Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review

Page: [4444 - 4460] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.

Keywords: Polyphenols, obesity, thermogenesis, adipose tissue browning, energy expenditure, nutraceuticals.

[1]
Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. NCD Risk Factor Collaboration. (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128•9 million children, adolescents, and adults. Lancet 2017; 390(10113): 2627-42.
[http://dx.doi.org/10.1016/S0140-6736(17)32129-3] [PMID: 29029897]
[2]
Di Angelantonio E, Bhupathiraju ShN, Wormser D, et al. Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016; 388(10046): 776-86.
[http://dx.doi.org/10.1016/S0140-6736(16)30175-1] [PMID: 27423262]
[3]
Afshin A, Forouzanfar MH, Reitsma MB, et al. GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med 2017; 377(1): 13-27.
[http://dx.doi.org/10.1056/NEJMoa1614362] [PMID: 28604169]
[4]
Romieu I, Dossus L, Barquera S, et al. IARC working group on Energy Balance and Obesity. Energy balance and obesity: what are the main drivers? Cancer Causes Control 2017; 28(3): 247-58.
[http://dx.doi.org/10.1007/s10552-017-0869-z] [PMID: 28210884]
[5]
Orava J, Nuutila P, Lidell ME, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 2011; 14(2): 272-9.
[http://dx.doi.org/10.1016/j.cmet.2011.06.012] [PMID: 21803297]
[6]
Kaisanlahti A, Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 2019; 75(1): 1-10.
[http://dx.doi.org/10.1007/s13105-018-0658-5] [PMID: 30506389]
[7]
Mössenböck K, Vegiopoulos A, Rose AJ, Sijmonsma TP, Herzig S, Schafmeier T. Browning of white adipose tissue uncouples glucose uptake from insulin signaling. PLoS One 2014; 9(10) e110428
[http://dx.doi.org/10.1371/journal.pone.0110428] [PMID: 25313899]
[8]
Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. Nutrients 2015; 7(7): 5177-216.
[http://dx.doi.org/10.3390/nu7075177] [PMID: 26132993]
[9]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2(12): 1231-46.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[10]
Cutrim CS, Cortez MAS. A review on polyphenols: Classification, beneficial effects and their application in dairy products. Int J Dairy Technol 2018; 71(3): 564-78.
[http://dx.doi.org/10.1111/1471-0307.12515]
[11]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[12]
Zhang M, Swarts SG, Yin L, et al. Antioxidant properties of quercetin. Adv Exp Med Biol 2011; 701: 283-9.
[http://dx.doi.org/10.1007/978-1-4419-7756-4_38] [PMID: 21445799]
[13]
Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J Nutr 2007; 137(11): 2405-11.
[http://dx.doi.org/10.1093/jn/137.11.2405] [PMID: 17951477]
[14]
Hashemzaei M, Delarami Far A, Yari A, et al. Anticancer and apoptosisinducing effects of quercetin in vitro and in vivo. Oncol Rep 2017; 38(2): 819-28.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[15]
Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of t cd4+ regulatory cells through suppression of mtor pathway signaling activity. Front Immunol 2019; 10: 51.
[http://dx.doi.org/10.3389/fimmu.2019.00051] [PMID: 30766532]
[16]
Tutel’ian VA, Lashneva NV. Biologically active substances of plant origin. Flavonols and flavones: prevalence, dietary sourses and consumption Vopr Pitan 2013; 82(1): 4-22.
[PMID: 23808274]
[17]
Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S. Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr 2015; 55(7): 939-54.
[http://dx.doi.org/10.1080/10408398.2012.678949] [PMID: 24915350]
[18]
Chatterjee P, Chandra S, Dey P, Bhattacharya S. Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study. J Adv Pharm Technol Res 2012; 3(2): 136-8.
[http://dx.doi.org/10.4103/2231-4040.97298] [PMID: 22837963]
[19]
Hu J, Zhou D, Chen Y. Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG). J Agric Food Chem 2009; 57(4): 1349-53.
[http://dx.doi.org/10.1021/jf803143n] [PMID: 19182914]
[20]
Ranjan A, Ramachandran S, Gupta N, et al. role of phytochemicals in cancer prevention. Int J Mol Sci 2019; 20(20) E4981
[http://dx.doi.org/10.3390/ijms20204981] [PMID: 31600949]
[21]
Reygaert WC. Green tea catechins: their use in treating and preventing infectious diseases. BioMed Res Int 2018. 20189105261
[http://dx.doi.org/10.1155/2018/9105261] [PMID: 30105263]
[22]
Botten D, Fugallo G, Fraternali F, Molteni C. Structural properties of green tea catechins. J Phys Chem B 2015; 119(40): 12860-7.
[http://dx.doi.org/10.1021/acs.jpcb.5b08737] [PMID: 26369298]
[23]
Shaik Y, Caraffa A, Ronconi G, Lessiani G, Conti P. Impact of polyphenols on mast cells with special emphasis on the effect of quercetin and luteolin. Cent Eur J Immunol 2018; 43(4): 476-81.
[http://dx.doi.org/10.5114/ceji.2018.81347] [PMID: 30799996]
[24]
Yang M, Xiong J, Zou Q, Wang DD, Huang CX. Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J Mol Histol 2018; 49(6): 555-65.
[http://dx.doi.org/10.1007/s10735-018-9793-0] [PMID: 30225683]
[25]
Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol 2014; 728: 107-18.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.065]
[26]
da Silva Santos V, Bisen-Hersh E, Yu Y, et al. Anthocyanin-rich açaí (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. J Toxicol Environ Health A 2014; 77(7): 390-404.
[http://dx.doi.org/10.1080/15287394.2014.880392] [PMID: 24617543]
[27]
Alvarez-Suarez JM, Giampieri F, Tulipani S, et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J Nutr Biochem 2014; 25(3): 289-94.
[http://dx.doi.org/10.1016/j.jnutbio.2013.11.002] [PMID: 24406274]
[28]
Reis JF, Monteiro VVS, de Souza Gomes R, et al. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J Transl Med 2016; 14(1): 315.
[http://dx.doi.org/10.1186/s12967-016-1076-5] [PMID: 27846846]
[29]
Aoki T, Akashi T, Ayabe S. Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 2000; 113(4): 475-88.
[http://dx.doi.org/10.1007/PL00013958]
[30]
Hedlund TE, Johannes WU, Miller GJ. Soy isoflavonoid equol modulates the growth of benign and malignant prostatic epithelial cells in vitro. Prostate 2003; 54(1): 68-78.
[http://dx.doi.org/10.1002/pros.10137] [PMID: 12481257]
[31]
Myasoedova VA, Kirichenko TV, Melnichenko AA, et al. Anti-atherosclerotic effects of a phytoestrogen-rich herbal preparation in postmenopausal women. Int J Mol Sci 2016; 17(8): 1318.
[http://dx.doi.org/10.3390/ijms17081318] [PMID: 27529226]
[32]
Singla RK, Dubey AK, Garg A, et al. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019; 1102(5): 1397-400.
[33]
Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[34]
Liu D, Schwimer J, Liu Z, Woltering EA, Greenway FL. Anti-angiogenic effect of curcumin in pure versus in extract forms. Pharm Biol 2008; 46(10-11): 677-82.
[http://dx.doi.org/10.1080/13880200802215826]
[35]
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013; 15(1): 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[36]
Lyons MM, Yu C, Toma RB, et al. Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 2003; 2451(20): 5867-70.
[37]
Timmers S, Auwerx J, Schrauwen P. The journey of resveratrol from yeast to human. Aging (Albany NY) 2012; 4(3): 146-58.
[http://dx.doi.org/10.18632/aging.100445] [PMID: 22436213]
[38]
Markus MA, Morris BJ. Resveratrol in prevention and treatment of common clinical conditions of aging. Clin Interv Aging 2008; 3(2): 331-9.
[PMID: 18686754]
[39]
Kukreja A, Wadhwa N. Therapeutic role of resveratrol and piceatannol in disease prevention. J Blood Disord Transfus 2014; 05(09): 1-6.
[http://dx.doi.org/10.4172/2155-9864.1000240]
[40]
Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 2005; 49(5): 472-81.
[http://dx.doi.org/10.1002/mnfr.200500010] [PMID: 15779070]
[41]
Pandey KB, Rizvi SI. Anti-oxidative action of resveratrol: Implications for human health. Arab J Chem 2011; 4: 293-8.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.049]
[42]
Wu JM, Hsieh TC. Resveratrol: a cardioprotective substance. Ann N Y Acad Sci 2011; 1215: 16-21.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05854.x] [PMID: 21261637]
[43]
Sahebkar A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2013; 71(12): 822-35.
[http://dx.doi.org/10.1111/nure.12081] [PMID: 24111838]
[44]
Cheng CK, Luo JY, Lau CW, Chen ZY, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol 2020; 177(6): 1258-77.
[http://dx.doi.org/10.1111/bph.14801] [PMID: 31347157]
[45]
Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 2012; 50(3): 179-87.
[http://dx.doi.org/10.3233/CH-2011-1424] [PMID: 22240353]
[46]
Fujitaka K, Otani H, Jo F, et al. Modified resveratrol Longevinex improves endothelial function in adults with metabolic syndrome receiving standard treatment. Nutr Res 2011; 31(11): 842-7.
[http://dx.doi.org/10.1016/j.nutres.2011.09.028] [PMID: 22118755]
[47]
Wang P, Sang S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018; 44(1): 16-25.
[http://dx.doi.org/10.1002/biof.1410] [PMID: 29315886]
[48]
Tomé-Carneiro J, Gonzálvez M, Larrosa M, et al. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: a triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol Nutr Food Res 2012; 56(5): 810-21.
[http://dx.doi.org/10.1002/mnfr.201100673] [PMID: 22648627]
[49]
Oh WY, Shahidi F. Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem 2018; 261: 267-73.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.085] [PMID: 29739593]
[50]
Vuolo MM, Lima VS, Maróstica MR. Junior Phenolic compoundsBioactive Compounds. Elsevier 2019; pp. 33-50.
[http://dx.doi.org/10.1016/B978-0-12-814774-0.00002-5]
[51]
Mele L, Bidault G, Mena P, et al. Dietary (Poly)phenols, brown adipose tissue activation, and energy expenditure: a narrative review. Adv Nutr 2017; 8(5): 694-704.
[http://dx.doi.org/10.3945/an.117.015792] [PMID: 28916570]
[52]
Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33(9): 2221-43.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[53]
Fernandes FHA, Salgado HRN. Gallic acid: review of the methods of determination and quantification. Crit Rev Anal Chem 2016; 46(3): 257-65.
[http://dx.doi.org/10.1080/10408347.2015.1095064] [PMID: 26440222]
[54]
Totani N, Tateishi S, Takimoto T, Maeda Y, Sasaki H. Gallic acid glycerol ester promotes weight-loss in rats. J Oleo Sci 2011; 60(9): 457-62.
[http://dx.doi.org/10.5650/jos.60.457] [PMID: 21852744]
[55]
Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci 2007; 44(5-6): 483-525.
[http://dx.doi.org/10.1080/10408360701612942] [PMID: 17943494]
[56]
Peterson J, Dwyer J, Adlercreutz H, Scalbert A, Jacques P, McCullough ML. Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 2010; 68(10): 571-603.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00319.x] [PMID: 20883417]
[57]
Durazzo A, Lucarini M, Camilli E, et al. Dietary lignans: definition, description and research trends in databases development. Molecules 2018; 23(12): 3251.
[http://dx.doi.org/10.3390/molecules23123251] [PMID: 30544820]
[58]
Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ. Naturally lignan-rich foods: a dietary tool for health promotion? Molecules 2019; 24(5): 917.
[http://dx.doi.org/10.3390/molecules24050917] [PMID: 30845651]
[59]
Boss A, Kao CH-J, Murray PM, Marlow G, Barnett MPG, Ferguson LR. Human intervention study to assess the effects of supplementation with olive leaf extract on peripheral blood mononuclear cell gene expression. Int J Mol Sci 2016; 17(12) E2019
[http://dx.doi.org/10.3390/ijms17122019] [PMID: 27918443]
[60]
Rosli H, Shahar S, Din NC, Haron H, Rajab NF. Prevalence of poor mental health and cognitive status among middle-aged adults and its predictors in relation to polyphenols intake. Malays J Med Sci 2019; 26(3): 72-89.
[http://dx.doi.org/10.21315/mjms2019.26.3.6] [PMID: 31303852]
[61]
Lockyer S, Rowland I, Spencer JPE, Yaqoob P, Stonehouse W. Impact of phenolic-rich olive leaf extract on blood pressure, plasma lipids and inflammatory markers: a randomised controlled trial. Eur J Nutr 2017; 56(4): 1421-32.
[http://dx.doi.org/10.1007/s00394-016-1188-y] [PMID: 26951205]
[62]
Solverson PM, Rumpler WV, Leger JL, et al. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 2018; 10(8): 1048.
[http://dx.doi.org/10.3390/nu10081048] [PMID: 30096878]
[63]
Salazar J, Luzardo E, Mejías JC, et al. Epicardial Fat: Physiological, Pathological, and Therapeutic Implications. Cardiol Res Pract 2016. 20161291537
[http://dx.doi.org/10.1155/2016/1291537] [PMID: 27213076]
[64]
Aida-Souki Arráiz-Rodríguez NJ, Prieto-Fuenmayor C, Cano-Ponce C. Aspectos básicos en obesidad. Barranquilla: Ediciones Universidad Simón Bolívar 2018; p. 186.
[65]
Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol 2014; 10(1): 24-36.
[http://dx.doi.org/10.1038/nrendo.2013.204] [PMID: 24146030]
[66]
Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig 2016; 26(1): 25-42.
[http://dx.doi.org/10.1515/hmbci-2015-0073] [PMID: 26910750]
[67]
Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology 2012; 58(1): 15-23.
[http://dx.doi.org/10.1159/000321319] [PMID: 21135534]
[68]
Zhu Q, Glazier BJ, Hinkel BC, et al. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int J Mol Sci 2019; 20(11): 2707.
[http://dx.doi.org/10.3390/ijms20112707] [PMID: 31159462]
[69]
Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front Endocrinol (Lausanne) 2016; 7: 30.
[http://dx.doi.org/10.3389/fendo.2016.00030] [PMID: 27148161]
[70]
Srivastava S, Veech RL. Brown and Brite: The Fat Soldiers in the Anti-obesity Fight. Front Physiol 2019; 10: 38.
[http://dx.doi.org/10.3389/fphys.2019.00038] [PMID: 30761017]
[71]
Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta 2014; 1842(3): 358-69.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.011] [PMID: 23688783]
[72]
Cereijo R, Giralt M, Villarroya F. Thermogenic brown and beige/brite adipogenesis in humans. Ann Med 2015; 47(2): 169-77.
[http://dx.doi.org/10.3109/07853890.2014.952328] [PMID: 25230914]
[73]
Loyd C, Obici S. Brown fat fuel use and regulation of energy homeostasis. Curr Opin Clin Nutr Metab Care 2014; 17(4): 368-72.
[http://dx.doi.org/10.1097/MCO.0000000000000063] [PMID: 24839950]
[74]
Fenzl A, Kiefer FW. Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Investig 2014; 19(1): 25-37.
[http://dx.doi.org/10.1515/hmbci-2014-0022] [PMID: 25390014]
[75]
Leitner BP, Huang S, Brychta RJ, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci USA 2017; 114(32): 8649-54.
[http://dx.doi.org/10.1073/pnas.1705287114] [PMID: 28739898]
[76]
Qian S, Huang H, Tang Q. Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Med 2015; 9(2): 162-72.
[http://dx.doi.org/10.1007/s11684-015-0382-2] [PMID: 25573295]
[77]
Marlatt KL, Chen KY, Ravussin E. Is activation of human brown adipose tissue a viable target for weight management? Am J Physiol Regul Integr Comp Physiol 2018; 315(3): R479-83.
[http://dx.doi.org/10.1152/ajpregu.00443.2017] [PMID: 29741929]
[78]
Larson CJ. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. Handb Exp Pharmacol 2019; 251: 381-424.
[http://dx.doi.org/10.1007/164_2018_184] [PMID: 30689089]
[79]
Olsen RV, Andersen HH, Møller HG, Eskelund PW, Arendt-Nielsen L. Somatosensory and vasomotor manifestations of individual and combined stimulation of TRPM8 and TRPA1 using topical L-menthol and trans-cinnamaldehyde in healthy volunteers. Eur J Pain 2014; 18(9): 1333-42.
[http://dx.doi.org/10.1002/j.1532-2149.2014.494.x] [PMID: 24664788]
[80]
Tan CL, Knight ZA. Regulation of Body Temperature by the Nervous System. Neuron 2018; 98(1): 31-48.
[http://dx.doi.org/10.1016/j.neuron.2018.02.022] [PMID: 29621489]
[81]
Andersen HH, Olsen RV, Møller HG, Eskelund PW, Gazerani P, Arendt-Nielsen L. A review of topical high-concentration L-menthol as a translational model of cold allodynia and hyperalgesia. Eur J Pain 2014; 18(3): 315-25.
[http://dx.doi.org/10.1002/j.1532-2149.2013.00380.x] [PMID: 23963768]
[82]
Ravussin Y, Xiao C, Gavrilova O, Reitman ML. Effect of intermittent cold exposure on brown fat activation, obesity, and energy homeostasis in mice. PLoS One 2014; 9(1) e85876
[http://dx.doi.org/10.1371/journal.pone.0085876] [PMID: 24465761]
[83]
Hiroshima Y, Yamamoto T, Watanabe M, Baba Y, Shinohara Y. Effects of cold exposure on metabolites in brown adipose tissue of rats. Mol Genet Metab Rep 2018; 15: 36-42.
[http://dx.doi.org/10.1016/j.ymgmr.2018.01.005] [PMID: 30023288]
[84]
Bahler L, Molenaars RJ, Verberne HJ, Holleman F. Role of the autonomic nervous system in activation of human brown adipose tissue: A review of the literature. Diabetes Metab 2015; 41(6): 437-45.
[http://dx.doi.org/10.1016/j.diabet.2015.08.005] [PMID: 26404650]
[85]
Jiang Y, Berry DC, Graff JM. Distinct cellular and molecular mechanisms for β3 adrenergic receptor-induced beige adipocyte formation. eLife 2017; 6e30329
[http://dx.doi.org/10.7554/eLife.30329] [PMID: 29019320]
[86]
Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 2001; 276(2): 1486-93.
[http://dx.doi.org/10.1074/jbc.M006246200] [PMID: 11050084]
[87]
Zhang J, Wu H, Ma S, et al. Transcription regulators and hormones involved in the development of brown fat and white fat browning: transcriptional and hormonal control of brown/beige fat development. Physiol Res 2018; 67(3): 347-62.
[http://dx.doi.org/10.33549/physiolres.933650] [PMID: 29527907]
[88]
Jankovic A, Otasevic V, Stancic A, Buzadzic B, Korac A, Korac B. Physiological regulation and metabolic role of browning in white adipose tissue. Horm Mol Biol Clin Investig 2017; 31(1) 20170034
[http://dx.doi.org/10.1515/hmbci-2017-0034] [PMID: 28862984]
[89]
Seale P, Conroe HM, Estall J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 2011; 121(1): 96-105.
[http://dx.doi.org/10.1172/JCI44271] [PMID: 21123942]
[90]
Matsumura Y, Nakagawa Y, Mikome K, Yamamoto H, Osakabe N. Enhancement of energy expenditure following a single oral dose of flavan-3-ols associated with an increase in catecholamine secretion. PLoS One 2014; 9(11) e112180
[http://dx.doi.org/10.1371/journal.pone.0112180] [PMID: 25375880]
[91]
Choi H, Kim CS, Yu R. Quercetin Upregulates Uncoupling Protein 1 in White/Brown Adipose Tissues through Sympathetic Stimulation. J Obes Metab Syndr 2018; 27(2): 102-9.
[http://dx.doi.org/10.7570/jomes.2018.27.2.102] [PMID: 31089549]
[92]
Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 2000; 24(2): 252-8.
[http://dx.doi.org/10.1038/sj.ijo.0801101] [PMID: 10702779]
[93]
Oi-Kano Y, Kawada T, Watanabe T, et al. Oleuropein, a phenolic compound in extra virgin olive oil, increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J Nutr Sci Vitaminol (Tokyo) 2008; 54(5): 363-70.
[http://dx.doi.org/10.3177/jnsv.54.363] [PMID: 19001767]
[94]
Kwan HY, Wu J, Su T, et al. Cinnamon induces browning in subcutaneous adipocytes. Sci Rep 2017; 7(1): 2447.
[http://dx.doi.org/10.1038/s41598-017-02263-5] [PMID: 28550279]
[95]
Nissinen E, Männistö PT. Biochemistry and pharmacology of catechol-O-methyltransferase inhibitors. Int Rev Neurobiol 2010; 95: 73-118.
[http://dx.doi.org/10.1016/B978-0-12-381326-8.00005-3] [PMID: 21095460]
[96]
Mulligan JD, Gonzalez AA, Stewart AM, Carey HV, Saupe KW. Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J Physiol 2007; 580(Pt. 2): 677-84.
[http://dx.doi.org/10.1113/jphysiol.2007.128652] [PMID: 17272339]
[97]
Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005; 280(21): 20589-95.
[http://dx.doi.org/10.1074/jbc.M412357200] [PMID: 15788402]
[98]
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127(6): 1109-22.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[99]
Doan KV, Ko CM, Kinyua AW, et al. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 2015; 156(1): 157-68.
[http://dx.doi.org/10.1210/en.2014-1354] [PMID: 25356824]
[100]
Cederroth CR, Vinciguerra M, Gjinovci A, et al. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 2008; 57(5): 1176-85.
[http://dx.doi.org/10.2337/db07-0630] [PMID: 18420492]
[101]
Zhang X, Zhang Q-X, Wang X, et al. Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1α pathway-mediated mechanism. Int J Obes 2016; 40(12): 1841-9.
[http://dx.doi.org/10.1038/ijo.2016.108] [PMID: 27377953]
[102]
Yuan X, Wei G, You Y, et al. Rutin ameliorates obesity through brown fat activation. FASEB J 2017; 31(1): 333-45.
[http://dx.doi.org/10.1096/fj.201600459rr] [PMID: 28049156]
[103]
Li F, Gao C, Yan P, et al. EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Front Pharmacol 2018; 9: 1366.
[http://dx.doi.org/10.3389/fphar.2018.01366] [PMID: 30524290]
[104]
Demine S, Renard P, Arnould T. Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8(8): 795.
[http://dx.doi.org/10.3390/cells8080795] [PMID: 31366145]
[105]
de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sci 2018; 192: 26-32.
[http://dx.doi.org/10.1016/j.lfs.2017.11.019] [PMID: 29155300]
[106]
Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011; 93(4): 884S-90.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[107]
Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98(1): 115-24.
[http://dx.doi.org/10.1016/S0092-8674(00)80611-X] [PMID: 10412986]
[108]
Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009; 71: 177-203.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163119] [PMID: 19575678]
[109]
Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444(7117): 337-42.
[http://dx.doi.org/10.1038/nature05354] [PMID: 17086191]
[110]
Rayamajhi N, Kim S-K, Go H, et al. Quercetin induces mitochondrial biogenesis through activation of HO-1 in HepG2 cells. Oxid Med Cell Longev 2013. 2013154279
[http://dx.doi.org/10.1155/2013/154279] [PMID: 24288584]
[111]
Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther 2008; 325(2): 536-43.
[http://dx.doi.org/10.1124/jpet.107.134882] [PMID: 18267976]
[112]
Valenti D, De Rasmo D, Signorile A, et al. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down’s syndrome. Biochim Biophys Acta 2013; 1832(4): 542-52.
[http://dx.doi.org/10.1016/j.bbadis.2012.12.011] [PMID: 23291000]
[113]
Lee JY, Takahashi N, Yasubuchi M, et al. Triiodothyronine induces UCP-1 expression and mitochondrial biogenesis in human adipocytes. Am J Physiol Cell Physiol 2012; 302(2): C463-72.
[http://dx.doi.org/10.1152/ajpcell.00010.2011] [PMID: 22075692]
[114]
Alvarez-Crespo M, Csikasz RI, Martínez-Sánchez N, et al. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol Metab 2016; 5(4): 271-82.
[http://dx.doi.org/10.1016/j.molmet.2016.01.008] [PMID: 27069867]
[115]
Johann K, Cremer AL, Fischer AW, et al. Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Rep 2019; 27(11): 3385-3400.e3.
[http://dx.doi.org/10.1016/j.celrep.2019.05.054] [PMID: 31189119]
[116]
Weiner J, Hankir M, Heiker JT, Fenske W, Krause K. Thyroid hormones and browning of adipose tissue. Mol Cell Endocrinol 2017; 458: 156-9.
[http://dx.doi.org/10.1016/j.mce.2017.01.011] [PMID: 28089823]
[117]
da-Silva WS, Harney JW, Kim BW, et al. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes 2007; 56(3): 767-76.
[http://dx.doi.org/10.2337/db06-1488] [PMID: 17327447]
[118]
Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 2013; 8(4) e60563
[http://dx.doi.org/10.1371/journal.pone.0060563] [PMID: 23593248]
[119]
Zhang Y, Xie C, Wang H, et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 2016; 311(2): E530-41.
[http://dx.doi.org/10.1152/ajpendo.00094.2016] [PMID: 27436609]
[120]
Leiherer A, Stoemmer K, Muendlein A, et al. quercetin impacts expression of metabolism- and obesity-associated genes in sgbs adipocytes. Nutrients 2016; 8(5): 282.
[http://dx.doi.org/10.3390/nu8050282] [PMID: 27187453]
[121]
Elsen M, Raschke S, Eckel J. Browning of white fat: does irisin play a role in humans? J Endocrinol 2014; 222(1): R25-38.
[http://dx.doi.org/10.1530/JOE-14-0189] [PMID: 24781257]
[122]
Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J 2018; 17: 420-51.
[PMID: 29805348]
[123]
Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 2013; 24(4): 613-23.
[http://dx.doi.org/10.1016/j.jnutbio.2012.12.013] [PMID: 23498665]
[124]
Wood Dos Santos T, Cristina Pereira Q, Teixeira L, Gambero A. A Villena J, Lima Ribeiro M. A. Villena J, Lima Ribeiro M. Effects of polyphenols on thermogenesis and mitochondrial biogenesis. Int J Mol Sci 2018; 19(9): 2757.
[http://dx.doi.org/10.3390/ijms19092757] [PMID: 30217101]
[125]
Most J, Warnke I, Boekschoten MV, et al. The effects of polyphenol supplementation on adipose tissue morphology and gene expression in overweight and obese humans. Adipocyte 2018; 7(3): 190-6.
[http://dx.doi.org/10.1080/21623945.2018.1469942] [PMID: 29786471]
[126]
Perdikari A, Leparc GG, Balaz M, et al. BATLAS. Cell Rep 2018; 25(3): 784-797.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.09.044] [PMID: 30332656]
[127]
Jespersen NZ, Larsen TJ, Peijs L, et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 2013; 17(5): 798-805.
[http://dx.doi.org/10.1016/j.cmet.2013.04.011] [PMID: 23663743]
[128]
Svensson PA, Jernås M, Sjöholm K, et al. Gene expression in human brown adipose tissue. Int J Mol Med 2011; 27(2): 227-32.
[http://dx.doi.org/10.3892/ijmm.2010.566] [PMID: 21125211]
[129]
Matsukawa T, Villareal MO, Motojima H, Isoda H. Increasing cAMP levels of preadipocytes by cyanidin-3-glucoside treatment induces the formation of beige phenotypes in 3T3-L1 adipocytes. J Nutr Biochem 2017; 40: 77-85.
[http://dx.doi.org/10.1016/j.jnutbio.2016.09.018] [PMID: 27865158]
[130]
Aziz S, Wakeling L, Hesketh J, Ford D. Genistein promotes a gene expression profile characteristic of brown rather than white adipocytes and increases Sirt1 expression in mouse NIH3T3-L1 cells (372.7). FASEB J 2014; 28(1_supplement): 372-377..
[131]
Park HJ, Yang JY, Ambati S, et al. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 2008; 11(4): 773-83.
[http://dx.doi.org/10.1089/jmf.2008.0077] [PMID: 19053873]
[132]
Moon J, Do H-J, Kim OY, Shin M-J. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 2013; 58: 347-54.
[http://dx.doi.org/10.1016/j.fct.2013.05.006] [PMID: 23684756]
[133]
Bae C-R, Park Y-K, Cha Y-S. Quercetin-rich onion peel extract suppresses adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 adipocytes. J Sci Food Agric 2014; 94(13): 2655-60.
[http://dx.doi.org/10.1002/jsfa.6604] [PMID: 24634340]
[134]
Lee SG, Parks JS, Kang HW. Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 2017; 42: 62-71.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.018] [PMID: 28131896]
[135]
Dong J, Zhang X, Zhang L, et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 2014; 55(3): 363-74.
[http://dx.doi.org/10.1194/jlr.M038786] [PMID: 24465016]
[136]
Otieno D, Pei Y, Gu I, Lee S-O, Kang HW. Effect of quercetin on non-shivering thermogenesis and intestinal microbial populations Curr Deve Nutr 2019; 3(Suppl. 1): nzz031.P06-037-19..
[137]
Westerterp-Plantenga MS. Green tea catechins, caffeine and body-weight regulation. Physiol Behav 2010; 100(1): 42-6.
[http://dx.doi.org/10.1016/j.physbeh.2010.02.005] [PMID: 20156466]
[138]
Nomura S, Ichinose T, Jinde M, Kawashima Y, Tachiyashiki K, Imaizumi K. Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochem 2008; 19(12): 840-7.
[http://dx.doi.org/10.1016/j.jnutbio.2007.11.005] [PMID: 18479902]
[139]
Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem 2017; 49: 15-21.
[http://dx.doi.org/10.1016/j.jnutbio.2017.07.008] [PMID: 28863365]
[140]
Chen L-H, Chien Y-W, Liang C-T, Chan C-H, Fan M-H, Huang H-Y. Green tea extract induces genes related to browning of white adipose tissue and limits weight-gain in high energy diet-fed rat. Food Nutr Res 2017; 61(1) 1347480
[http://dx.doi.org/10.1080/16546628.2017.1347480] [PMID: 28804438]
[141]
Gosselin C, Haman F. Effects of green tea extracts on non-shivering thermogenesis during mild cold exposure in young men. Br J Nutr 2013; 110(2): 282-8.
[http://dx.doi.org/10.1017/S0007114512005089] [PMID: 23237788]
[142]
Yoneshiro T, Matsushita M, Hibi M, et al. Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am J Clin Nutr 2017; 105(4): 873-81.
[http://dx.doi.org/10.3945/ajcn.116.144972] [PMID: 28275131]
[143]
Katada S, Yanagimoto A, Matsui Y, et al. Effect of tea catechins with caffeine on energy expenditure in middle-aged men and women: a randomized, double-blind, placebo-controlled, crossover trial. Eur J Nutr 2020; 59(3): 1163-70.
[http://dx.doi.org/10.1007/s00394-019-01976-9] [PMID: 31062079]
[144]
Osuna-Prieto FJ, Martinez-Tellez B, Sanchez-Delgado G, et al. Activation of human brown adipose tissue by capsinoids, catechins, ephedrine, and other dietary components: a systematic review. Adv Nutr 2019; 10(2): 291-302.
[http://dx.doi.org/10.1093/advances/nmy067] [PMID: 30624591]
[145]
Choi JH, Yun JW. Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 2016; 32(9): 1002-10.
[http://dx.doi.org/10.1016/j.nut.2016.02.007] [PMID: 27133810]
[146]
Japón-Luján R, Luque-Rodríguez JM, Luque de Castro MD. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. J Chromatogr A 2006; 1108(1): 76-82.
[http://dx.doi.org/10.1016/j.chroma.2005.12.106] [PMID: 16442552]
[147]
Shen Y, Song SJ, Keum N, Park T. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid Based Complement Alternat Med 2014. 2014971890
[http://dx.doi.org/10.1155/2014/971890] [PMID: 24624222]
[148]
Zhao Y, Chen B, Shen J, et al. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid Med Cell Longev 2017. 20171459497
[http://dx.doi.org/10.1155/2017/1459497] [PMID: 29138673]
[149]
Wang S, Wang X, Ye Z, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun 2015; 466(2): 247-53.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.018] [PMID: 26362189]
[150]
Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem 2016; 27: 193-202.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.006] [PMID: 26456563]
[151]
Song Z, Revelo X, Shao W, et al. Dietary curcumin intervention targets mouse white adipose tissue inflammation and brown adipose tissue ucp1 expression. Obesity (Silver Spring) 2018; 26(3): 547-58.
[http://dx.doi.org/10.1002/oby.22110] [PMID: 29405636]
[152]
Nishikawa S, Kamiya M, Aoyama H, et al. Highly dispersible and bioavailable curcumin but not native curcumin induces brown-like adipocyte formation in mice. Mol Nutr Food Res 2018; 62(5)
[PMID: 29334590]
[153]
Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol 2010; 635(1-3): 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.054] [PMID: 20303945]
[154]
Kim S, Jin Y, Choi Y, Park T. Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol 2011; 81(11): 1343-51.
[http://dx.doi.org/10.1016/j.bcp.2011.03.012] [PMID: 21439945]
[155]
Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Deciphering the anti-obesity benefits of resveratrol: the “gut microbiota-adipose tissue” axis. Front Endocrinol (Lausanne) 2019; 10: 413.
[http://dx.doi.org/10.3389/fendo.2019.00413] [PMID: 31316465]
[156]
Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 2013; 141(2): 1530-5.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.085] [PMID: 23790948]
[157]
Ku CR, Cho YH, Hong ZY, et al. The effects of high fat diet and resveratrol on mitochondrial activity of brown adipocytes. Endocrinol Metab (Seoul) 2016; 31(2): 328-35.
[http://dx.doi.org/10.3803/EnM.2016.31.2.328] [PMID: 27077216]
[158]
Milton-Laskibar I, Aguirre L, Etxeberria U, Milagro FI, Martínez JA, Portillo MP. Do the effects of resveratrol on thermogenic and oxidative capacities in ibat and skeletal muscle depend on feeding conditions? Nutrients 2018; 10(10): 1446.
[http://dx.doi.org/10.3390/nu10101446] [PMID: 30301195]
[159]
Wang S, Liang X, Yang Q, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes 2015; 39(6): 967-76.
[http://dx.doi.org/10.1038/ijo.2015.23] [PMID: 25761413]
[160]
Wang S, Liang X, Yang Q, et al. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res 2017; 61(4)
[http://dx.doi.org/10.1002/mnfr.201600746] [PMID: 27873458]
[161]
Serrano A, Asnani-Kishnani M, Rodríguez AM, Palou A, Ribot J, Bonet ML. Programming of the beige phenotype in white adipose tissue of adult mice by mild resveratrol and nicotinamide riboside supplementations in early postnatal life. Mol Nutr Food Res 2018; 62(21) e1800463
[http://dx.doi.org/10.1002/mnfr.201800463] [PMID: 30095217]
[162]
Kim OY, Chung JY, Song J. Effect of resveratrol on adipokines and myokines involved in fat browning: Perspectives in healthy weight against obesity. Pharmacol Res 2019; 148 104411
[http://dx.doi.org/10.1016/j.phrs.2019.104411] [PMID: 31449976]
[163]
Paraíso AF, Sousa JN, Andrade JMO, et al. Oral gallic acid improves metabolic profile by modulating SIRT1 expression in obese mice brown adipose tissue: A molecular and bioinformatic approach. Life Sci 2019. 237116914
[http://dx.doi.org/10.1016/j.lfs.2019.116914] [PMID: 31622606]
[164]
Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007; 404(1): 1-13.
[http://dx.doi.org/10.1042/BJ20070140] [PMID: 17447894]
[165]
Rodríguez H, Landete JM, de las Rivas B, Muñoz R. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem 2008; 107(4): 1393-8.
[http://dx.doi.org/10.1016/j.foodchem.2007.09.067]
[166]
Jiménez N, Esteban-Torres M, Mancheño JM, de Las Rivas B, Muñoz R. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl Environ Microbiol 2014; 80(10): 2991-7.
[http://dx.doi.org/10.1128/AEM.00324-14] [PMID: 24610854]
[167]
Park D-Y, Ahn Y-T, Park S-H, et al. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 2013; 8(3) e59470
[http://dx.doi.org/10.1371/journal.pone.0059470] [PMID: 23555678]
[168]
Fang C, Kim H, Yanagisawa L, et al. Gallotannins and lactobacillus plantarum wcfs1 mitigate high-fat diet-induced inflammation and induce biomarkers for thermogenesis in adipose tissue in gnotobiotic mice. Mol Nutr Food Res 2019; 63(9) e1800937
[http://dx.doi.org/10.1002/mnfr.201800937] [PMID: 30908878]
[169]
Landete JM. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res Int 2012; 46(1): 410-24.
[http://dx.doi.org/10.1016/j.foodres.2011.12.023]
[170]
Jahagirdar A, Usharani D, Srinivasan M, Rajasekharan R. Sesaminol diglucoside, a water-soluble lignan from sesame seeds induces brown fat thermogenesis in mice. Biochem Biophys Res Commun 2018; 507(1-4): 155-60.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.195] [PMID: 30415772]