Essentials for Combined Experimental and Computational 77Se NMR of Organoselenium Catalysts and Bioinspired Antioxidants

Page: [197 - 212] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

The importance of selenium in biology, in organic catalysis, and green chemistry is well established. Selenoproteins, among which are ubiquitous Glutathione Peroxidases (GPx), play a key role in mitigating oxidative stress by reducing H2O2 and hydroperoxides using glutathione as a cofactor. Organoselenides, particularly diphenyl diselenide, in the presence of H2O2, are efficient and often green oxygen transfer agents in important organic reactions, such as Baeyer-Villiger oxidations of ketones/aldehydes, the conversion of alkenes into epoxides, and the oxidations of alcohols and nitrogen- containing compounds. NMR spectroscopy can facilitate the investigation of the properties of this element in a biological environment and the characterization of the peculiar species of its chemistry. In this short review, a brief overview of the experimental and computational 77Se NMR-based techniques is outlined, with a particular focus on their applications to the study of biologically relevant organoselenium compounds and bio-mimetic systems. Experimental protocols, together with computational methods used in different contexts, are presented and their potential as efficient investigation tools is critically discussed. It emerges that while the 77Se NMR measurement is a consolidated technique, no standard computational protocol is available to compute the shielding constant of the chalcogen nucleus with accuracy and the optimal approach combines molecular dynamics in solution and quantum chemistry calculations to take into account the conformational freedom.

Keywords: Bioinspired antioxidants, computational 77Se NMR, green chemistry, organoselenium catalysts, selenium, glutathione peroxidases.

Graphical Abstract

[1]
Berzelius, J.J. Letter from Mr. Berzelius to Mr. Berthollet on two new metals. Ann. Chim. Phys., 1818, 7(2), 199-206.
[2]
Franke, K.W. A new toxicant occurring naturally in certain samples of plant foodstuffs: I. Results obtained in preliminary feeding trials eight figures. J. Nutr., 1934, 8(5), 597-608.
[http://dx.doi.org/10.1093/jn/8.5.597]
[3]
Franke, K.W.; Moxon, A.L.; Poley, W.E.; Tully, W.C. A new toxicant occurring naturally in certain samples of plant foodstuffs. XII. Monstrosities produced by the injection of selenium salts into hen’s eggs. Anat. Rec., 1936, 65, 15-22.
[http://dx.doi.org/10.1002/ar.1090650103]
[4]
Beath, O.A.; Eppson, H.F.; Gilbert, C.S. Selenium and other toxic minerals in soils and vegetation. Wyoming Agric. Exp. Stn. Bull., 1935, 206, 55-73.
[5]
Dudley, H.C. Selenium as a potential industrial hazard. Public Health Rep., 1938, 53(8), 281-292.
[http://dx.doi.org/10.2307/4582466] [PMID: 19315649]
[6]
Painter, E.P. The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem. Rev., 1941, 28(2), 179-213.
[http://dx.doi.org/10.1021/cr60090a001]
[7]
Pinsent, J. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem. J., 1954, 57(1), 10-16.
[http://dx.doi.org/10.1042/bj0570010] [PMID: 13159942]
[8]
Patterson, E.L.; Milstrey, R.; Stokstad, E.L.R. Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med., 1957, 95(4), 617-620.
[http://dx.doi.org/10.3181/00379727-95-23307] [PMID: 13465747]
[9]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79(12), 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087]
[10]
Schwarz, K.; Foltz, C.M. Factor 3 activity of selenium compounds. J. Biol. Chem., 1958, 233(1), 245-251.
[PMID: 13563479]
[11]
Flohé, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[12]
Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179(4073), 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588] [PMID: 4686466]
[13]
Oh, S.H.; Ganther, H.E.; Hoekstra, W.G. Selenium as a component of glutathione periodase isolated from ovine erythrocytes. Biochemistry, 1974, 13(9), 1825-1829.
[http://dx.doi.org/10.1021/bi00706a008] [PMID: 4840827]
[14]
Flohé, L. The labour pains of biochemical selenology: The history of selenoprotein biosynthesis. Biochim. Biophys. Acta, 2009, 1790(11), 1389-1403.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.031] [PMID: 19358874]
[15]
Sharpless, K.B.; Lauer, R.F.; Teranishi, A.Y. Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc., 1973, 95(18), 6137-6139.
[http://dx.doi.org/10.1021/ja00799a062]
[16]
Orian, L.; Mauri, P.; Roveri, A.; Toppo, S.; Benazzi, L.; Bosello-Travain, V.; De Palma, A.; Maiorino, M.; Miotto, G.; Zaccarin, M.; Polimeno, A.; Flohé, L.; Ursini, F. Selenocysteine oxidation in glutathione peroxidase catalysis: An MS-supported quantum mechanics study. Free Radic. Biol. Med., 2015, 87, 1-14.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.06.011 PMID: 26163004]
[17]
Reich, H.J.; Hondal, R.J. Why nature chose selenium. ACS Chem. Biol., 2016, 11(4), 821-841.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981]
[18]
Maroney, M.J.; Hondal, R.J. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med., 2018, 127, 228-237.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.035 PMID: 29588180]
[19]
Shimodaira, S.; Iwaoka, M. Synthesis of selenocysteine-containing dipeptides modeling the active site of thioredoxin reductase. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(7), 750-752.
[http://dx.doi.org/10.1080/10426507.2019.1603721]
[20]
Orian, L.; Toppo, S. Organochalcogen peroxidase mimetics as potential drugs: A long story of a promise still unfulfilled. Free Radic. Biol. Med., 2014, 66, 65-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.006 PMID: 23499840]
[21]
Ribaudo, G.; Bellanda, M.; Menegazzo, I.; Wolters, L.P.; Bortoli, M.; Ferrer-Sueta, G.; Zagotto, G.; Orian, L. Mechanistic insight into the oxidation of organic phenylselenides by H2O2. Chemistry, 2017, 23(10), 2405-2422.
[http://dx.doi.org/10.1002/chem.201604915] [PMID: 27935210]
[22]
Shimodaira, S.; Asano, Y.; Arai, K.; Iwaoka, M. Selenoglutathione diselenide: Unique redox reactions in the GPx-like catalytic cycle and repairing of disulfide bonds in scrambled protein. Biochemistry, 2017, 56(42), 5644-5653.
[http://dx.doi.org/10.1021/acs.biochem.7b00751] [PMID: 29022711]
[23]
Arai, K.; Tashiro, A.; Osaka, Y.; Iwaoka, M. Glutathione peroxidase-like activity of amino-substitutedwater-soluble cyclic selenides: A shift of the major catalytic cycle in methanol. Molecules, 2017, 22(3), 354-367.
[http://dx.doi.org/10.3390/molecules22030354] [PMID: 28245615]
[24]
Dalla Tiezza, M.; Ribaudo, G.; Orian, L. Organodiselenides: Organic catalysis and drug design learning from glutathione peroxidase. Curr. Org. Chem., 2019, 23(13), 1381-1402.
[http://dx.doi.org/10.2174/1385272822666180803123137]
[25]
Wehrle, R.J.; Ste Marie, E.J.; Hondal, R.J.; Masterson, D.S. Synthesis of alpha-methyl selenocysteine and its utilization as a glutathione peroxidase mimic. J. Pept. Sci., 2019, 25(6)e3173
[http://dx.doi.org/10.1002/psc.3173]] [PMID: 31074180]
[26]
Ungati, H.; Govindaraj, V.; Narayanan, M.; Mugesh, G. Probing the formation of a seleninic acid in living cells by the fluorescence switching of a glutathione peroxidase mimetic. Angew. Chem. Int. Ed. Engl., 2019, 58(24), 8156-8160.
[http://dx.doi.org/10.1002/anie.201903958] [PMID: 31021048]
[27]
Arai, K.; Matsunaga, T.; Ueno, H.; Akahoshi, N.; Sato, Y.; Chakrabarty, G.; Mugesh, G.; Iwaoka, M. Modeling thioredoxin reductase-like activity with cyclic selenenyl sulfides: Participation of an NH⋅⋅⋅Se hydrogen bond through stabilization of the mixed Se-S intermediate. Chemistry, 2019, 25(55), 12751-12760.
[http://dx.doi.org/10.1002/chem.201902230] [PMID: 31390113]
[28]
Singh, B.G.; Kumar, P.; Phadnis, P.; Iwaoka, M.; Priyadarsini, K.I. Free radical induced selenoxide formation in isomeric organoselenium compounds: The effect of chemical structures on antioxidant activity. New J. Chem., 2019, 43(34), 13357-13362.
[http://dx.doi.org/10.1039/C9NJ02227A]
[29]
Bortoli, M.; Zaccaria, F.; Dalla Tiezza, M.; Bruschi, M.; Fonseca Guerra, C.; Bickelhaupt, F.M.; Orian, L. Oxidation of organic diselenides and ditellurides by H2O2 for bioinspired catalyst design. Phys. Chem. Chem. Phys., 2018, 20(32), 20874-20885.
[http://dx.doi.org/10.1039/C8CP02748J] [PMID: 30066704]
[30]
Bortoli, M.; Bruschi, M.; Swart, M.; Orian, L. Sequential oxidations of phenylchalcogenides by H2O2 : Insights into the redox behavior of selenium via DFT analysis. New J. Chem., 2020, 44(17), 6724-6731.
[http://dx.doi.org/10.1039/C9NJ06449D]
[31]
Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: Ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4(60), 31521-31535.
[http://dx.doi.org/10.1039/C4RA04493B]
[32]
Sancineto, L.; Tidei, C.; Bagnoli, L.; Marini, F.; Lenardão, E.J.; Santi, C. Selenium catalyzed oxidation of aldehydes: Green synthesis of carboxylic acids and esters. Molecules, 2015, 20(6), 10496-10510.
[http://dx.doi.org/10.3390/molecules200610496] [PMID: 26060915]
[33]
Back, G. Oxidations catalyzed by seleninic acids and anhydrides, their precursors and congeners. Curr. Green Chem., 2016, 3(1), 76-91.
[http://dx.doi.org/10.2174/2213346103666160127003954]
[34]
Santi, C. Perspective in green chemistry for organoselenium compounds (no more an oxymoron). Curr. Green Chem., 2019, 6(1), 9-11.
[http://dx.doi.org/10.2174/221334610601190329164654]
[35]
Duddeck, H. Selenium-77 nuclear magnetic resonance spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc., 1995, 27(1-3), 1-323.
[http://dx.doi.org/10.1016/0079-6565(94)00005-F]
[36]
Duddeck, H. 77Se NMR spectroscopy and its applications in chemistry.In: Annual Reports on NMR Spectroscopy; Academic Press Inc.: London, 2004, Vol. 52, pp. 105-166.
[http://dx.doi.org/10.1016/S0066-4103(04)52003-3]
[37]
Griffin, J.M.; Knight, F.R.; Hua, G.; Ferrara, J.S.; Hogan, S.W.L.; Woollins, J.D.; Ashbrook, S.E. 77Se solid-state NMR of inorganic and organoselenium systems: A combined experimental and computational study. J. Phys. Chem. C, 2011, 115(21), 10859-10872.
[http://dx.doi.org/10.1021/jp202550f]
[38]
Wei, D.; Han, M.; Yu, L. Solid-State 77Se NMR of organoselenium compounds through Cross Polarization Magic Angle Spinning (CPMAS) method. Sci. Rep., 2017, 7(1), 6376.
[http://dx.doi.org/10.1038/s41598-017-06892-8] [PMID: 28743927]
[39]
Dharmatti, S.S.; Weaver, H.E. Magnetic moment of Se77. Phys. Rev., 1952, 259.
[http://dx.doi.org/10.1103/PhysRev.86.259]
[40]
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Porto Freitas, F.; Seibt, T.; Mehr, L.; Aichler, M.; Walch, A.; Lamp, D.; Jastroch, M.; Miyamoto, S.; Wurst, W.; Ursini, F.; Arnér, E.S.J.; Fradejas-Villar, N.; Schweizer, U.; Zischka, H.; Friedmann Angeli, J.P.; Conrad, M. selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell, 2018, 172(3), 409-422.
[http://dx.doi.org/10.1016/j.cell.2017.11.048] [PMID: 29290465]
[41]
Lardon, M. Selenium and proton nuclear magnetic resonance measurements on organic selenium compounds. J. Am. Chem. Soc., 1970, 92(17), 5063-5066.
[http://dx.doi.org/10.1021/ja00720a010]
[42]
McFarlane, W.; Rycroft, D.S. The signs of nuclear spin-spin coupling constants involving selenium: The effect of electron lone pairs. J. Chem. Soc. Chem. Commun., 1973, (1), 10-11.
[http://dx.doi.org/10.1039/C39730000010]
[43]
Eggert, H.; Nielsen, O.; Henriksen, L. Selenium-77 NMR. Application of JSe-Se to the analysis of dialkyl polyselenides. J. Am. Chem. Soc., 1986, 108(8), 1725-1730.
[http://dx.doi.org/10.1021/ja00268a001]
[44]
Schaefer, S.A.; Dong, M.; Rubenstein, R.P.; Wilkie, W.A.; Bahnson, B.J.; Thorpe, C.; Rozovsky, S. 77Se enrichment of proteins expands the biological NMR toolbox. J. Mol. Biol., 2013, 425(2), 222-231.
[http://dx.doi.org/10.1016/j.jmb.2012.11.011] [PMID: 23159557]
[45]
Luthra, N.P.; Dunlap, R.B.; Odom, J.D. Selenium-77 NMR studies of organic selenenyl sulfides. J. Magn. Reson., 1982, 46(1), 152-157.
[46]
Milne, J. Chemical shift references for 77Se NMR spectroscopy. Selenous acid. Magn. Reson. Chem., 1993, 31(7), 652-655.
[http://dx.doi.org/10.1002/mrc.1260310709]
[47]
Ogra, Y.; Kitaguchi, T.; Ishiwata, K.; Suzuki, N.; Toida, T.; Suzuki, K.T. Speciation of selenomethionine metabolites in wheat germ extract. Metallomics, 2009, 1(1), 78-86.
[http://dx.doi.org/10.1039/B813118J]]
[48]
Nakanishi, W.; Hayashi, S. 77Se NMR: Theoretical aspects and practical applications.Organoselenium Chemistry between Synthesis and Biochemistry; Santi, C., Ed.; Bentham Science Publishers: Sharjah, 2014, pp. 379-415.
[49]
Uccello-Barretta, G.; Balzano, F.; Salvadori, P. Enantiodiscrimination by NMR spectroscopy. Curr. Pharm. Des., 2006, 12(31), 4023-4045.
[http://dx.doi.org/10.2174/138161206778743628] [PMID: 17100610]
[50]
Rendekova, J.; Vlasakova, D.; Arsenyan, P.; Vasiljeva, J.; Nasim, M.J.; Witek, K.; Dominguez-Alvarez, E.; Zeslawska, E.; Manikova, D.; Tejchman, W.; Zaib Saleem, R.S.; Rory, K.; Handzlik, J.; Chovanec, M. The selenium-nitrogen bond as basis for reactive selenium species with pronounced antimicrobial activity. Curr. Org. Synth., 2017, 14(8), 1082-1090.
[51]
Indira Priyadarsini, K.; Singh, G.B.; Kunwar, A. Current developments on synthesis, redox reactions and biochemical studies of selenium antioxidants. Curr. Chem. Biol., 2013, 7(1), 37-46.
[http://dx.doi.org/10.2174/2212796811307010004]
[52]
Iwaoka, M.; Arai, K. From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr. Chem. Biol., 2013, 7(1), 2-24.
[http://dx.doi.org/10.2174/2212796811307010002]
[53]
Smiles, D.E.; Wu, G.; Hrobárik, P.; Hayton, T.W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(En)N(SiMe3)23](-) (E = Se, Te; n = 1, 2) and their oxo-Uranium(VI) congeners. J. Am. Chem. Soc., 2016, 138(3), 814-825.
[http://dx.doi.org/10.1021/jacs.5b07767] [PMID: 26667146]
[54]
Suzuki, N.; Ogra, Y. NMR spectroscopy for speciation analysis of selenium compounds. In: Metallomics: Recent Analytical Techniques and Applications; Springer: Tokyo, 2017, pp. 147-155.
[55]
Viger-Gravel, J.; Korobkov, I.; Bryce, D.L. Multinuclear solid-state magnetic resonance and X-ray diffraction study of some thiocyanate and selenocyanate complexes exhibiting halogen bonding. Cryst. Growth Des., 2011, 11(11), 4984-4995.
[http://dx.doi.org/10.1021/cg200889y]
[56]
Reddy, K.H.V.; Reddy, V.P.; Madhav, B.; Shankar, J.; Nageswar, Y.V.D. Nano copper oxide catalyzed synthesis of symmetrical diaryl selenides via cascade reaction of KSeCN with aryl halides. Synlett, 2011, 2011(9), 1268-1272.
[http://dx.doi.org/10.1055/s-0030-1260553]
[57]
Gombler, W. NMR-spektroskopische Untersuchungen an Chalkogenverbindungen, II [1]125Te-, 77Se-, 19F- und 13C-chemische Verschiebungen von CF3-substituierten Selen- und Tellurverbindungen [2 Zeitschrift fur Naturforsch.-. Sect. B, 1981, 36(5), 535-543.
[58]
Poleschner, H.; Radeglia, R.; Kuprat, M.; Richter, A.M.; Fanghänel, E. Organylselenoacetylene und selenocyanate; 77Se- und 13C-NMR-chemische verschiebungen und 77Se- 13C-spin-kopplungskonstanten. J. Organomet. Chem., 1987, 327(1), 7-15.
[http://dx.doi.org/10.1016/0022-328X(87)80223-1]
[59]
Wazeer, M.I.M.; Isab, A.A. Solid state and solution NMR studies of some new complexes of mercury selenocyanate with imidazolidine-2-thione and its derivatives. J. Coord. Chem., 2007, 60(24), 2649-2657.
[http://dx.doi.org/10.1080/00958970701288421]
[60]
McFarlane, W.; Wood, R.J. Nuclear magnetic double-resonance studies of organo-selenium compounds J. Chem. Soc. Dalt. Trans., 1972, 13, 1397-1402.
[61]
Gillespie, R.J.; Kent, J.P.; Sawyer, J.F. Reactions of tetrasulfur tetranitride and trichlorotrithiatriazene with selenium chlorides. The preparations and crystal structures of SeS2N2Cl2, (S5N5) (SeCl5), and the disordered materials. Inorg. Chem., 1990, 29(6), 1251-1259.
[http://dx.doi.org/10.1021/ic00331a028]
[62]
McFarlane, W.; Rycroft, D.S. Determination of chemical shifts by heteronuclear magnetic triple resonance: The nature of the phosphorus-selenium bond in organophosphorus selenides. J. Chem. Soc. Chem. Commun., 1972, (15), 902-903.
[http://dx.doi.org/10.1039/C39720000902]
[63]
Taft, R.W.; Kamlet, M.J. Linear solvation energy relationships. 22. Some further examples of the importance of the d.delta. term. Inorg. Chem., 1983, 22(2), 250-254.
[http://dx.doi.org/10.1021/ic00144a012]
[64]
Cusick, J.; Dance, I. The characterization of [HSe]- and [Sex]2- ions by 77Se NMR. Polyhedron, 1991, 10(22), 2629-2640.
[http://dx.doi.org/10.1016/S0277-5387(00)81338-8]
[65]
Carr, S.W.; Colton, R. Hydrogen-1, carbon-13, phosphorus-31 and selenium-77 N.M.R. Studies on organophosphorus selenides. Aust. J. Chem., 1981, 34(1), 35-44.
[http://dx.doi.org/10.1071/CH9810035]
[66]
Tan, K-S.; Arnold, A.P.; Rabenstein, D.L. Selenium-77 nuclear magnetic resonance studies of selenols, diselenides, and selenenyl sulfides. Can. J. Chem., 1988, 66(1), 54-60.
[http://dx.doi.org/10.1139/v88-008]
[67]
Wong, T.C.; Guziec, F.S.; Moustakis, C.A. Oxygen-17 and selenium-77 nuclear magnetic resonance of carbonyl and selenocarbonyl compounds. Correlation of oxygen-17 and selenium-77 chemical shifts. J. Chem. Soc., Perkin Trans. 2, 1983, (9), 1471-1475.
[http://dx.doi.org/10.1039/p29830001471]
[68]
Santi, C.; Battistelli, B.; Testaferri, L.; Tiecco, M. On water preparation of phenylselenoesters. Green Chem., 2012, 14(5), 1277-1280.
[http://dx.doi.org/10.1039/c2gc16541d]
[69]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of DiselenoBisBenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV Activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01183] [PMID: 26613134]
[70]
Santi, C.; Capoccia, L.; Monti, B. Zinc-Selenium reagents in organic synthesis. Phys. Sci. Rev, 2018, 3(12)
[http://dx.doi.org/10.1515/psr-2017-0129]]
[71]
Jastrzebska, I.; Mellea, S.; Salerno, V.; Grzes, P.A.; Siergiejczyk, L.; Niemirowicz-Laskowska, K.; Bucki, R.; Monti, B.; Santi, C. PhSeZnCl in the synthesis of steroidal β-hydroxy-phenylselenides having antibacterial activity. Int. J. Mol. Sci., 2019, 20(9), 2121.
[http://dx.doi.org/10.3390/ijms20092121]
[72]
Santoro, S.; Santi, C.; Sabatini, M.; Testaferri, L.; Tiecco, M. Eco-friendly olefin dihydroxylation catalyzed by diphenyl diselenide. Adv. Synth. Catal., 2008, 350(18), 2881-2884.
[http://dx.doi.org/10.1002/adsc.200800571]
[73]
Santi, C.; Di Lorenzo, R.; Tidei, C.; Bagnoli, L.; Wirth, T. Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron, 2012, 68(51), 10530-10535.
[http://dx.doi.org/10.1016/j.tet.2012.08.078]
[74]
Bzhezovskii, V.M.; Dolenko, G.N.; Kalabin, G.A.; Topchii, V.A.; Aliev, I.A.; Parygina, G.K.; Trofimov, B.A. Conjugation effects. 12. Electronic structure of alkyl phenyl sulfides, sulfoxides, and sulfones. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30(8), 1454-1459.
[http://dx.doi.org/10.1007/BF00952194]
[75]
Ramadan, S.E.; Razak, A.A.; Yousseff, Y.A.; Sedky, N.M. Selenium metabolism in a strain of Fusarium. Biol. Trace Elem. Res., 1988, 18(1), 161-170.
[http://dx.doi.org/10.1007/BF02917500] [PMID: 2484561]
[76]
Duddeck, H.; Wagner, P.; Gegner, S. Dynamic 77Se NMR of phenylselenyl cyclohexane derivatives. Tetrahedron Lett., 1985, 26(9), 1205-1208.
[http://dx.doi.org/10.1016/S0040-4039(00)98434-X]
[77]
Rys, B.; Duddeck, H.; Hiegemann, M. Conformational analysis of benzoannulated nine-membered rings. Part 3. 1,4,5,7-Tetrahydro-3 H -2,6-benzodiselenine and its 4-spiro derivatives. J. Heterocycl. Chem., 1992, 29(4), 967-969.
[http://dx.doi.org/10.1002/jhet.5570290449]]
[78]
Michelsen, P.; Annby, U.; Gronowitz, S. ChemInform Abstract: On The use of optically active phenylselenopropionic acid in enantiomer analysis. Chem. Informationsd, 1985, 16(25). Available at. https://onlinelibrary.wiley.com/doi/10.1002/chin 198525088
[79]
Silks, L.A.; Dunlap, R.B.; Odom, J.D. Quantitative detection of remotely disposed chiral centers using selenium-77 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc., 1990, 112(12), 4979-4982.
[http://dx.doi.org/10.1021/ja00168a064]
[80]
House, K.L.; Dunlap, R.B.; Odom, J.D.; Wu, Z.P.; Hilvert, D. structural characterization of selenosubtilisin by 77Se NMR spectroscopy. J. Am. Chem. Soc., 1992, 114(22), 8573-8579.
[http://dx.doi.org/10.1021/ja00048a033]
[81]
Gopal, M.; Milne, J. Spectroscopic evidence for selenium iodides in carbon disulfide solution: Se3I2, Se2I2, and SeI2. Inorg. Chem., 1992, 31(22), 4530-4533.
[http://dx.doi.org/10.1021/ic00048a017]
[82]
Demko, B.A.; Wasylishen, R.E. Solid-state selenium-77 NMR. Prog. Nucl. Magn. Reson. Spectrosc., 2009, 208-238.
[http://dx.doi.org/10.1016/j.pnmrs.2008.10.002]
[83]
Ramsey, N.F. Magnetic shielding of nuclei in molecules. Phys. Rev., 1950, 78(6), 699-703.
[http://dx.doi.org/10.1103/PhysRev.78.699]
[84]
Ramsey, N.F. The internal diamagnetic field correction in measurements of the proton magnetic moment. Phys. Rev., 1950, 77(4), 567-567.
[http://dx.doi.org/10.1103/PhysRev.77.567]
[85]
Ramsey, N.F. Dependence of magnetic shielding of nuclei upon molecular orientation. Phys. Rev., 1951, 83(3), 540-541.
[http://dx.doi.org/10.1103/PhysRev.83.540]
[86]
Ramsey, N.F. Chemical effects in nuclear magnetic resonance and in diamagnetic susceptibility. Phys. Rev., 1952, 86(2), 243-246.
[http://dx.doi.org/10.1103/PhysRev.86.243]
[87]
Ramsey, N.F. Electron coupled interactions between nuclear spins in molecules. Phys. Rev., 1953, 91(2), 303-307.
[http://dx.doi.org/10.1103/PhysRev.91.303]
[88]
Pyykkö, P. Perspective on Norman Ramsey’s theories of NMR chemical shifts and nuclear spin-spin coupling. In: Theoretical Chemistry Accounts; Springer: New York, 2000, pp. 214-216.
[89]
Helgaker, T.; Jaszuński, M.; Ruud, K. Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants. Chem. Rev., 1999, 99(1), 293-352.
[http://dx.doi.org/10.1021/cr960017t] [PMID: 11848983]
[90]
Rusakova, I.L.; Krivdin, L.B. Relativistic effects in the NMR spectra of compounds containing heavy chalcogens. Mendeleev Commun., 2018, 28(1), 1-13.
[http://dx.doi.org/10.1016/j.mencom.2018.01.001]]
[91]
Autschbach, J. In: Relativistic effects on magnetic resonance parameters and other properties of inorganic molecules and metal complexes.Relativistic Methods for Chemists; Barysz, M. eds., Ed.; Springer: Netherlands, 2010, pp. 521-598.
[http://dx.doi.org/10.1007/978-1-4020-9975-5_12]
[92]
Sun, Q.; Xiao, Y.; Liu, W. Exact two-component relativistic theory for NMR parameters: General formulation and pilot application. J. Chem. Phys., 2012, 137(17)174105
[http://dx.doi.org/10.1063/1.4764042]] [PMID: 23145715]
[93]
Xiao, Y.; Liu, W.; Autschbach, J. In: Relativistic theories of NMR shielding.Handbook of Relativistic Quantum Chemistry; Liu, W., Ed.; Eds., Springer: Berlin, 2017, pp. 657-692.
[http://dx.doi.org/10.1007/978-3-642-40766-6_17]
[94]
Nielsen, E.S.; Jørgensen, P.; Oddershede, J. Transition moments and dynamic polarizabilities in a second order polarization propagator approach. J. Chem. Phys., 1980, 73(12), 6238-6246.
[http://dx.doi.org/10.1063/1.440119]
[95]
Sauer, S.P.A. Second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes – SOPPA (CCSD): The polarizability and hyperpolarizability of Li-. J. Phys. At. Mol. Opt. Phys., 1997, 30(17), 3773-3780.
[http://dx.doi.org/10.1088/0953-4075/30/17/007]
[96]
Enevoldsen, T.; Oddershede, J.; Sauer, S.P.A. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA (CCSD). Theor. Chem. Acc., 1998, 100(5-6), 275-284.
[http://dx.doi.org/10.1007/s002140050388]
[97]
Bak, K.L.; Koch, H.; Oddershede, J.; Christiansen, O.; Sauer, S.P.A. Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. J. Chem. Phys., 2000, 112(9), 4173-4185.
[http://dx.doi.org/10.1063/1.480963]
[98]
Kjaer, H.; Sauer, S.P.A.; Kongsted, J. Benchmarking NMR indirect nuclear spin-spin coupling constants: SOPPA, SOPPA (CC2), and SOPPA (CCSD) versus CCSD. J. Chem. Phys., 2010, 133(14)144106
[http://dx.doi.org/10.1063/1.3483197]] [PMID: 20949986]
[99]
Christiansen, O.; Koch, H.; Jørgensen, P. The second-order approximate coupled cluster singles and doubles model CC2. Chem. Phys. Lett., 1995, 243(5-6), 409-418.
[http://dx.doi.org/10.1016/0009-2614(95)00841-Q]
[100]
Bartlett, R.J. Many-Body perturbation theory and coupled cluster theory for electron correlation in molecules. Annu. Rev. Phys. Chem., 1981, 32(1), 359-401.
[http://dx.doi.org/10.1146/annurev.pc.32.100181.002043]
[101]
Gauss, J.; Stanton, J.F. Gauge-invariant calculation of nuclear magnetic shielding constants at the coupled-cluster singles and doubles level. J. Chem. Phys., 1995, 102(1), 251-253.
[http://dx.doi.org/10.1063/1.469397]
[102]
Gauss, J.; Stanton, J.F. Perturbative treatment of triple excitations in coupled-cluster calculations of nuclear magnetic shielding constants. J. Chem. Phys., 1996, 104(7), 2574-2583.
[http://dx.doi.org/10.1063/1.471005]
[103]
Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev., 1934, 46(7), 618-622.
[http://dx.doi.org/10.1103/PhysRev.46.618]
[104]
Maurer, M.; Ochsenfeld, C. Spin component-scaled second-order Møller-Plesset perturbation theory for calculating NMR shieldings. J. Chem. Theory Comput., 2015, 11(1), 37-44.
[http://dx.doi.org/10.1021/ct5007295] [PMID: 26574201]
[105]
Schreckenbach, G.; Ziegler, T. Density functional calculations of NMR chemical shifts and ESR g-tensors; Theoretical Chemistry Accounts; Springer: New York, 1998, pp. 71-82.
[106]
Lee, A.M.; Handy, N.C.; Colwell, S.M. The density functional calculation of nuclear shielding constants using London atomic orbitals. J. Chem. Phys., 1995, 103(23), 10095-10109.
[http://dx.doi.org/10.1063/1.469912]
[107]
Paruzzo, F.M.; Hofstetter, A.; Musil, F.; De, S.; Ceriotti, M.; Emsley, L. Chemical shifts in molecular solids by machine learning. Nat. Commun., 2018, 9(1), 4501.
[http://dx.doi.org/10.1038/s41467-018-06972-x] [PMID: 30374021]
[108]
Ito, K.; Obuchi, Y.; Chikayama, E.; Date, Y.; Kikuchi, J. Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals. Chem. Sci. (Camb.), 2018, 9(43), 8213-8220.
[http://dx.doi.org/10.1039/C8SC03628D] [PMID: 30542569]
[109]
Jonas, E.; Kuhn, S. Rapid prediction of NMR spectral properties with quantified uncertainty. J. Cheminform., 2019, 11(1), 50.
[http://dx.doi.org/10.1186/s13321-019-0374-3]] [PMID: 31388784]
[110]
McWeeny, R. Methods of Molecular Quantum Mechanics; Academic Press: London, 1992.
[111]
Chesnut, D.B. Some recent ab initio calculations of the NMR chemical shift. Annu. Rep. NMR Spectrosc., 1989, 21(C), 51-97.
[http://dx.doi.org/10.1016/S0066-4103(08)60121-0]]
[112]
Tossell, J.A. Nuclear Magnetic Shieldings and Molecular Structure; Springer Netherlands: Dordrecht, 1993.
[113]
Chesnut, D.B. Ab initio calculations of NMR chemical shielding. Annu. Rep. NMR Spectrosc., 1994, 29(C), 71-122.
[http://dx.doi.org/10.1016/S0066-4103(08)60131-3]
[114]
Schreckenbach, G.; Ziegler, T. The calculation of NMR shielding tensors based on density functional theory and the frozen-core approximation. Int. J. Quantum Chem., 1996, 60(3), 753-766.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:3<753:AID-QUA4>3.0.CO;2-W]
[115]
Schreckenbach, G. The 57Fe nuclear magnetic resonance shielding in ferrocene revisited. A density-functional study of orbital energies, shielding mechanisms, and the influence of the exchange-correlation functional. J. Chem. Phys., 1999, 110(24), 11936-11949.
[http://dx.doi.org/10.1063/1.479133]
[116]
Malkin, V.G.; Malkina, O.L.; Salahub, D.R. Calculations of NMR shielding constants by uncoupled density functional theory. Chem. Phys. Lett., 1993, 204(1-2), 80-86.
[http://dx.doi.org/10.1016/0009-2614(93)85608-Q]
[117]
Malkin, V.G.; Malkina, O.L.; Salahub, D.R. Calculations of NMR shielding constants beyond uncoupled density functional theory. IGLO approach. Chem. Phys. Lett., 1993, 204(1–2), 87-95.
[http://dx.doi.org/10.1016/0009-2614(93)85609-R]
[118]
Malkin, V.G.; Malkina, O.L.; Casida, M.E.; Salahub, D.R. Nuclear magnetic resonance shielding tensors calculated with a sum-over-states density functional perturbation theory. J. Am. Chem. Soc., 1994, 116(13), 5898-5908.
[http://dx.doi.org/10.1021/ja00092a046]
[119]
Schreckenbach, G.; Ziegler, T. Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J. Phys. Chem., 1995, 99(2), 606-611.
[http://dx.doi.org/10.1021/j100002a024]
[120]
Schreckenbach, G.; Ziegler, T. Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic pauli-type Hamiltonian. The application to transition metal complexes. Int. J. Quantum Chem., 1997, 61(6), 899-918.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:6<899:AID-QUA3>3.0.CO;2-R]
[121]
Kaupp, M. NMR chemical-shift anomaly and bonding in piano-stool carbonyl and related complexes–an ab initio ECP/DFT study. Chemistry, 1996, 2(3), 348-358.
[http://dx.doi.org/10.1002/chem.19960020317]
[122]
Kaupp, M.; Malkin, V.G.; Malkina, O.L.; Salahub, D.R. Ab initio ECP/DFT calculation and interpretation of carbon and oxygen NMR chemical shift tensors in transition-metal carbonyl complexes. Chemistry, 1996, 2(1), 24-30.
[http://dx.doi.org/10.1002/chem.19960020108]
[123]
Arduengo, A.J.; Dixon, D.A.; Kumashiro, K.K.; Power, W.P.; Zilm, K.W.; Lee, C. Chemical shielding tensor of a carbene. J. Am. Chem. Soc., 1994, 116(14), 6361-6367.
[http://dx.doi.org/10.1021/ja00093a041]
[124]
Wiberg, K.B.; Hammer, J.D.; Zilm, K.W.; Cheeseman, J.R. NMR chemical shifts. 3. A comparison of acetylene, allene, and the higher cumulenes. J. Org. Chem., 1999, 64(17), 6394-6400.
[http://dx.doi.org/10.1021/jo990423n]
[125]
Schurko, R.W.; Hung, I.; Macdonald, C.L.B.; Cowley, A.H. Anisotropic NMR interaction tensors in the decamethylaluminocenium cation. J. Am. Chem. Soc., 2002, 124(44), 13204-13214.
[http://dx.doi.org/10.1021/ja020394p] [PMID: 12405849]
[126]
Forgeron, M.A.M.; Wasylishen, R.E. A solid-state 95Mo NMR and computational investigation of dodecahedral and square antiprismatic octacyanomolybdate(IV) anions: Is the point-charge approximation an accurate probe of local symmetry? J. Am. Chem. Soc., 2006, 128(24), 7817-7827.
[http://dx.doi.org/10.1021/ja060124x] [PMID: 16771495]
[127]
Bortoli, M.; Dalla Tiezza, M.; Muraro, C.; Saielli, G.; Orian, L. The 125Te chemical shift of diphenyl ditelluride: Chasing conformers over a flat energy surface. Molecules, 2019, 24(7), 1250.
[http://dx.doi.org/10.3390/molecules24071250] [PMID: 30935011]
[128]
Viesser, R.V.; Ducati, L.C.; Tormena, C.F.; Autschbach, J. The unexpected roles of σ and π orbitals in electron donor and acceptor group effects on the 13C NMR chemical shifts in substituted benzenes. Chem. Sci. (Camb.), 2017, 8(9), 6570-6576.
[http://dx.doi.org/10.1039/C7SC02163A] [PMID: 28989684]
[129]
Autschbach, J.; Zheng, S. Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs. Magn. Reson. Chem., 2008, 46(S1)(Suppl. 1), S45-S55.
[http://dx.doi.org/10.1002/mrc.2289]] [PMID: 18855339]
[130]
Maiorino, M.; Bosello-Travain, V.; Cozza, G.; Miotto, G.; Orian, L.; Roveri, A.; Toppo, S.; Zaccarin, M.; Ursini, F. Glutathione peroxidase.Selenium: Its Molecular Biology and Role in Human Health, Fourth Edition; Hatfield, D.L.; Schweizer, U.; Tsuji, P.A.; Gladyshev, V.N., Eds.; Springer International Publishing: New York, 2016, pp. 223-234.
[131]
Bortoli, M.; Torsello, M.; Bickelhaupt, F.M.; Orian, L. Role of the Chalcogen (S, Se, Te) in the oxidation mechanism of the glutathione peroxidase active site. ChemPhysChem, 2017, 18(21), 2990-2998.
[http://dx.doi.org/10.1002/cphc.201700743]] [PMID: 28837255]
[132]
Orian, L.; Cozza, G.; Maiorino, M.; Toppo, S.; Ursini, F. The catalytic mechanism of glutathione peroxidases.Glutathione; Flohé, L., Ed.; CRC Press: Cleveland, 2018, pp. 53-58.
[http://dx.doi.org/10.1201/9781351261760-3]
[133]
Wolters, L.P.; Orian, L. Peroxidase activity of organic selenides: Mechanistic insights from quantum chemistry. Curr. Org. Chem., 2016, 20(2), 189-197.
[http://dx.doi.org/10.2174/1385272819666150724233655]
[134]
Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta, 2013, 1830(5), 3289-3303.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.020] [PMID: 23201771]
[135]
Jiao, Y.; Wang, Y.; Guo, S.; Wang, G. Glutathione peroxidases as oncotargets. Oncotarget, 2017, 8(45), 80093-80102.
[http://dx.doi.org/10.18632/oncotarget.20278] [PMID: 29108391]
[136]
Iwaoka, M.; Kumakura, F. Applications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(4), 1009-1017.
[http://dx.doi.org/10.1080/10426500801901038]]
[137]
Wendel, A. Glutathione peroxidase.In: Detoxication and Drug Metabolism: Conjugation and Related Systems: Methods in Enzymology Jakoby, W.B. eds, Academic Press: London, 1967 1981(77), 325-333..
[138]
Engman, L.; Stern, D.; Cotgreave, I.A.; Andersson, C.M. Thiol peroxidase activity of diaryl ditellurides as determined by a 1H NMR method. J. Am. Chem. Soc., 1992, 114(25), 9737-9743.
[http://dx.doi.org/10.1021/ja00051a002]
[139]
Singh, V.P.; Poon, J.F.; Butcher, R.J.; Lu, X.; Mestres, G.; Ott, M.K.; Engman, L. Effect of a bromo substituent on the glutathione peroxidase activity of a pyridoxine-like diselenide. J. Org. Chem., 2015, 80(15), 7385-7395.
[http://dx.doi.org/10.1021/acs.joc.5b00797] [PMID: 26133764]
[140]
Singh, V.P.; Poon, J.F.; Yan, J.; Lu, X.; Ott, M.K.; Butcher, R.J.; Gates, P.J.; Engman, L. Nitro-, azo-, and amino derivatives of ebselen: Synthesis, structure, and cytoprotective effects. J. Org. Chem., 2017, 82(1), 313-321.
[http://dx.doi.org/10.1021/acs.joc.6b02418] [PMID: 27997177]
[141]
Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[142]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[PMID: 6487370]
[143]
Bhabak, K.P.; Mugesh, G. Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry, 2007, 13(16), 4594-4601.
[http://dx.doi.org/10.1002/chem.200601584] [PMID: 17299817]
[144]
Satheeshkumar, K.; Mugesh, G. Synthesis and antioxidant activity of peptide-based ebselen analogues. Chemistry, 2011, 17(17), 4849-4857.
[http://dx.doi.org/10.1002/chem.201003417] [PMID: 21400619]
[145]
Selvakumar, K.; Shah, P.; Singh, H.B.; Butcher, R.J. Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides. Chemistry, 2011, 17(45), 12741-12755.
[http://dx.doi.org/10.1002/chem.201100930] [PMID: 21956838]
[146]
Struppe, J.; Zhang, Y.; Rozovsky, S. (77)Se chemical shift tensor of L-selenocystine: Experimental NMR measurements and quantum chemical investigations of structural effects. J. Phys. Chem. B, 2015, 119(9), 3643-3650.
[http://dx.doi.org/10.1021/jp510857s] [PMID: 25654666]
[147]
Li, F.; Lutz, P.B.; Pepelyayeva, Y.; Arnér, E.S.J.; Bayse, C.A.; Rozovsky, S. Redox active motifs in selenoproteins. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 6976-6981.
[http://dx.doi.org/10.1073/pnas.1319022111]] [PMID: 24769567]
[148]
Liu, J.; Rozovsky, S. Se NMR spectroscopy of selenoproteins. In: Selenium: Its Molecular Biology and Role in Human Health, Fourth Edition; Hatfield, D.L., Schweizer, U., Tsuji, P.A.; Gladyshev, V.N., Eds; Springer International Publishing: New York, 2016; pp. 187-198..
[149]
Rozovsky, S. Selenium NMR spectroscopy: A versatile probe for biological macromolecules. Biophys. J., 2019, 116(3), 48a.
[http://dx.doi.org/10.1016/j.bpj.2018.11.303]
[150]
Xu, S.; Chen, M.; Boeri, M.; Rozovsky, S. 77Se-NMR probes the protein environment of selenomethionine. Biophys. J., 2019, 116(3), 475a.
[http://dx.doi.org/10.1016/j.bpj.2018.11.2566]
[151]
Suzuki, K.T.; Ogra, Y. Metabolic pathway for selenium in the body: Speciation by HPLC-ICP MS with enriched Se. Food Addit. Contam., 2002, 19(10), 974-983.
[http://dx.doi.org/10.1080/02652030210153578] [PMID: 12443560]
[152]
Tsuji, Y.; Suzuki, N.T.; Suzuki, K.; Ogra, Y. Selenium metabolism in rats with long-term ingestion of Se-methylselenocysteine using enriched stable isotopes. J. Toxicol. Sci., 2009, 34(2), 191-200.
[http://dx.doi.org/10.2131/jts.34.191] [PMID: 19336976]
[153]
Silva, M.S.; Andrade, L.H. 77Se and 125Te NMR spectroscopy on a selectivity study of organochalcogenanes with L-amino acids. Org. Biomol. Chem., 2015, 13(21), 5924-5929.
[http://dx.doi.org/10.1039/C5OB00373C] [PMID: 25923042]
[154]
Rusakov, Y.Y.; Krivdin, L.B. Four-component relativistic DFT calculations of 77Se NMR chemical shifts: A gateway to a reliable computational scheme for the medium-sized organoselenium molecules. J. Comput. Chem., 2015, 36(23), 1756-1762.
[http://dx.doi.org/10.1002/jcc.23993] [PMID: 26132843]
[155]
Keal, T.W.; Tozer, D.J. The exchange-correlation potential in Kohn-Sham nuclear magnetic resonance shielding calculations. J. Chem. Phys., 2003, 119(6), 3015-3024.
[http://dx.doi.org/10.1063/1.1590634]
[156]
Keal, T.W.; Tozer, D.J. A semiempirical generalized gradient approximation exchange-correlation functional. J. Chem. Phys., 2004, 121(12), 5654-5660.
[http://dx.doi.org/10.1063/1.1784777] [PMID: 15366989]
[157]
Keal, T.W.; Tozer, D.J.; Helgaker, T. GIAO shielding constants and indirect spin-spin coupling constants: Performance of density functional methods. Chem. Phys. Lett., 2004, 391(4-6), 374-379.
[http://dx.doi.org/10.1016/j.cplett.2004.04.108]
[158]
Keal, T.W.; Tozer, D.J. Selenium chemistry with DFT: Molecular structures and 77Se NMR shielding constants. Mol. Phys., 2005, 103(6-8), 1007-1011.
[http://dx.doi.org/10.1080/00268970412331332989]
[159]
Van Leeuwen, R.; Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Exact solutions of regular approximate relativistic wave equations for hydrogen-like atoms. J. Chem. Phys., 1994, 101(2), 1272-1281.
[http://dx.doi.org/10.1063/1.467819]
[160]
van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic total energy using regular approximations. J. Chem. Phys., 1994, 101(11), 9783.
[http://dx.doi.org/10.1063/1.467943]
[161]
van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic regular two-component hamiltonians. J. Chem. Phys., 1993, 99(6), 4597-4610.
[http://dx.doi.org/10.1063/1.466059]
[162]
Douglas, M.; Kroll, N.M. Quantum electrodynamical corrections to the fine structure of helium. Ann. Phys., 1974, 82(1), 89-155.
[http://dx.doi.org/10.1016/0003-4916(74)90333-9]
[163]
Hess, B.A. Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys. Rev. A Gen. Phys., 1985, 32(2), 756-763.
[http://dx.doi.org/10.1103/PhysRevA.32.756] [PMID: 9896123]
[164]
Hess, B.A. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A Gen. Phys., 1986, 33(6), 3742-3748.
[http://dx.doi.org/10.1103/PhysRevA.33.3742] [PMID: 9897114]
[165]
Wolf, A.; Reiher, M.; Hess, B.A. The generalized Douglas-Kroll transformation. J. Chem. Phys., 2002, 117(20), 9215-9226.
[http://dx.doi.org/10.1063/1.1515314] [PMID: 15267790]
[166]
Reiher, M.; Wolf, A. Exact decoupling of the Dirac Hamiltonian. I. General theory. J. Chem. Phys., 2004, 121(5), 2037-2047.
[http://dx.doi.org/10.1063/1.1768160] [PMID: 15260757]
[167]
Reiher, M. Douglas-Kroll-Hess theory: A relativistic electrons-only theory for chemistry. Theor. Chem. Acc., 2006, 116(1–3), 241-252.
[http://dx.doi.org/10.1007/s00214-005-0003-2]
[168]
Reiher, M. Relativistic Douglas–Kroll–Hess theory. WIREs Comput Mol Sci, 2012, 2, 139-149.
[http://dx.doi.org/10.1002/wcms.67]
[169]
Nakanishi, W.; Hayashi, S.; Katsura, Y.; Hada, M. Relativistic effect on 77Se NMR chemical shifts of various selenium species in the framework of zeroth-order regular approximation. J. Phys. Chem. A, 2011, 115(31), 8721-8730.
[http://dx.doi.org/10.1021/jp202278f] [PMID: 21710994]
[170]
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[171]
Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2, 1993, (5), 799-805.
[http://dx.doi.org/10.1039/P29930000799]
[172]
Klamt, A. Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem., 1995, 99(7), 2224-2235.
[http://dx.doi.org/10.1021/j100007a062]
[173]
Brownridge, S.; Calhoun, L.; Jenkins, H.D.B.; Laitinen, R.S.; Murchie, M.P.; Passmore, J.; Pietikäinen, J.; Rautiainen, J.M.; Sanders, J.C.P.; Schrobilgen, G.J.; Suontamo, R.J.; Tuononen, H.M.; Valkonen, J.U.; Wong, C.M. 77Se NMR spectroscopic, DFT MO, and VBT investigations of the reversible dissociation of solid (Se6I2)[AsF6]2.2SO2 in Liquid SO2 to solutions containing 1,4-Se6I2(2+) in equilibrium with Se(n)2+ (n = 4, 8, 10) and seven binary selenium iodine cations: Preliminary evidence for 1,1,4,4-Se4Br4(2+) and cyclo-Se7Br+. Inorg. Chem., 2009, 48(5), 1938-1959.
[http://dx.doi.org/10.1021/ic8015673] [PMID: 19235958]
[174]
Rusakov, Y.Y.; Rusakova, I.L.; Krivdin, L.B. MP2 calculation of 77Se NMR chemical shifts taking into account relativistic corrections. Magn. Reson. Chem., 2015, 53(7), 485-492.
[http://dx.doi.org/10.1002/mrc.4226] [PMID: 25998325]
[175]
Zielińska-Błajet, M.; Boratyński, P.J.; Palus, J.; Skarżewski, J. Chiral benzisoselenazolones: Conformational analysis based on experimental and DFT calculated 77Se NMR. Tetrahedron, 2013, 69(48), 10223-10229.
[http://dx.doi.org/10.1016/j.tet.2013.10.049]
[176]
Torsello, M.; Pimenta, A.C.; Wolters, L.P.; Moreira, I.S.; Orian, L.; Polimeno, A. General AMBER force field parameters for diphenyl diselenides and diphenyl ditellurides. J. Phys. Chem. A, 2016, 120(25), 4389-4400.
[http://dx.doi.org/10.1021/acs.jpca.6b02250] [PMID: 27267296]
[177]
Rusakov, Y.Y.; Krivdin, L.B.; Istomina, N.V.; Potapov, V.A.; Amosova, S.V. Divinyl selenide: Conformational study and stereochemical behavior of its 77Se-1H spin-spin coupling constants. Magn. Reson. Chem., 2008, 46(10), 979-985.
[http://dx.doi.org/10.1002/mrc.2291] [PMID: 18698671]
[178]
Rusakov, Y.Y.; Krivdin, L.B.; Potapov, V.A.; Penzik, M.V.; Amosova, S.V. Conformational analysis and diastereotopic assignments in the series of selenium-containing heterocycles by means of 77Se-1H spin-spin coupling constants: A combined theoretical and experimental study. Magn. Reson. Chem., 2011, 49(7), 389-398.
[http://dx.doi.org/10.1002/mrc.2760] [PMID: 21452352]
[179]
Kövér, K.E.; Kumar, A.A.; Rusakov, Y.Y.; Krivdin, L.B.; Illyés, T-Z.; Szilágyi, L. Experimental and computational studies of nJ(77Se, 1H) selenium-proton couplings in selenoglycosides. Magn. Reson. Chem., 2011, 49(4), 190-194.
[http://dx.doi.org/10.1002/mrc.2731] [PMID: 21387399]
[180]
Rusakov, Y.Y.; Krivdin, L.B.; Kumar, A.A.; Szilágyi, L.; Kövér, K.E. Resonance assignments of diastereotopic CH(2) protons in the anomeric side chain of selenoglycosides by means of (2) J(Se,H) spin-spin coupling constants. Magn. Reson. Chem., 2012, 50(7), 488-495.
[http://dx.doi.org/10.1002/mrc.3824] [PMID: 22588975]
[181]
Chernyshev, K.A.; Krivdin, L.B.; Fedorov, S.V.; Arbuzova, S.N.; Ivanova, N.I. Quantum chemical calculations of NMR chemical shifts of organic molecules: XI. Conformational and relativistic effects on the 31P and 77Se chemical shifts of phosphine selenides. Russ. J. Org. Chem., 2013, 49(10), 1420-1427.
[http://dx.doi.org/10.1134/S1070428013100035]
[182]
Prabhu, P.; Singh, B.G.; Noguchi, M.; Phadnis, P.P.; Jain, V.K.; Iwaoka, M.; Priyadarsini, K.I. Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org. Biomol. Chem., 2014, 12(15), 2404-2412.
[http://dx.doi.org/10.1039/C3OB42336K] [PMID: 24595821]
[183]
Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c]
[184]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[185]
Nakanishi, W.; Hayashi, S.; Narahara, K.; Hada, M. Contributions from atomic p(Se), d(Se), and f(Se) orbitals to absolute paramagnetic shielding tensors in neutral and charged SeHn and some oxides including the effect of methyl and halogen substitutions on sigmap(Se). Chemistry, 2008, 14(31), 9647-9655.
[http://dx.doi.org/10.1002/chem.200800844] [PMID: 18810745]
[186]
Hayashi, S.; Nakanishi, W. Proposal for sets of se NMR chemical shifts in planar and perpendicular orientations of aryl group and the applications. Bioinorg. Chem. Appl., 2006, 2006, 79327.
[http://dx.doi.org/10.1155/BCA/2006/79327] [PMID: 17497018]
[187]
Nakanishi, W.; Hayashi, S.; Hada, M. How 77Se NMR chemical shifts originate from pre-α, α, β, and γ effects: Interpretation based on molecular orbital theory. Chemistry, 2007, 13(18), 5282-5293.
[http://dx.doi.org/10.1002/chem.200601792] [PMID: 17436352]
[188]
Hayashi, S.; Matsuiwa, K.; Nakanishi, W. Relativistic effects on the 125Te and 33S NMR chemical shifts of various tellurium and sulfur species, together with 77Se of selenium congeners, in the framework of a zeroth-order regular approximation: Applicability to Te. RSC Advances, 2014, 4(84), 44795-44810.
[http://dx.doi.org/10.1039/C4RA07818G]
[189]
Hayashi, S.; Nishide, T.; Nakanishi, W.; Saito, M. Relativistic effect on 1J(M,C) in Me4 M, Me3 M-, Ph4 M, and Ph3 M- (M=Pb, Sn, Ge, Si, and/or C): Role of s-type lone pair orbitals in the distinct effect for the anionic species. ChemPhysChem, 2017, 18(18), 2466-2474.
[http://dx.doi.org/10.1002/cphc.201700755] [PMID: 28691742]
[190]
Nakanishi, W.; Hayashi, S.; Shimizu, D.; Hada, M. Orientational effect of aryl groups on 77Se NMR chemical shifts: Experimental and theoretical investigations. Chemistry, 2006, 12(14), 3829-3846.
[http://dx.doi.org/10.1002/chem.200500927 ] [PMID: 16514682]