Bacterial Siderophores and Their Potential Applications: A Review

Page: [295 - 305] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The bacterial infection is one of the major health issues throughout the world. To protect humans from the infection and infectious agents, it is important to understand the mechanism of interaction of pathogens along with their susceptible hosts. This will help us to develop a novel strategy for designing effective new drugs or vaccines. As iron is an essential metal ion required for all the living systems for their growth, as well, it is needed by pathogenic bacterial cells for their growth and development inside host tissues. To get iron from the host tissues, microbes developed an iron-chelating system called siderophore and also corresponding receptors. Siderophores are low molecular weight organic complex produced by different strains of bacteria for the procurement of iron from the environment or host body under the iron deficient-conditions. Mostly in the environment at physiological pH, the iron is present in the ferric ionic form (Fe3+), which is water- insoluble and thus inaccessible for them. Such a condition promotes the generation of siderophores. These siderophores have been used in different areas such as agriculture, treatment of diseases, culture the unculturable strains of bacteria, promotion of plant growth, controlling phytopathogens, detoxification of heavy metal contamination, etc. In the medical field, siderophores can be used as “Trojan Horse Strategy”, which forms a complex with antibiotics and also delivers these antibiotics to the desired locations, especially in antibiotic-resistant bacteria. The promising application of siderophore-based use of antibiotics for the management of bacterial resistance can be strategies to be used.

Keywords: Siderophores, Trojan Horse, antimicrobial, antibacterial, Iron, resistance.

Graphical Abstract

[1]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5), 482-501.
[http://dx.doi.org/10.1002/smll.200500006] [PMID: 17193474]
[2]
Temkin, E.; Adler, A.; Lerner, A.; Carmeli, Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann. N. Y. Acad. Sci., 2014, 1323(1), 22-42.
[http://dx.doi.org/10.1111/nyas.12537] [PMID: 25195939]
[3]
Gamit, D.; Tank, S. Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). Int J Res Pure Appl Microbiol, 2014, 4(1), 20-27.
[4]
Taylor, K.G.; Konhauser, K.O. Iron in Earth surface systems: A major player in chemical and biological processes. Elements, 2011, 7(2), 83-88.
[http://dx.doi.org/10.2113/gselements.7.2.83]
[5]
Messenger, A.J.; Barclay, R. Bacteria, iron and pathogenicity. Biochem. Educ., 1983, 11(2), 54-63.
[http://dx.doi.org/10.1016/0307-4412(83)90043-2]
[6]
Ragheb, M.N. Inhibiting the evolution of antibiotic resistance. Mol. Cell, 2019, 73(1), 157-165.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.10.015]
[7]
Ponka, P.; Tenenbein, M.; Eaton, J.W. Handbook on the Toxicology of Metals, 4th ed; Nordberg, G.F.; Fowler, B.A.; Nordberg, M., Eds.; Academic Press: San Diego, 2015, pp. 879-902.
[8]
Cai, Y.; Wang, R.; An, M.M.; Liang, B.B. Iron-Depletion prevents biofilm formation in Pseudomonas Aeruginosa through twitching mobility and quorum sensing. Braz. J. Microbiol., 2010, 41(1), 37-41.
[http://dx.doi.org/10.1590/S1517-83822010000100008] [PMID: 24031461]
[9]
Glick, R.; Gilmour, C.; Tremblay, J.; Satanower, S.; Avidan, O.; Déziel, E.; Greenberg, E.P.; Poole, K.; Banin, E. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J. Bacteriol., 2010, 192(12), 2973-2980.
[http://dx.doi.org/10.1128/JB.01601-09] [PMID: 20154129]
[10]
Bou-Abdallah, F. The iron redox and hydrolysis chemistry of the ferritins. Biochimica et Biophysica Acta (BBA)-. General Subjects, 2010, 1800(8), 719-731.
[http://dx.doi.org/10.1016/j.bbagen.2010.03.021]
[11]
Caza, M.; Kronstad, J.W. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol., 2013, 3, 80.
[http://dx.doi.org/10.3389/fcimb.2013.00080] [PMID: 24312900]
[12]
Colombo, C. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediments, 2014, 14(3), 538-548.
[http://dx.doi.org/10.1007/s11368-013-0814-z]
[13]
Cézard, C.; Farvacques, N.; Sonnet, P. Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Curr. Med. Chem., 2015, 22(2), 165-186.
[http://dx.doi.org/10.2174/0929867321666141011194624] [PMID: 25312210]
[14]
Schalk, I.J.; Hannauer, M.; Braud, A. New roles for bacterial siderophores in metal transport and tolerance. Environ. Microbiol., 2011, 13(11), 2844-2854.
[http://dx.doi.org/10.1111/j.1462-2920.2011.02556.x] [PMID: 21883800]
[15]
Johnstone, T.C.; Nolan, E.M. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans., 2015, 44(14), 6320-6339.
[http://dx.doi.org/10.1039/C4DT03559C] [PMID: 25764171]
[16]
Fang, Z.; Sampson, S.L.; Warren, R.M.; Gey van Pittius, N.C.; Newton-Foot, M. Iron acquisition strategies in mycobacteria. Tuberculosis (Edinb.), 2015, 95(2), 123-130.
[http://dx.doi.org/10.1016/j.tube.2015.01.004] [PMID: 25636179]
[17]
Chaturvedi, K.S.; Hung, C.S.; Giblin, D.E.; Urushidani, S.; Austin, A.M.; Dinauer, M.C.; Henderson, J.P. Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem. Biol., 2014, 9(2), 551-561.
[http://dx.doi.org/10.1021/cb400658k] [PMID: 24283977]
[18]
Koh, E-I.; Henderson, J.P. Microbial copper-binding siderophores at the host-pathogen interface. J. Biol. Chem., 2015, 290(31), 18967-18974.
[http://dx.doi.org/10.1074/jbc.R115.644328] [PMID: 26055720]
[19]
Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. Int., 2016, 23(5), 3984-3999.
[http://dx.doi.org/10.1007/s11356-015-4294-0] [PMID: 25758420]
[20]
Ribeiro, M.; Simaes, M. Advances in the antimicrobial and therapeutic potential of siderophores. Environ. Chem. Lett., 2019, 1-10.
[http://dx.doi.org/10.1007/s10311-019-00887-9]
[21]
Rezanka, T. Siderophores: Amazing metabolites of microorganismsin studies in natural products chemistry; Elsevier, 2018, pp. 57-188.
[22]
Neilands, J.B. Microbial iron compounds. Annu. Rev. Biochem., 1981, 50(1), 715-731.
[http://dx.doi.org/10.1146/annurev.bi.50.070181.003435] [PMID: 6455965]
[23]
Pal, K.K.; Tilak, K.V.; Saxena, A.K.; Dey, R.; Singh, C.S. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol. Res., 2001, 156(3), 209-223.
[http://dx.doi.org/10.1078/0944-5013-00103] [PMID: 11716210]
[24]
Messenger, A.; Ratledge, C. Siderophores. Comprehensive Biotechnology. 3; Moo-Young, M., Ed.; Pergamon press: New York, 1985.
[25]
Raval, A. Microbial siderophore research: Reviewing their roles and applications. Int. J. Pharm. Life Sci., 2018, 9, 5959-5967.
[26]
Maurer, B.; Müller, A.; Keller-Schierlein, W.; Zähner, H. Metabolic products of microorganisms. 61. Ferribactin, a siderochrome from Pseudomonas fluorescens Migula. Arch. Mikrobiol., 1968, 60(4), 326-339.
[http://dx.doi.org/10.1007/BF00408553] [PMID: 5706416]
[27]
Ringel, M.T.; Dräger, G.; Brüser, T. PvdO is required for the oxidation of dihydropyoverdine as the last step of fluorophore formation in Pseudomonas fluorescens. J. Biol. Chem., 2018, 293(7), 2330-2341.
[http://dx.doi.org/10.1074/jbc.RA117.000121] [PMID: 29208656]
[28]
Hufte, M. Classes of microbial siderophores.Iron chelation in plants and soil microorganisms; Barton, L., Ed.; Academic Press, 1993, pp. 3-26.
[http://dx.doi.org/10.1016/B978-0-12-079870-4.50006-5]
[29]
Zahner, H. Stoffwechselprodukte von Mikroorganismen. Arch. Microbiol., 1963, 45(2), 119-135.
[30]
Diekmann, H.; Zähner, H. Konstitution von Fusigen und dessen Abbau zu delta-2-Anhydromevalonsäurelacton. Eur. J. Biochem., 1967, 3(2), 213-218.
[http://dx.doi.org/10.1111/j.1432-1033.1967.tb19518.x] [PMID: 6082611]
[31]
Sayer, J.M.; Emery, T.F. Structures of the naturally occurring hydroxamic acids, fusarinines A and B. Biochemistry, 1968, 7(1), 184-190.
[http://dx.doi.org/10.1021/bi00841a023] [PMID: 4320437]
[32]
Neilands, J. Microbial iron transport compounds (sidero-chromes). Inorganic Biochem., 1973, 1, 167-202.
[33]
Haselwandter, K.; Häninger, G.; Ganzera, M.; Haas, H.; Nicholson, G.; Winkelmann, G. Linear fusigen as the major hydroxamate siderophore of the ectomycorrhizal Basidiomycota Laccaria laccata and Laccaria bicolor. Biometals, 2013, 26(6), 969-979.
[http://dx.doi.org/10.1007/s10534-013-9673-8] [PMID: 24057327]
[34]
Ling, J.; Pan, H.; Gao, Q.; Xiong, L.; Zhou, Y.; Zhang, D.; Gao, S.; Liu, X. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One, 2013, 8(2), e57794.
[http://dx.doi.org/10.1371/journal.pone.0057794] [PMID: 23460907]
[35]
Winkelmann, G. Ecology of siderophores with special reference to the fungi. Biometals, 2007, 20(3-4), 379-392.
[http://dx.doi.org/10.1007/s10534-006-9076-1] [PMID: 17235665]
[36]
Dave, B.; Anshuman, K.; Hajela, P. Siderophores of halophilic archaea and their chemical characterization. Indian J. Exp. Biol., 2006, 44(4), 340-344.
[37]
Dertz, E.A.; Xu, J.; Stintzi, A.; Raymond, K.N. Bacillibactin-mediated iron transport in Bacillus subtilis. J. Am. Chem. Soc., 2006, 128(1), 22-23.
[http://dx.doi.org/10.1021/ja055898c] [PMID: 16390102]
[38]
Leong, S.A.; Neilands, J.B. Siderophore production by phytopathogenic microbial species. Arch. Biochem. Biophys., 1982, 218(2), 351-359.
[http://dx.doi.org/10.1016/0003-9861(82)90356-3] [PMID: 6218783]
[39]
Pérez-Miranda, S.; Cabirol, N.; George-Téllez, R.; Zamudio-Rivera, L.S.; Fernández, F.J.O-C.A.S. a fast and universal method for siderophore detection. J. Microbiol. Methods, 2007, 70(1), 127-131.
[http://dx.doi.org/10.1016/j.mimet.2007.03.023] [PMID: 17507108]
[40]
Fiedler, H-P.; Krastel, P.; Müller, J.; Gebhardt, K.; Zeeck, A. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species.(1). FEMS Microbiol. Lett., 2001, 196(2), 147-151.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10556.x] [PMID: 11267771]
[41]
Alexander, D.; Zuberer, D. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils, 1991, 12(1), 39-45.
[http://dx.doi.org/10.1007/BF00369386]
[42]
Dave, B.; Dube, H. Chemical characterization of fungal siderophores., 2000.
[43]
Smith, M.; Neilands, J. Rhizobactin, a siderophore from Rhizobium meliloti. J. Plant Nutr., 1984, 7(1-5), 449-458.
[http://dx.doi.org/10.1080/01904168409363211]
[44]
Meiwes, J.; Fiedler, H.P.; Haag, H.; Zähner, H.; Konetschny-Rapp, S.; Jung, G. Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol. Lett., 1990, 55(1-2), 201-205.
[http://dx.doi.org/10.1111/j.1574-6968.1990.tb13863.x] [PMID: 2139423]
[45]
Shenker, M. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr., 1992, 15(10), 2173-2182.
[http://dx.doi.org/10.1080/01904169209364466]
[46]
Ahmed, E.; Holmström, S.J. Siderophores in environmental research: roles and applications. Microb. Biotechnol., 2014, 7(3), 196-208.
[http://dx.doi.org/10.1111/1751-7915.12117] [PMID: 24576157]
[47]
Velasquez, I. Characterization of siderophores in the Southern Ocean; University of Otago, 2011.
[48]
Sigel, A.; Sigel, H. Metal ions in biological systems, volume 35: iron transport and storage microorganisms, plants, and animals. Met. Based Drugs, 1998, 5(5), 262-262.
[http://dx.doi.org/10.1155/MBD.1998.262a] [PMID: 18475855]
[49]
Wandersman, C.; Delepelaire, P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol., 2004, 58, 611-647.
[http://dx.doi.org/10.1146/annurev.micro.58.030603.123811] [PMID: 15487950]
[50]
Davidson, A.L.; Nikaido, H. Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J. Biol. Chem., 1991, 266(14), 8946-8951.
[http://dx.doi.org/PMID: 2026607]
[51]
Boos, W.; Eppler, T. Prokaryotic binding proteinБ-dependent ABC transporters; Microbial Transport Systems, 2001, pp. 77-114.
[52]
Möllmann, U.; Heinisch, L.; Bauernfeind, A.; Köhler, T.; Ankel-Fuchs, D. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals, 2009, 22(4), 615-624.
[http://dx.doi.org/10.1007/s10534-009-9219-2] [PMID: 19214755]
[53]
Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; Nakamura, R.; Tsuji, M.; Yamano, Y. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 62(1), e01454-e17.
[http://dx.doi.org/10.1128/AAC.01454-17] [PMID: 29061741]
[54]
Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 2008, 15(8), 639-652.
[http://dx.doi.org/10.1016/j.phymed.2008.06.008] [PMID: 18599280]
[55]
Huang, Y.; Jiang, Y.; Wang, H.; Wang, J.; Shin, M.C.; Byun, Y.; He, H.; Liang, Y.; Yang, V.C. Curb challenges of the “Trojan Horse” approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv. Drug Deliv. Rev., 2013, 65(10), 1299-1315.
[http://dx.doi.org/10.1016/j.addr.2012.11.007] [PMID: 23369828]
[56]
Miller, M.J. Antibacterial sideromycins; Google Patents, 2019.
[57]
Kong, H.; Cheng, W.; Wei, H.; Yuan, Y.; Yang, Z.; Zhang, X. An overview of recent progress in siderophore-antibiotic conjugates. Eur. J. Med. Chem., 2019, 182111615.
[http://dx.doi.org/10.1016/j.ejmech.2019.111615] [PMID: 31434038]
[58]
Lin, Y-M.; Ghosh, M.; Miller, P.A.; Möllmann, U.; Miller, M.J. Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. Biometals, 2019, 32(3), 425-451.
[http://dx.doi.org/10.1007/s10534-019-00192-6] [PMID: 30919118]
[59]
Ali, S.S.; Vidhale, N. Bacterial siderophore and their application: a review. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(12), 303-312.
[60]
Saha, A.; Dutta, S.; Nandi, N. 2019. Inhibition of Seryl tRNA Synthetase by Seryl Nucleoside Moiety (SB-217452) of Albomycin Antibiotic. J. Biomol. Structure and Dynamics, 2019, (just-accepted), 1-19.
[61]
Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov., 2008, 7(3), 255-270.
[http://dx.doi.org/10.1038/nrd2468] [PMID: 18219308]
[62]
Milner, S.J.; Seve, A.; Snelling, A.M.; Thomas, G.H.; Kerr, K.G.; Routledge, A.; Duhme-Klair, A.K. Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Org. Biomol. Chem., 2013, 11(21), 3461-3468.
[http://dx.doi.org/10.1039/c3ob40162f] [PMID: 23575952]
[63]
Thevenot, D.R. Electrochemical biosensors: recommended definitions and classification. Pure Appl. Chem., 1999, 71(12), 2333-2348.
[http://dx.doi.org/10.1351/pac199971122333]
[64]
Gupta, V.; Saharan, K.; Kumar, L.; Gupta, R.; Sahai, V.; Mittal, A. Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnol. Bioeng., 2008, 100(2), 284-296.
[http://dx.doi.org/10.1002/bit.21754] [PMID: 18080345]
[65]
Eggins, B.R. Biosensors: an introduction; Springer-Verlag, 2013.
[66]
Barrero, J.M.; Morino-Bondi, M.C.; Pérez-Conde, M.C.; Cámara, C. A biosensor for ferric ion. Talanta, 1993, 40(11), 1619-1623.
[http://dx.doi.org/10.1016/0039-9140(93)80075-3] [PMID: 18965830]
[67]
Chiadò, A.; Varani, L.; Bosco, F.; Marmo, L. Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine. Biosensors (Basel), 2013, 3(4), 385-399.
[http://dx.doi.org/10.3390/bios3040385] [PMID: 25586414]
[68]
Palanché, T.; Marmolle, F.; Abdallah, M.A.; Shanzer, A.; Albrecht-Gary, A.M. Fluorescent siderophore-based chemosensors: iron(III) quantitative determinations. J. Biol. Inorg. Chem., 1999, 4(2), 188-198.
[http://dx.doi.org/10.1007/s007750050304] [PMID: 10499091]
[69]
Chung Chun Lam, C.K.; Jickells, T.D.; Richardson, D.J.; Russell, D.A. Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters. Anal. Chem., 2006, 78(14), 5040-5045.
[http://dx.doi.org/10.1021/ac060223t] [PMID: 16841927]
[70]
Orcutt, K.M.; Jones, W.S.; McDonald, A.; Schrock, D.; Wallace, K.J. A lanthanide-based chemosensor for bioavailable Fe3+ using a fluorescent siderophore: an assay displacement approach. Sensors (Basel), 2010, 10(2), 1326-1337.
[http://dx.doi.org/10.3390/s100201326] [PMID: 22205870]
[71]
Carson, J.K.; Rooney, D.; Gleeson, D.B.; Clipson, N. Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol. Ecol., 2007, 61(3), 414-423.
[http://dx.doi.org/10.1111/j.1574-6941.2007.00361.x] [PMID: 17681010]
[72]
Eldridge, M.L. The response of bacterial groups to changes in available iron in the Eastern subtropical Pacific Ocean. J. Exp. Mar. Biol. Ecol., 2007, 348(1-2), 11-22.
[http://dx.doi.org/10.1016/j.jembe.2007.02.018]
[73]
Carson, J.K.; Campbell, L.; Rooney, D.; Clipson, N.; Gleeson, D.B. Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol. Ecol., 2009, 67(3), 381-388.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00645.x] [PMID: 19187213]
[74]
Jin, C.W.; Li, G.X.; Yu, X.H.; Zheng, S.J. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann. Bot., 2010, 105(5), 835-841.
[http://dx.doi.org/10.1093/aob/mcq071] [PMID: 20356952]
[75]
Jin, C.W.; Ye, Y.Q.; Zheng, S.J. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann. Bot., 2014, 113(1), 7-18.
[http://dx.doi.org/10.1093/aob/mct249] [PMID: 24265348]
[76]
Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 1987, 160(1), 47-56.
[http://dx.doi.org/10.1016/0003-2697(87)90612-9] [PMID: 2952030]
[77]
Chincholkar, S.; Chaudhari, B.; Rane, M. Microbial siderophore: a state of art.Microbial siderophores; Springer, 2007, pp. 233-242.
[http://dx.doi.org/10.1007/978-3-540-71160-5_12]
[78]
Sullivan, T.S. Siderophore production of African dust microorganisms over Trinidad and Tobago. Aerobiologia, 2012, 28(3), 391-401.
[http://dx.doi.org/10.1007/s10453-011-9243-x]
[79]
Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol., 2012, 35(4)(Suppl.), 1044-1051.
[http://dx.doi.org/10.1590/S1415-47572012000600020] [PMID: 23411488]
[80]
Rooney, A.P. Discovery and Development of Microbial Biological Control Agents in Olfactory Concepts of Insect Control - Alternative to insecticides; J.-F.o, Picimbon., Ed.; Springer International Publishing: Cham, 2019, 1, pp. 79-92.
[81]
Coy, R.M.; Held, D.W.; Kloepper, J.W. Rhizobacterial colonization of bermudagrass by Bacillus spp. in a Marvyn loamy sand soil. Appl. Soil Ecol., 2019, 141, 10-17.
[http://dx.doi.org/10.1016/j.apsoil.2019.04.018]
[82]
Ramesh, R. Microbiome in Plant Health and Disease: Challenges and Opportunities.Microbiome in Plant Health and Disease: Challenges and Opportunities; Kumar, V; Singapore, S., Ed.; Singapore, 2019, pp. 191-213.
[http://dx.doi.org/10.1007/978-981-13-8495-0_9]
[83]
Yu, X. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol., 2011, 47(2), 138-145.
[http://dx.doi.org/10.1016/j.ejsobi.2010.11.001]
[84]
Rehman, A. Seed priming of Zn with endophytic bacteria improves the productivity and grain biofortification of bread wheat. Eur. J. Agron., 2018, 94, 98-107.
[http://dx.doi.org/10.1016/j.eja.2018.01.017]
[85]
Verma, V.C.; Singh, S.K.; Prakash, S. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J. Basic Microbiol., 2011, 51(5), 550-556.
[http://dx.doi.org/10.1002/jobm.201000155] [PMID: 21656792]
[86]
Hamdan, H.; Weller, D.M.; Thomashow, L.S. Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol., 1991, 57(11), 3270-3277.
[http://dx.doi.org/10.1128/AEM.57.11.3270-3277.1991] [PMID: 1838240]
[87]
McLoughlin, T.J.; Quinn, J.P.; Bettermann, A.; Bookland, R. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol., 1992, 58(5), 1760-1763.
[http://dx.doi.org/10.1128/AEM.58.5.1760-1763.1992] [PMID: 1377900]
[88]
Sah, S.; Singh, R. Siderophore: structural and functional characterisationБ ─⌠a comprehensive review. Agriculture (Polnohospodц ║rstvo),, 2015, 61(3), 97-114.
[89]
Jansová, H.; Šimůnek, T. Cardioprotective potential of iron chelators and prochelators. Curr. Med. Chem., 2019, 26(2), 288-301.
[http://dx.doi.org/10.2174/0929867324666170920155439] [PMID: 28933303]
[90]
Kumfu, S.; Khamseekaew, J.; Palee, S.; Srichairatanakool, S.; Fucharoen, S.; Chattipakorn, S.C.; Chattipakorn, N. A combination of an iron chelator with an antioxidant exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Free Radic. Res., 2018, 52(1), 70-79.
[http://dx.doi.org/10.1080/10715762.2017.1414208] [PMID: 29207893]
[91]
Mobarra, N.; Shanaki, M.; Ehteram, H.; Nasiri, H.; Sahmani, M.; Saeidi, M.; Goudarzi, M.; Pourkarim, H.; Azad, M. A Review on Iron Chelators in Treatment of Iron Overload Syndromes. Int. J. Hematol. Oncol. Stem Cell Res., 2016, 10(4), 239-247.
[http://dx.doi.org/PMID: 27928480]
[92]
Crisponi, G.; Nurchi, V.M. Chelating Agents as Therapeutic Compounds. Basic Principles. Chelation Therapy in the Treatment of Metal Intoxication; Aaseth, J.; Crisponi, G; Andersen, O., Ed.; Academic Press: Boston, 2016, pp. 35-61.
[http://dx.doi.org/10.1016/B978-0-12-803072-1.00002-X]
[93]
Dusek, P.; Aaseth, J. Chelating Therapy in Metal Storage Diseases.Chelation Therapy in the Treatment of Metal Intoxication; Aaseth, J.; Crisponi, G; Andersen, O., Ed.; Academic Press: Boston, 2016, pp. 285-311.
[http://dx.doi.org/10.1016/B978-0-12-803072-1.00006-7]
[94]
Li, J.; Lin, Y.; Li, X.; Zhang, J. Economic Evaluation of Chelation Regimens for β-Thalassemia Major: a Systematic Review. Mediterr. J. Hematol. Infect. Dis., 2019, 11(1), e2019036-e2019036.
[http://dx.doi.org/10.4084/mjhid.2019.036] [PMID: 31308912]
[95]
Tsafack, A.; Libman, J.; Shanzer, A.; Cabantchik, Z.I. Chemical Determinants of antimalarial activity of reversed siderophores. Antimicrob. Agents Chemother., 1996, 40(9), 2160-2166.
[http://dx.doi.org/10.1128/AAC.40.9.2160] [PMID: 8878599]
[96]
Holden, V.I.; Wright, M.S.; Houle, S.; Collingwood, A.; Dozois, C.M.; Adams, M.D.; Bachman, M.A. Iron Acquisition and Siderophore Release by Carbapenem-Resistant Sequence Type 258 Klebsiella pneumoniae. MSphere, 2018, 3(2), e00125-e18.
[http://dx.doi.org/10.1128/mSphere.00125-18] [PMID: 29669884]
[97]
Nagoba, B.; Vedpathak, D. Medical applications of siderophores. Eur. J. Gen. Med, 2011, 8(3), 229-235.
[98]
Gysin, J. Siderophores as antiparasitic agents; Google Patents, 1993.
[99]
Loyevsky, M.; Lytton, S.D.; Mester, B.; Libman, J.; Shanzer, A.; Cabantchik, Z.I. The antimalarial action of desferal involves a direct access route to erythrocytic (Plasmodium falciparum) parasites. J. Clin. Invest., 1993, 91(1), 218-224.
[http://dx.doi.org/10.1172/JCI116174] [PMID: 8423220]
[100]
Loyevsky, M.; John, C.; Dickens, B.; Hu, V.; Miller, J.H.; Gordeuk, V.R. Chelation of iron within the erythrocytic Plasmodium falciparum parasite by iron chelators. Mol. Biochem. Parasitol., 1999, 101(1-2), 43-59.
[http://dx.doi.org/10.1016/S0166-6851(99)00053-5] [PMID: 10413042]
[101]
Aly, S.S.; Fayed, H.M.; Ismail, A.M.; Abdel Hakeem, G.L. Assessment of peripheral blood lymphocyte subsets in children with iron deficiency anemia. BMC Pediatr., 2018, 18(1), 49.
[http://dx.doi.org/10.1186/s12887-018-0990-5] [PMID: 29433459]