, India. J Nat Rem 2005; 5: 52-8.
[63]
Sathyavathi R, Janardhanan K. Wild edible fruits used by Badagas of Nilgiri District, Western Ghats, Tamil Nadu, India. J Med Plants Res 2014; 8: 128-32.
[http://dx.doi.org/10.5897/JMPR11.445]
[64]
Chandran R, Sathyanarayanan S, Rajan M, Kasipandi M, Parimelazhagan T. Anti-oxidant, hypoglycemic and anti-hyperglycemic properties of Syzygium calophyllifolium. Bang J Pharmacol 2015; 10: 672-80.
[http://dx.doi.org/10.3329/bjp.v10i3.23361]
[65]
Chandran R, Parimelazhagan T, Shanmugam S, Thankarajan S. Antidiabetic activity of Syzygium calophyllifolium in Streptozotocin-Nicotinamide induced Type-2 diabetic rats. Biomed Pharmacother 2016; 82: 547-54.
[http://dx.doi.org/10.1016/j.biopha.2016.05.036] [PMID: 27470395]
[66]
Ayyanar M, Subash-Babu P. Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac J Trop Biomed 2012; 2(3): 240-6.
[http://dx.doi.org/10.1016/S2221-1691(12)60050-1] [PMID: 23569906]
[67]
Chagas VT, França LM, Malik S, Paes AM. Syzygium cumini (L.) skeels: a prominent source of bioactive molecules against cardiometabolic diseases. Front Pharmacol 2015; 6: 259-66.
[http://dx.doi.org/10.3389/fphar.2015.00259] [PMID: 26578965]
[68]
Bandiola T, Ignacio GB, Yunson E, Bandiola P. Syzygium cumini (L.) Skeels: a review of its phytochemical constituents, toxicity studies, and traditional and pharmacological uses. Int J Appl Pharm Biol Res 2017; 2: 15-23.
[69]
Ajiboye BO, Ojo OA, Akuboh OS, Abiola OM, Idowu O, Amuzat AO. Anti-hyperglycemic and anti inflammatory activities of polyphenolic-rich extract of Syzygium cumini linn leaves in alloxan-induced diabetic rats. J Evid Based Integr Med 2018; 23: X18770630.
[http://dx.doi.org/10.1177/2515690X18770630] [PMID: 29756477]
[70]
Jin L, Chen H-S, Jin YS, Liang S, Xiang ZB, Lu J. Chemical constituents from Belamcanda chinensis. J Asian Nat Prod Res 2008; 10(1-2): 89-94.
[http://dx.doi.org/10.1080/10286020701273619] [PMID: 18058385]
[71]
Zhang L, Wei K, Xu J, et al. Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review. J Ethnopharmacol 2016; 186: 1-13.
[http://dx.doi.org/10.1016/j.jep.2016.03.046] [PMID: 27032710]
[72]
Wu C, Li Y, Chen Y, et al. Hypoglycemic effect of Belamcanda chinensis leaf extract in normal and STZ-induced diabetic rats and its potential active faction. Phytomedicine 2011; 18(4): 292-7.
[http://dx.doi.org/10.1016/j.phymed.2010.07.005] [PMID: 20739161]
[73]
Guo Y, Dai R, Deng Y, Sun L, Meng S, Xin N. Hypoglycemic activity of the extracts of Belamcanda chinensis leaves (BCLE) on KK-Ay mice. Biomed Pharmacother 2019; 110: 449-55.
[http://dx.doi.org/10.1016/j.biopha.2018.11.094] [PMID: 30530047]
[74]
Bello I, Shehu MW, Musa M, Zaini Asmawi M, Mahmud R. Kigelia africana (Lam.) Benth. (Sausage tree): Phytochemistry and pharmacological review of a quintessential African traditional medicinal plant. J Ethnopharmacol 2016; 189: 253-76.
[http://dx.doi.org/10.1016/j.jep.2016.05.049] [PMID: 27220655]
[75]
Gabriel OA, Olubunmi A. Comprehensive scientific demystification of Kigelia africana: A review. Afr J Pur App Chem 2009; 3: 158-64.
[76]
Houghton P, Jâger A. The sausage tree (Kigelia pinnata): ethnobotany and recent scientific work. S Afr J Bot 2002; 68: 14-20.
[http://dx.doi.org/10.1016/S0254-6299(15)30434-8]
[77]
Saini S, Kaur H, Verma B, Singh S. Kigelia africana (Lam.) Benth.-an overview. Nat Prod Rad 2009; 8: 190-7.
[78]
Kumar S, Kumar V, Prakash OM. Antidiabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 2012; 2(7): 543-6.
[http://dx.doi.org/10.1016/S2221-1691(12)60093-8] [PMID: 23569967]
[79]
Njogu SM, Arika WM, Machocho AK, Ngeranwa JJN, Njagi ENM. In vivo hypoglycemic effect of Kigelia africana (Lam): studies with alloxan-induced diabetic mice. J Evid Based Integr Med 2018; 23: X18768727.
[http://dx.doi.org/10.1177/2515690X18768727] [PMID: 29651878]
[80]
Abdel-Sattar E, Harraz FM, Al-ansari SMA, et al. Acylated pregnane glycosides from Caralluma tuberculata and their antiparasitic activity. Phytochemistry 2008; 69(11): 2180-6.
[http://dx.doi.org/10.1016/j.phytochem.2008.05.017] [PMID: 18614190]
[81]
Ahmad M, Shaikh M. Improvement in glucose tolerance by Caralluma tuberculata, Acacia nilotica and Papaver somniferum. Pak J Zool 1991; 21: 325-32.
[82]
Abdel-Sattar E, Harraz FM, Ghareib SA, Elberry AA, Gabr S, Suliaman MI. Antihyperglycaemic and hypolipidaemic effects of the methanolic extract of Caralluma tuberculata in streptozotocin-induced diabetic rats. Nat Prod Res 2011; 25(12): 1171-9.
[http://dx.doi.org/10.1080/14786419.2010.490782] [PMID: 21740282]
[83]
Abdel-Sattar EA, Abdallah HM, Khedr A, Abdel-Naim AB, Shehata IA. Antihyperglycemic activity of Caralluma tuberculata in streptozotocin-induced diabetic rats. Food Chem Toxicol 2013; 59: 111-7.
[http://dx.doi.org/10.1016/j.fct.2013.05.060] [PMID: 23770343]
[84]
Dutt HC, Singh S, Avula B, Khan IA, Bedi YS. Pharmacological review of Caralluma R.Br. with special reference to appetite suppression and anti-obesity. J Med Food 2012; 15(2): 108-19.
[http://dx.doi.org/10.1089/jmf.2010.1555] [PMID: 22191633]
[85]
Meve U, Heneidak S. A morphological, karyological and chemical study of the Apteranthes (Caralluma) europaea complex. Bot J Linn Soc 2005; 149: 419-32.
[http://dx.doi.org/10.1111/j.1095-8339.2005.00448.x]
[86]
Dra LA, Sellami S, Rais H, et al. Antidiabetic potential of Caralluma europaea against alloxan-induced diabetes in mice. Saudi J Biol Sci 2019; 26(6): 1171-8.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.028] [PMID: 31516346]
[87]
Barua C, Yasmin N, Elancheran R. A review on effective utilization, phytochemical compounds, pharmacological intervention of a popularly used plant for developing a new drug: Zanthoxylum armatum with reference to its anticancer activity, MOJ.Bioequiv. Availab 2018; 5: 156-67.
[88]
Singh TP, Singh OM. Phytochemical and pharmacological profile of Zanthoxylum armatum DC.-an overview. Ind J Nat Prod Res 2011; 2: 276-85.
[89]
Alam F. us Saqib QN, Ashraf M, Zanthoxylum armatum DC extracts from fruit, bark and leaf induce hypolipidemic and hypoglycemic effects in mice-In vivo and in vitro study. BMC Complement Altern Med 2018; 18: 68-76.
[http://dx.doi.org/10.1186/s12906-018-2138-4] [PMID: 29463309]
[90]
Rynjah CV, Devi NN, Khongthaw N, Syiem D, Majaw S. Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC. using in vivo and in vitro approaches. J Tradit Complement Med 2017; 8(1): 134-40.
[http://dx.doi.org/10.1016/j.jtcme.2017.04.007] [PMID: 29322001]
[91]
Karki H, Upadhayay K, Pal H, Singh R. Antidiabetic potential of Zanthoxylum armatum bark extract on streptozotocininduced diabetic rats. Int J Green Pharm 2014; 8: 77-83.
[http://dx.doi.org/10.4103/0973-8258.129568]
[92]
Zhang Y, Wang M, Dong H, Yu X, Zhang J. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. Int J Mol Med 2018; 41(1): 77-86.
[PMID: 29115390]
[93]
Dauncey EA, Irving JTW, Allkin R. A review of issues of nomenclature and taxonomy of Hypericum perforatum L. and Kew’s Medicinal Plant Names Services. J Pharm Pharmacol 2019; 71(1): 4-14.
[http://dx.doi.org/10.1111/jphp.12831] [PMID: 29034955]
[94]
Ma Y, Wang Y, Gao Y, Fu Y, Li J. Total flavonoids from Ganshanbian (Herba Hyperici Attenuati) effect the expression of CaL-α1C and K(ATP)-Kir6.1 mRNA of the myocardial cell membrane in myocardial ischemia-reperfusion arrhythmia rats. J Tradit Chin Med 2014; 34(3): 357-61.
[http://dx.doi.org/10.1016/S0254-6272(14)60102-3] [PMID: 24992765]
[95]
Morshedloo MR, Ebadi A, Maggi F, Fattahi R, Yazdani D, Jafari M. Chemical characterization of the essential oil compositions from Iranian populations of Hypericum perforatum L. Ind Crops Prod 2015; 76: 565-73.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.033]
[96]
Jin D-X, He J-F, Luo X-G, Zhang T-C. Hypoglycemic effect of Hypericum attenuatum Choisy extracts on type 2 diabetes by regulating glucolipid metabolism and modulating gut microbiota. J Funct Foods 2019; 52: 479-91.
[http://dx.doi.org/10.1016/j.jff.2018.11.031]
[97]
Morebise O, Fafunso MA, Makinde JM, Olajide OA, Awe EO. Antiinflammatory property of the leaves of Gongronema latifolium. Phytother Res 2002; 16(Suppl. 1): S75-7.
[http://dx.doi.org/10.1002/ptr.784] [PMID: 11933146]
[98]
Ugwu C, Olajide J, Alumanah E, Ezeanyika L. Comparative effects of the leaves of Gongronema latifolium and Telfaira occidentalis incorporated diets on lipid profiles of rats. Glob J Pure Appl Sci 2010; 16: 319-24.
[http://dx.doi.org/10.4314/gjpas.v16i3.62859]
[99]
Ajiboye BO, Oyinloye BE, Agboinghale PE, Onikanni SA, Asogwa E, Kappo AP. Antihyperglycaemia and related gene expressions of aqueous extract of Gongronema latifolium leaf in alloxan-induced diabetic rats. Pharm Biol 2019; 57(1): 604-11.
[http://dx.doi.org/10.1080/13880209.2019.1657907] [PMID: 31513755]
[100]
Abdul Kadir A, Hussain N, Hazlina N, Wan Bebakar WM, Mohd DM, Mohammad W, et al. The effect of Labisia pumila var. alata on postmenopausal women: a pilot study, Evid. Based Complement. Alter Med 2012; 2012: 1-6.
[101]
Norhayati MN, George A, Hazlina NH, et al. Efficacy and safety of Labisia pumila var alata water extract among pre- and postmenopausal women. J Med Food 2014; 17(8): 929-38.
[http://dx.doi.org/10.1089/jmf.2013.2953] [PMID: 25000151]
[102]
Dharmani M, Kamarulzaman K, Giribabu N, et al. Effect of Marantodes pumilum Blume (Kuntze) var.alata on β-cell function and insulin signaling in ovariectomised diabetic rats. Phytomedicine 2019; 65: 153101.
[http://dx.doi.org/10.1016/j.phymed.2019.153101] [PMID: 31648126]
[103]
Dhivyalakshmi K, Jothi SA, Anbu N, Sivaraman D. Screening of anti-diabetic potential of the siddha formulation sarabendira siddha maruthuva sudar chooranam streptozotocin induced type ii diabetes in wistar rats. Int J Trans Res Ind Med 2019; 1: 36-42.
[104]
Admassu S. Effect of Processing an Phytochemicals and Nutrients Composition of Fenugreek (Trigonella Foenum-Graecum L), and Development of Value Added Products. Addis Ababa University 2012. 1-114.
[105]
Murlidhar M, Goswami T. A review on the functional properties, nutritional content, medicinal utilization and potential application of fenugreek. J Food Process Technol 2012; 3: 181-7.
[106]
Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic Effect of Fenugreek Seed Powder Solution (Trigonella foenum-graecum L.) on Hyperlipidemia in Diabetic Patients. J Diabetes Res 2019; 2019: 8507453.
[http://dx.doi.org/10.1155/2019/8507453] [PMID: 31583253]
[107]
Choi E-M, Hwang J-K. Investigations of anti inflammatory and antinociceptive activities of Piper cubeba, Physalis angulata and Rosa hybrida. J Ethnopharmacol 2003; 89(1): 171-5.
[http://dx.doi.org/10.1016/S0378-8741(03)00280-0] [PMID: 14522451]
[108]
Suchal K, Malik S, Gamad N, et al. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid Med Cell Longev 2016; 2016: 7580731.
[http://dx.doi.org/10.1155/2016/7580731] [PMID: 27087891]
[109]
Quilantang NG, Limbo CA, Lee JS, Jacinto SD, Moon S-K, Lee S. Aldose reductase inhibition of Rosa hybrida petals and its active component, kaempferol, HHortic. Environ Biotechnol 2020; 1-7.
[110]
Costea M, Sanders A, Waines G. Preliminary results toward a revision of the Amaranthus hybridus species complex (Amaranthaceae). SIDA Contrib Bot 2001; 931-74.
[111]
Maiyo Z, Ngure R, Matasyoh J, Chepkorir R. Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr J Biotechnol 2010; 9: 3178-82.
[112]
Peter K, Gandhi P. Rediscovering the therapeutic potential of Amaranthus species: A review, Egypt. J Basic Appl Sci 2017; 4: 196-205.
[113]
Balasubramanian T, Karthikeyan M, Muhammed Anees KP, Kadeeja CP, Jaseela K. Antidiabetic and Antioxidant Potentials of Amaranthus hybridus in Streptozotocin-Induced Diabetic Rats. J Diet Suppl 2017; 14(4)(Suppl.): 395-410.
[http://dx.doi.org/10.1080/19390211.2016.1265037] [PMID: 28129002]
[114]
Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front Pharmacol 2019; 10: 486-94.
[http://dx.doi.org/10.3389/fphar.2019.00486] [PMID: 31139079]
[115]
Davari PN, Yazdanparast A, Mehralizadeh S, Aarabi M, Shahmohammadi A, Meraji M. Beneficial effect and mechanism of action of Momordica charantia in the treatment of diabetes mellitus: a mini review. Int J Diabetes Metab 2003; 11: 46-55.
[116]
Jia S, Shen M, Zhang F, Xie J. Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci 2017; 18(12): 2555-79.
[http://dx.doi.org/10.3390/ijms18122555] [PMID: 29182587]
[117]
Mahmoud MF, El Ashry FEZZ, El Maraghy NN, Fahmy A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm Biol 2017; 55(1): 758-65.
[http://dx.doi.org/10.1080/13880209.2016.1275026] [PMID: 28064559]
[118]
Scheffler A, Rauwald HW, Kampa B, Mann U, Mohr FW, Dhein S. Olea europaea leaf extract exerts L-type Ca(2+) channel antagonistic effects. J Ethnopharmacol 2008; 120(2): 233-40.
[http://dx.doi.org/10.1016/j.jep.2008.08.018] [PMID: 18790040]
[119]
Wainstein J, Ganz T, Boaz M, et al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food 2012; 15(7): 605-10.
[http://dx.doi.org/10.1089/jmf.2011.0243] [PMID: 22512698]
[120]
Wang L, Geng C, Jiang L, et al. The anti-atherosclerotic effect of olive leaf extract is related to suppressed inflammatory response in rabbits with experimental atherosclerosis. Eur J Nutr 2008; 47(5): 235-43.
[http://dx.doi.org/10.1007/s00394-008-0717-8] [PMID: 18654736]
[121]
Al-Attar AM, Alsalmi FA. Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albino rats. Saudi J Biol Sci 2019; 26(1): 118-28.
[http://dx.doi.org/10.1016/j.sjbs.2017.03.002] [PMID: 30622415]
[122]
Chakrabarti S, Biswas TK, Rokeya B, et al. Advanced studies on the hypoglycemic effect of Caesalpinia bonducella F. in type 1 and 2 diabetes in Long Evans rats. J Ethnopharmacol 2003; 84(1): 41-6.
[http://dx.doi.org/10.1016/S0378-8741(02)00262-3] [PMID: 12499075]
[123]
Amudha P, Bharathi NP, Vanitha V. Caesalpinia bonducella-A review on pharmacological and phytochemical activity of seeds. Int J Pharma Bio Sci 2016; 7: 674-80.
[124]
Singh V, Raghav PK. Review on pharmacological properties of Caesalpinia bonduc L. Int J Med Arom Plants 2012; 2: 514-30.
[125]
Kakade N, Pingale S, Chaskar M. Phytochemical and pharmacological review of Caesalpinia bonducella. Int Res J Pharm 2016; 12: 12-7.
[126]
Sayyed FJ, Wadkar GH. Studies on in-vitro hypoglycemic effects of root bark of Caesalpinia bonducella. Ann Pharm Fr 2018; 76(1): 44-9.
[http://dx.doi.org/10.1016/j.pharma.2017.09.004] [PMID: 29150176]
[127]
Choi S-H, Ryu D-K, Park S-H, Ahn K-G, Lim Y-P, An G-H. Composition analysis between kohlrabi (Brassica oleracea var. gongylodes) and radish (Raphanus sativus). Hort Sci & Tech 2010; 28: 469-75.
[128]
Jung HA, Karki S, Ehom N-Y, Yoon M-H, Kim EJ, Choi JS. Anti-diabetic and anti inflammatory effects of green and red kohlrabi cultivars (Brassica oleracea var. gongylodes). Prev Nutr Food Sci 2014; 19(4): 281-90.
[http://dx.doi.org/10.3746/pnf.2014.19.4.281] [PMID: 25580392]
[129]
Ragini H, Amita P, Jain A. An approach to standardize Arjunarishta: a well known ayurvedic formulation using UV and Colorimetric method. J Med Pharm Allied Sci 2012; 1: 77-84.
[130]
Shengule SA, Mishra S, Joshi K, et al. Anti-hyperglycemic and anti-hyperlipidaemic effect of Arjunarishta in high-fat fed animals. J Ayurveda Integr Med 2018; 9(1): 45-52.
[http://dx.doi.org/10.1016/j.jaim.2017.07.004] [PMID: 29249636]
[131]
Islam MK, Chowdhury J, Eti I. Biological activity study on a Malvaceae plant: Bombax ceiba. J Scient Res 2011; 3: 445-50.
[http://dx.doi.org/10.3329/jsr.v3i2.5162]
[132]
Ravi V, Patel S, Verma N, Dutta D, Saleem T. Hepatoprotective activity of Bombax ceiba Linn against isoniazid and rifampicin-induced toxicity in experimental rats. Int J Appl Res Nat Prod 2010; 3: 19-26.
[133]
Verma S, Jain V, Katewa S. Potential ant hyperglycemic activity of Bombax ceiba in Type 2 diabetes. Int J Pharma Bio Sci 2008; 2: 79-86.
[134]
Xu GK, Qin XY, Wang GK, et al. Antihyperglycemic, antihyperlipidemic and antioxidant effects of standard ethanol extract of Bombax ceiba leaves in high-fat-diet- and streptozotocin-induced Type 2 diabetic rats. Chin J Nat Med 2017; 15(3): 168-77.
[http://dx.doi.org/10.1016/S1875-5364(17)30033-X] [PMID: 28411685]
[135]
Gao K, Liu M, Cao J, et al. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules 2014; 20(1): 293-308.
[http://dx.doi.org/10.3390/molecules20010293] [PMID: 25547727]
[136]
Zareisedehizadeh S, Tan C-H, Koh H-L. A review of botanical characteristics, traditional usage, chemical components, pharmacological activities, and safety of Pereskia bleo (Kunth) DC, Evid. Based Complement. Alter Med 2014; 2014: 1-11.
[137]
Du M, Hu X, Kou L, Zhang B, Zhang C. Lycium barbarum polysaccharide mediated the antidiabetic and antinephritic effects in diet-streptozotocin-induced diabetic Sprague Dawley rats via regulation of NF-κB. BioMed Res Int 2016; 2016: 1-9.
[138]
Ahmad H, Ahmad S, Shah SAA, et al. Antioxidant and anticholinesterase potential of diterpenoid alkaloids from Aconitum heterophyllum. Bioorg Med Chem 2017; 25(13): 3368-76.
[http://dx.doi.org/10.1016/j.bmc.2017.04.022] [PMID: 28457693]
[139]
Shoaib A, Salem-Bekhit MM, Siddiqui HH, et al. Antidiabetic activity of standardized dried tubers extract of Aconitum napellus in streptozotocin-induced diabetic rats. 3 Biotech 2020; 10(2): 56-63.
[http://dx.doi.org/10.1007/s13205-019-2043-7] [PMID: 32015952]
[140]
Plaza A, Perrone A, Balestrieri C, Balestrieri ML, Bifulco G, Carbone V, et al. New antiproliferative 14, 15-secopregnane glycosides from Solenostemma argel. Tetrahed 2005; 61: 7470-80.
[http://dx.doi.org/10.1016/j.tet.2005.05.048]
[141]
Hassan HA, Hame AI, El-Emary NA, Springue IV, Mitome H, Miyaoka H. Pregnene derivatives from Solenostemma argel leaves. Phytochemistry 2001; 57(4): 507-11.
[http://dx.doi.org/10.1016/S0031-9422(01)00121-2] [PMID: 11394848]
[142]
Ibrahim EA, Gaafar AA, Salama ZA, El Baz FK. anti inflammatory and antioxidant activity of Solenostemma argel extract. Int J Res Pharmacol Phytochem 2015; 7: 635-41.
[143]
Khalid H, Abdalla WE, Abdelgadir H, Opatz T, Efferth T. Gems from traditional north-African medicine: medicinal and aromatic plants from Sudan. Nat Prod Bioprospect 2012; 2: 92-103.
[http://dx.doi.org/10.1007/s13659-012-0015-2]
[144]
Shafek R, Shafik N, Michael H. Antibacterial and antioxidant activities of two new kaempferol glycosides isolated from Solenostemma argel stem extract. Am J Plant Sci 2012; 11: 143-7.
[145]
Mudawi MM, Chidrawar VR, Yassin AY, Habeballa RS. Abd E l-wahab MF, Sulaiman MI, Analgesic activity of solenostemma argel by modulating pain nociception pathway in mice. World J Pharmaceut Res 2015; 4: 187-97.
[146]
El-Shiekh RA, Al-Mahdy DA, Mouneir SM, Hifnawy MS, Abdel-Sattar EA. Anti-obesity effect of argel (Solenostemma argel) on obese rats fed a high fat diet. J Ethnopharmacol 2019; 238: 111893.
[http://dx.doi.org/10.1016/j.jep.2019.111893] [PMID: 30999011]
[147]
Bopana N, Saxena S. Asparagus racemosus-ethnopharmacological evaluation and conservation needs. J Ethnopharmacol 2007; 110(1): 1-15.
[http://dx.doi.org/10.1016/j.jep.2007.01.001] [PMID: 17240097]
[148]
Hannan JM, Ali L, Khaleque J, Akhter M, Flatt PR, Abdel-Wahab YH. Antihyperglycaemic activity of Asparagus racemosus roots is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of cellular insulin action. Br J Nutr 2012; 107(9): 1316-23.
[http://dx.doi.org/10.1017/S0007114511004284] [PMID: 21899804]
[149]
Somania R, Singhai AK, Shivgunde P, Jain D. Asparagus racemosus Willd (Liliaceae) ameliorates early diabetic nephropathy in STZ induced diabetic rats. Indian J Exp Biol 2012; 50(7): 469-75.
[PMID: 22822526]
[150]
Vadivelan R, Dipanjan M, Umasankar P, Dhanabal SP, Satishkumar MN, Antony S, et al. Hypoglycemic, antioxidant and hypolipidemic activity of Asparagus racemosus on streptozotocin-induced diabetic in rats. Adv App Sci Res 2011; 2: 179-85.
[151]
Singla R, Jaitak V. Shatavari (asparagus racemosus wild): a review on its cultivation, morphology, phytochemistry and pharmacological importance. Int J Pharm Life Sci 2014; 5: 742-57.
[152]
Rajasekhar A, Peddanna K, Vedasree N, et al. Antidiabetic activity of root tubers of Asparagus gonoclados Baker in streptozotocin induced diabetic rats. J Ethnopharmacol 2019; 242: 112027.
[http://dx.doi.org/10.1016/j.jep.2019.112027] [PMID: 31226384]
[153]
Stohs SJ, Hartman MJ. Review of the safety and efficacy of Moringa oleifera. Phytother Res 2015; 29(6): 796-804.
[http://dx.doi.org/10.1002/ptr.5325] [PMID: 25808883]
[154]
Padayachee B, Baijnath H. An overview of the medicinal importance of Moringaceae. J Med Plants Res 2012; 6: 5831-9.
[155]
Rao K, Mishra S. anti inflammatory And Antihepatotoxic Activities Of The Roots Of Moringa Pterygosperma Gaertn. Indian J Pharm Sci 1998; 60: 12-6.
[156]
Pal SK, Mukherjee PK, Saha B. Studies on the antiulcer activity of Moringa oleifera leaf extract on gastric ulcer models in rats. Phytother Res 1995; 9: 463-5.
[http://dx.doi.org/10.1002/ptr.2650090618]
[157]
Sivasankari B, Anandharaj M, Gunasekaran P. An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatti, Dindigul district, Tamilnadu, India. J Ethnopharmacol 2014; 153(2): 408-23.
[http://dx.doi.org/10.1016/j.jep.2014.02.040] [PMID: 24583241]
[158]
Aju BY, Rajalakshmi R, Mini S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon 2019; 5(12): e02935.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02935] [PMID: 31872118]
[159]
Zheng Y, Gou X, Zhang L, et al. Interactions between gut microbiota, host, and herbal medicines: A review of new insights into the pathogenesis and treatment of type 2 diabetes. Front Cell Infect Microbiol 2020; 10: 360-72.
[http://dx.doi.org/10.3389/fcimb.2020.00360] [PMID: 32766169]
[160]
Sharma P, Joshi T, Joshi T, Chandra S, Tamta S. Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. J Biomol Str Dyn 2020; 1-15.
[161]
Choudhary N, Khatik GL, Suttee A. The possible role of Saponin in Type-II Diabetes- A review. Curr Diabetes Rev 2020.
[http://dx.doi.org/10.2174/1573399816666200516173829] [PMID: 32416696]
[162]
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol 2020; 263: 113177.
[http://dx.doi.org/10.1016/j.jep.2020.113177] [PMID: 32768637]
[163]
Clinical Evaluation of Fenugreek Seed Extract, a Nutraceutical in Patients With Type- 2 Diabetes 2020.https://clinicaltrials.gov/ct2/show/NCT02693392?term=NCT02693392&draw=2&rank=1
[164]
Effect of momordica charantia administration on type 2 diabetes mellitus, insulin sensitivity and insulin secretion 2020.https://clinicaltrials.gov/ct2/show/NCT02397447?term=NCT02397447&draw=2&rank=1
[165]
Extra Virgin Olive Oil on Glycemic Control, Insulin Resistance and Insulin Secretion 2020.https://clinicaltrials.gov/ct2/show/NCT03891927?term=NCT03891927&draw=2&rank=1
[167]
Effect of Moringa Oleifera on Metformin Plasma Level in Type 2 Diabetes Mellitus Patients 2020.https://clinicaltrials.gov/ct2/show/NCT03189407?term=NCT03189407&draw=2&rank=1
[168]
Effect of Aged Garlic Extract (AGE) on Improving Coronary Atherosclerosis in People With Type 2 Diabetes Mellitus 2020.https://clinicaltrials.gov/ct2/show/NCT03931434?term=NCT03931434&draw=1&rank=1
[169]
Clinical Study of Tang Wang Prescription Intervene Diabetic Non-proliferative Retinopathy 2020.https://clinicaltrials.gov/ct2/show/NCT03025399?term=NCT03025399&draw=1&rank=1