Current Biochemical Engineering (Discontinued)

Author(s): Pranav D. Parakh, Sonil Nanda* and Janusz A. Kozinski

DOI: 10.2174/2212711906999200425235946

Eco-friendly Transformation of Waste Biomass to Biofuels

Page: [120 - 134] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: The development of viable alternative fuel sources is assuming a new urgency in the face of climate change and environmental degradation linked to the escalating consumption of fossil fuels. Lignocellulosic biomass is composed primarily of high-energy structural components such as cellulose, hemicellulose and lignin. The transformation of lignocellulosic biomass to biofuels requires the application of both pretreatment and conversion technologies.

Methods: Several pretreatment technologies (e.g. physical, chemical and biological) are used to recover cellulose, hemicellulose and lignin from biomass and begin the transformation into biofuels. This paper reviews the thermochemical (e.g. pyrolysis, gasification and liquefaction), hydrothermal (e.g. subcritical and supercritical water gasification and hydrothermal liquefaction), and biological (e.g. fermentation) conversion pathways that are used to further transform biomass feedstocks into fuel products.

Results: Through several thermochemical and biological conversion technologies, lignocellulosic biomass and other organic residues can produce biofuels such as bio-oils, biochar, syngas, biohydrogen, bioethanol and biobutanol, all of which have the potential to replace hydrocarbon-based fossil fuels.

Conclusion: This review paper describes the conversion technologies used in the transformation of biomass into viable biofuels. Biofuels produced from lignocellulosic biomass and organic wastes are a promising potential clean energy source with the potential to be carbon-neutral or even carbonnegative.

Keywords: Lignocellulosic biomass, cellulose, hemicellulose, lignin, biofuels, biorefining technologies.

Graphical Abstract

[1]
International Energy Agency, Total primary energy supply (TPES) by source, World 1990-2017. Data and statistics.. https://www.iea.org/data-and-statistics23 January 2020
[2]
S.K. Nayak, B. Nayak, P.C. Mishra, M.M. Noor, and S. Nanda, Effects of biodiesel blends and producer gas flow on overall performance of a turbocharged direct injection dual-fuel engine., Energy Sourc. Part A, 2019.
[http://dx.doi.org/10.1080/15567036.2019.1694101]
[3]
D. Fears, A 14-year-long oil spill in the Gulf of Mexico verges on becoming one of the worst in U.S. history. The Washington Post 2018..https://www.washingtonpost.com/national/health-science/a-14-year-long-oil-spill-in-the-gulf-of-mexico-verges-on-becoming-one-of-the-worst-in-us-history/2018/10/20/f9a66fd0-9045-11e8-bcd5-9d911c784c38_story.html23 January 2020
[4]
G.A. Burton Jr, N. Basu, B.R. Ellis, K.E. Kapo, S. Entrekin, and K. Nadelhoffer, "Hydraulic “fracking”: are surface water impacts an ecological concern?", Environ. Toxicol. Chem., vol. 33, no. 8, pp. 1679-1689, 2014.
[http://dx.doi.org/10.1002/etc.2619]
[5]
W.L. Ellsworth, "Injection-induced earthquakes", Science, vol. 341, no. 6142, 2013. 1225942
[http://dx.doi.org/10.1126/science.1225942]
[6]
S. Nanda, S.N. Reddy, S.K. Mitra, and J.A. Kozinski, "The progressive routes for carbon capture and sequestration", Energy Sci. Eng., vol. 4, pp. 99-122, 2016.
[http://dx.doi.org/10.1002/ese3.117]
[7]
R. Lindsey, Climate change: Atmospheric carbon dioxide. NOAA Climate.gov., 2019.https://www.climate.gov/news-features/under- standing-climate/climate-change-atmospheric-carbon-dioxide23 January 2019
[8]
National Oceanic & Atmospheric Administration (NOAA), Global CH4 monthly means. U.S. Department of Commerce., 2020..https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/24 January 2020
[9]
L.G. Pereira, O. Cavalett, A. Bonomi, Y. Zhang, E. Warner, and H.L. Chumd, "Comparison of biofuel life-cycle GHG emissions assessment tools: The case studies of ethanol produced from sugarcane, corn, and wheat", Renew. Sustain. Energy Rev., vol. 110, pp. 1-12, 2019.
[http://dx.doi.org/10.1016/j.rser.2019.04.043]
[10]
Y.K. Dasan, M.K. Lam, S. Yusup, J.W. Lim, and K.T. Lee, "Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis", Sci. Total Environ., vol. 688, pp. 112-128, 2019.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.181]
[11]
A. O’Connell, M. Kousoulidou, L. Lonza, and W. Weindorf, "Considerations on GHG emissions and energy balances of promising aviation biofuel pathways", Renew. Sustain. Energy Rev., vol. 101, pp. 504-515, 2019.
[http://dx.doi.org/10.1016/j.rser.2018.11.033]
[12]
J.Y. Kim, H.W. Lee, S.M. Lee, J. Jae, and Y.K. Park, "Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals", Bioresour. Technol., vol. 279, pp. 373-384, 2019.
[http://dx.doi.org/10.1016/j.biortech.2019.01.055]
[13]
S. Liu, X. Jiang, N.T. Tsona, C. Lv, and L. Du, "Effects of NOx, SO2 and RH on the SOA formation from cyclohexene photooxidation", Chemosphere, vol. 216, pp. 794-804, 2019.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.180]
[14]
S. Sudalma, P. Purwanto, and L.W. Santoso, "The effect of SO2 and NO2 from transportation and stationary emissions sources to SO42- and NO3- in rain water in Semarang", Procedia Environ. Sci., vol. 23, pp. 247-252, 2015.
[http://dx.doi.org/10.1016/j.proenv.2015.01.037]
[15]
S. Nanda, and A.K. Dalai, K.K., Pant, I. Gökalp, and J.A. Kozinski, “An appraisal on biochar functionality and utility in agronomy.Bioenergy and Biofuels., CRC Press: Florida, 2018, pp. 389-409.
[http://dx.doi.org/10.1201/9781351228138-14]
[16]
G. Andrey, V. Rajput, M. Tatiana, M. Saglara, S. Svetlana, K. Igor, T. Grigoryeva, C. Vasily, A. Iraida, Z. Vladislav, F. Elena, and M. Hasmik, "The role of biochar-microbe interaction in alleviating heavy metal toxicity in Hordeum vulgare L. grown in highly polluted soils", Appl. Geochem., vol. 104, pp. 93-101, 2019.
[http://dx.doi.org/10.1016/j.apgeochem.2019.03.017]
[17]
S. Nanda, A.K. Dalai, F. Berruti, and J.A. Kozinski, "Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials", Waste Biomass Valoriz., vol. 7, pp. 201-235, 2016.
[http://dx.doi.org/10.1007/s12649-015-9459-z]
[18]
S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, and A.K. Dalai, "Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels", Bioenerg. Res., vol. 6, pp. 663-677, 2013.
[http://dx.doi.org/10.1007/s12155-012-9281-4]
[19]
O. Taofiq, A.M. González-Paramás, M.F. Barreiro, and I.C.F.R. Ferreira, "Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review", Molecules, vol. 22, no. 2, p. 281, 2017.
[http://dx.doi.org/10.3390/molecules22020281]
[20]
S. Nanda, J. Mohammad, S.N. Reddy, J.A. Kozinski, and A.K. Dalai, "Pathways of lignocellulosic biomass conversion to renewable fuels", Biomass Convers. Biorefin., vol. 4, pp. 157-191, 2014.
[http://dx.doi.org/10.1007/s13399-013-0097-z]
[21]
S. Nanda, R. Azargohar, A.K. Dalai, and J.A. Kozinski, "An assessment on the sustainability of lignocellulosic biomass for biorefining", Renew. Sustain. Energy Rev., vol. 50, pp. 925-941, 2015.
[http://dx.doi.org/10.1016/j.rser.2015.05.058]
[22]
S. Nanda, A.K. Dalai, and J.A. Kozinski, "Supercritical water gasification of timothy grass as an energy crop in the presence of alkali carbonate and hydroxide catalysts", Biomass Bioenergy, vol. 95, pp. 378-387, 2016.
[http://dx.doi.org/10.1016/j.biombioe.2016.05.023]
[23]
A. Singh, S. Nanda, and F. Berruti, A review of thermochemical and biochemical conversion of miscanthus to biofuels.Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals., Springer Nature: Singapore, pp. 195-220. 2020
[http://dx.doi.org/10.1007/978-981-15-1804-1_9]
[24]
W.E. Mabee, and J.N. Saddler, "Bioethanol from lignocellulosics: Status and perspectives in Canada", Bioresour. Technol., vol. 101, no. 13, pp. 4806-4813, 2010.
[http://dx.doi.org/10.1016/j.biortech.2009.10.098]
[25]
"Food and Agricultural Organization (FAO),", Global food losses and food waste – Extent, causes and prevention. Rome,, 2011.http://www.fao.org/3/mb060e/mb060e00.pdf28 January 2020
[26]
"Food and Agricultural Organization (FAO)", The state of food and agriculture, 2019.http://www.fao.org/state-of-food-agriculture/en/28 January 2019
[27]
A. Hui, "Vast majority of Canadian food waste takes place within the food industry - and not at the household level, study finds", The Globe and Mail, 2019.https://www.theglobeandmail.com/canada/ article-vast-majority-of-food-waste-takes-place-within-the-food-industry-and/28 January 2020
[28]
A. Janus, "More than half of all food produced in Canada is lost or wasted, report says", CBC News, 2019.https://www.cbc.ca/news/ canada/toronto/food-waste-report-second-harvest-1.498172828 January 2020
[29]
S. Nanda, S.N. Reddy, H.N. Hunter, A.K. Dalai, and J.A. Kozinski, "Supercritical water gasification of fructose as a model compound for waste fruits and vegetables", J. Supercrit. Fluids, vol. 104, pp. 112-121, 2015.
[http://dx.doi.org/10.1016/j.supflu.2015.05.009]
[30]
S. Nanda, J. Isen, A.K. Dalai, and J.A. Kozinski, "Gasification of fruit wastes and agro-food residues in supercritical water", Energy Convers. Manage., vol. 110, pp. 296-306, 2016.
[http://dx.doi.org/10.1016/j.enconman.2015.11.060]
[31]
J.A. Okolie, S. Nanda, A.K. Dalai, F. Berruti, and J.A. Kozinski, "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas", Renew. Sustain. Energy Rev., vol. 119, no. 109546, 2020.
[http://dx.doi.org/10.1016/j.rser.2019.109546]
[32]
W.W.F. World Wildlife, Fight climate change by preventing food waste, 2020.https://www.worldwildlife.org/stories/fight-climate-change-by-preventing-food-waste28 January 2020
[33]
K. Paritosh, S.K. Kushwaha, M. Yadav, N. Pareek, A. Chawade, and V. Vivekanand, "Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling", BioMed Res. Int, vol. 2017, -2017 2370927.
[http://dx.doi.org/10.1155/2017/2370927]
[34]
H.T.N. Hao, O.P. Karthikeyan, and K. Heimann, "Bio-refining of carbohydrate-rich food waste for biofuels", Energies, 2015.
[http://dx.doi.org/10.3390/en8076350]
[35]
P.K. Sarangi, and S. Nanda, "Biohydrogen production through dark fermentation", Chem. Eng. Technol., pp. 601-612, 2020.
[http://dx.doi.org/10.1002/ceat.201900452]
[36]
S. Nanda, J. Maley, J.A. Kozinski, and A.K. Dalai, "Physico-chemical evolution in lignocellulosic feedstocks during hydrothermal pretreatment and delignification", J. Biobased Mater. Bioenergy, vol. 9, pp. 295-308, 2015.
[http://dx.doi.org/10.1166/jbmb.2015.1529]
[37]
A.C. Corrêa, E. de Morais Teixeira, L.A. Pessan, and L.H.C. Mattoso, "Cellulose nanofibers from curaua fibers", Cellulose, vol. 17, pp. 1183-1192, 2010.
[http://dx.doi.org/10.1007/s10570-010-9453-3]
[38]
M. Jeguirim, and G. Trouvé, "Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis", Bioresour. Technol., vol. 100, no. 17, pp. 4026-4031, 2009.
[http://dx.doi.org/10.1016/j.biortech.2009.03.033]
[39]
S. Nanda, M. Gong, H.N. Hunter, A.K. Dalai, I. Gökalp, and J.A. Kozinski, "An assessment of pinecone gasification in subcritical, near-critical and supercritical water", Fuel Process. Technol., vol. 168, pp. 84-96, 2017.
[http://dx.doi.org/10.1016/j.fuproc.2017.08.017]
[40]
B.B. Hallac, and A.J. Ragauskas, "“Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol”, Biofuels", Bioprod. Bioref, vol. 5, pp. 215-225, 2011.
[http://dx.doi.org/10.1002/bbb.269]
[41]
L. Dai, Y. Wang, X. Zou, Z. Chen, H. Liu, and Y. Ni, "Ultrasensitive physical, bio, and chemical sensors derived from 1‐, 2‐, and 3‐D nanocellulosic materials", Small, vol. 16, no. 13, 2020.e1906567
[http://dx.doi.org/10.1002/smll.201906567]
[42]
L. Kang, B. Wang, J. Zeng, Z. Cheng, J. Li, J. Xu, W. Gao, and K. Chen, "Degradable dual superlyophobic lignocellulosic fibers for high-efficiency oil/water separation", Green Chem., vol. 22, pp. 504-512, 2019.
[http://dx.doi.org/10.1039/C9GC03861B]
[43]
S.M.F. Kabir, P.P. Sikdar, B. Haque, M.A.R. Bhuiyan, A. Ali, and M.N. Islam, "Cellulose-based hydrogel materials: chemistry, properties and their prospective applications", Prog. Biomater., vol. 7, no. 3, pp. 153-174, 2018.
[http://dx.doi.org/10.1007/s40204-018-0095-0]
[44]
Y. Liao, S.F. Koelewijn, G. Van den Bossche, J. Van Aelst, S. Van den Bosch, T. Renders, K. Navare, T. Nicolaï, K. Van Aelst, M. Maesen, H. Matsushima, J.M. Thevelein, K. Van Acker, B. Lagrain, D. Verboekend, and B.F. Sels, "A sustainable wood biorefinery for low-carbon footprint chemicals production", Science, vol. 367, no. 6484, pp. 1385-1390, 2020.
[http://dx.doi.org/10.1126/science.aau1567]
[45]
K. Werner, L. Pommer, and M. Broström, "Thermal decomposition of hemicelluloses", J. Anal. Appl. Pyrolysis, vol. 110, pp. 130-137, 2014.
[http://dx.doi.org/10.1016/j.jaap.2014.08.013]
[46]
S. Yaman, "Pyrolysis of biomass to produce fuels and chemical feedstocks", Energy Convers. Manage., vol. 45, pp. 651-671, 2004.
[http://dx.doi.org/10.1016/S0196-8904(03)00177-8]
[47]
G. Brunner, "Supercritical process technology related to energy and future directions – An introduction", J. Supercrit. Fluids, vol. 69, pp. 11-20, 2015.
[http://dx.doi.org/10.1016/j.supflu.2014.09.008]
[48]
S. Khatami, Y. Deng, M. Tien, and P.G. Hatcher, "Formation of water-soluble organic matter through fungal degradation of lignin", Org. Geochem., vol. 135, pp. 64-70, 2019.
[http://dx.doi.org/10.1016/j.orggeochem.2019.06.004]
[49]
D. Fougere, S. Nanda, K. Clarke, J.A. Kozinski, and K. Li, "Effect of acidic pretreatment on the chemistry and distribution of lignin in aspen wood and wheat straw substrates", Biomass Bioenergy, vol. 91, pp. 56-68, 2016.
[http://dx.doi.org/10.1016/j.biombioe.2016.03.027]
[50]
J.B. Kristensen, L.G. Thygesen, C. Felby, H. Jørgensen, and T. Elder, Cell-wall structural changes in wheat straw pretreated for bioethanol production., vol. 1. Biotechnol. Biofuel, 2008, p. 5.
[51]
E.C. Achinivu, "Protic ionic liquids for lignin extraction—A lignin characterization study", Int. J. Mol. Sci., vol. 19, no. 2, p. 428, 2018.
[http://dx.doi.org/10.3390/ijms19020428]
[52]
J. Plácido, and S. Capareda, "Ligninolytic enzymes: a biotechnological alternative for bioethanol production", Bioresour. Bioprocess., vol. 2, p. 23, 2015.
[http://dx.doi.org/10.1186/s40643-015-0049-5]
[53]
R. Rana, S. Nanda, V. Meda, A.K. Dalai, and J.A. Kozinski, "A review of lignin chemistry and its biorefining conversion technologies", J. Biochem. Eng. Bioprocess Technol, vol. 1, no. 2, 2018.
[54]
B. Abdullah, S.A.F.A.S. Muhammad, and N.A.N. Mahmood, Production of biofuels via hydrogenation of lignin from biomass., New Advances in Hydrogenation Processes – Fundamentals and Applications. InTech: Croatia, 2017, pp. 289-305.
[http://dx.doi.org/10.5772/66108]
[55]
G. Brodeur, E. Yau, K. Badal, J. Collier, K.B. Ramachandran, and S. Ramakrishnan, "Chemical and physicochemical pretreatment of lignocellulosic biomass: a review"", Enzyme Res, vol. 2011, -2011 787532.
[http://dx.doi.org/10.4061/2011/787532]
[56]
S. Nanda, S.N. Reddy, Z. Fang, A.K. Dalai, and J.A. Kozinski, Hydrothermal events occurring during gasification in supercritical water. Supercritical and Other High-pressure Solvent Systems: For Extraction, Reaction and Material Processing., Royal Society of Chemistry: London, 2018, pp. 560-587.
[http://dx.doi.org/10.1039/9781788013543-00560]
[57]
S. Nanda, S.N. Reddy, D.V.N. Vo, B.N. Sahoo, and J.A. Kozinski, "Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production", Energy Sci. Eng., vol. 6, pp. 448-459, 2018.
[http://dx.doi.org/10.1002/ese3.219]
[58]
H.K. Sharma, C. Xu, and W. Qin, "Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview", Waste Biomass Valoriz., vol. 10, pp. 235-251, 2019.
[http://dx.doi.org/10.1007/s12649-017-0059-y]
[59]
P.K. Sarangi, and S. Nanda, Recent advances in consolidated bioprocessing for microbe-assisted biofuel production. Fuel Processing and Energy Utilization., CRC Press: Florida, 2019, pp. 141-157.
[http://dx.doi.org/10.1201/9780429489594-9]
[60]
C. Florencio, F.M. Cunha, A.C. Badino, C.S. Farinas, E. Ximenes, and M.R. Ladisch, "Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis", Enzyme Microb. Technol., vol. 90, pp. 53-60, 2016.
[http://dx.doi.org/10.1016/j.enzmictec.2016.04.011]
[61]
M. Saloheimo, J. Kuja-Panula, E. Ylösmäki, M. Ward, and M. Penttilä, "Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (cel1A)", Appl. Environ. Microbiol., vol. 68, no. 9, pp. 4546-4553, 2002.
[http://dx.doi.org/10.1128/AEM.68.9.4546-4553.2002]
[62]
H. Nakazawa, T. Kawai, N. Ida, Y. Shida, K. Shioya, Y. Kobayashi, H. Okada, S. Tani, J.I. Sumitani, T. Kawaguchi, Y. Morikawa, and W. Ogasawara, "A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion", Enzyme Microb. Technol., vol. 82, pp. 89-95, 2016.
[http://dx.doi.org/10.1016/j.enzmictec.2015.08.019]
[63]
P. Chylenski, Z. Forsberg, J. Ståhlberg, A. Várnai, M. Lersch, O. Bengtsson, S. Sæbø, S.J. Horn, and V.G.H. Eijsink, "Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass", J. Biotechnol., vol. 246, pp. 16-23, 2017.
[http://dx.doi.org/10.1016/j.jbiotec.2017.02.009]
[64]
J. Wang, A. Quirk, J. Lipkowski, J.R. Dutcher, and A.J. Clarke, "Direct in situ observation of synergism between cellulolytic enzymes during the biodegradation of crystalline cellulose fibers", Langmuir, vol. 29, no. 48, pp. 14997-15005, 2013.
[http://dx.doi.org/10.1021/la403401c]
[65]
G.S. de Oliveira, P.P. Adriani, F.G. Borges, A.R. Lopes, P.T. Campana, and F.S. Chambergo, "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization", Int. J. Biol. Macromol., vol. 89, pp. 569-574, 2016.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.031]
[66]
C. Wilson, G.S. De Oliveira, P.P. Adriani, F.S. Chambergo, and M.V.B. Dias, Structure of a soluble epoxide hydrolase identified in Trichoderma reesei., vol. 1865. BBA – Proteins Proteomics, 2017, pp. 1039-1045.
[67]
S. Nanda, A.K. Dalai, and J.A. Kozinski, "Butanol and ethanol production from lignocellulosic feedstock: biomass pretreatment and bioconversion", Energy Sci. Eng., vol. 2, pp. 138-148, 2014.
[http://dx.doi.org/10.1002/ese3.41]
[68]
S. Nanda, D. Golemi-Kotra, J.C. McDermott, A.K. Dalai, I. Gökalp, and J.A. Kozinski, "Fermentative production of butanol: Perspectives on synthetic biology", N. Biotechnol., vol. 37, pp. 210-221, 2017.
[http://dx.doi.org/10.1016/j.nbt.2017.02.006]
[69]
S. Nanda, A.K. Dalai, and J.A. Kozinski, Butanol from renewable biomass: Highlights on downstream processing and recovery techniques. Sustainable Utilization of Natural Resources., CRC Press: Florida, 2017, pp. 187-211.
[http://dx.doi.org/10.1201/9781315153292-7]
[70]
P.K. Sarangi, and S. Nanda, “Recent developments and challenges of acetone-butanol-ethanol fermentation” in Recent Advancements in Biofuels and Bioenergy Utilization., Springer Nature: Singapore, 2018, pp. 111-123.
[http://dx.doi.org/10.1007/978-981-13-1307-3_5]
[71]
S. Nanda, R. Rana, D.V.N. Vo, P.K. Sarangi, T.D. Nguyen, A.K. Dalai, and J.A. Kozinski, "A spotlight on butanol and propanol as next-generation synthetic fuels", Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals, Springer Nature: Singapore,2020, pp. 105-126.
[http://dx.doi.org/10.1007/978-981-15-1804-1_5]
[72]
P.K. Sarangi, S. Nanda, and D.V.N. Vo, Technological advancements in the production and application of biomethanol” in Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer Nature: Singapore, 2020, pp. 127-139
[73]
J.G. Nijland, E. Vos, H.Y. Shin, P.P. de Waal, P. Klaassen, and A.J.M. Driessen, "Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae", Biotechnol. Biofuels, vol. 9, p. 158, 2016.
[http://dx.doi.org/10.1186/s13068-016-0573-3]
[74]
S. Mazzoleni, C. Landi, F. Cartenì, E. de Alteriis, F. Giannino, L. Paciello, and P. Parascandola, "A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures", Microb. Cell Fact., vol. 14, p. 109, 2015.
[http://dx.doi.org/10.1186/s12934-015-0295-4]
[75]
P. Dürre, "Biobutanol: an attractive biofuel", Biotechnol. J., vol. 2, no. 12, pp. 1525-1534, 2007.
[http://dx.doi.org/10.1002/biot.200700168]
[76]
Y.N. Zheng, L.Z. Li, M. Xian, Y.J. Ma, J.M. Yang, X. Xu, and D.Z. He, "Problems with the microbial production of butanol", J. Ind. Microbiol. Biotechnol., vol. 36, no. 9, pp. 1127-1138, 2009.
[http://dx.doi.org/10.1007/s10295-009-0609-9]
[77]
C. Jin, Z. Geng, X. Zhang, M. Ma, J. Ji, G. Wang, C. Guan, and H. Liu, "Study on the solubility between diesel and acetone−butanol−ethanol with or without water", Energy Fuel, 2019.
[78]
S. Liu, and N. Qureshi, "How microbes tolerate ethanol and butanol", N. Biotechnol., vol. 26, no. 3-4, pp. 117-121, 2009.
[http://dx.doi.org/10.1016/j.nbt.2009.06.984]
[79]
T. Van Tran, D.T.C. Nguyen, H.T.T. Nguyen, S. Nanda, D.N. Vo, S.T. Do, T. Van Nguyen, T.A.D. Thi, L.G. Bach, and T.D. Nguyen, "Application of Fe-based metal-organic framework and its pyrolysis products for sulfonamide treatment", Environ. Sci. Pollut. Res. Int., vol. 26, no. 27, pp. 28106-28126, 2019.
[http://dx.doi.org/10.1007/s11356-019-06011-2]
[80]
R. Azargohar, S. Nanda, B.V.S.K. Rao, and A.K. Dalai, "Slow pyrolysis of deoiled Canola meal: Product yields and characterization", Energy Fuels, vol. 27, pp. 5268-5279, 2013.
[http://dx.doi.org/10.1021/ef400941a]
[81]
R. Azargohar, S. Nanda, J.A. Kozinski, A.K. Dalai, and R. Sutarto, "Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass", Fuel, vol. 125, pp. 90-100, 2014.
[http://dx.doi.org/10.1016/j.fuel.2014.01.083]
[82]
S. Nanda, R. Azargohar, J.A. Kozinski, and A.K. Dalai, "Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks", BioEnergy Res., vol. 7, pp. 174-191, 2014.
[http://dx.doi.org/10.1007/s12155-013-9359-7]
[83]
P. Mohanty, S. Nanda, K.K. Pant, S. Naik, J.A. Kozinski, and A.K. Dalai, "Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate", J. Anal. Appl. Pyrolysis, vol. 104, pp. 485-493, 2013.
[http://dx.doi.org/10.1016/j.jaap.2013.05.022]
[84]
S. Nanda, J.A. Kozinski, and A.K. Dalai, "Lignocellulosic biomass: A review of conversion technologies and fuel products", Curr. Biochem. Eng., vol. 3, pp. 24-36, 2016.
[http://dx.doi.org/10.2174/2213385203666150219232000]
[85]
M.F. Demirbas, "Current technologies for biomass conversion into chemicals and fuels", Energy Sour. Part A, vol. 28, pp. 1181-1188, 2006.
[http://dx.doi.org/10.1080/00908310500434556]
[86]
S. Nanda, P. Mohanty, J.A. Kozinski, and A.K. Dalai, "Physico-chemical properties of bio-oils from pyrolysis of lignocellulosic biomass with high and slow heating rate", Energ. Environ. Res., vol. 4, pp. 21-32, 2014.
[http://dx.doi.org/10.5539/eer.v4n3p21]
[87]
S. Nanda, P. Mohanty, J.A. Kozinski, and A.K. Dalai, Hydrothermal and thermochemical synthesis of bio-oil from lignocellulosic biomass: Composition, engineering and catalytic upgrading. Industrial Biotechnology Sustainable Production and Bioresource Utilization., Apple Academic Press: New Jersey, 2016, pp. 326-370.
[http://dx.doi.org/10.1201/b19347-13]
[88]
K. Kang, S. Nanda, G. Sun, L. Qiu, Y. Gu, T. Zhang, M. Zhu, and R. Sun, "Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar", Energy, vol. 186, . 2019.115795
[http://dx.doi.org/10.1016/j.energy.2019.07.125]
[89]
S. Wu, and H. Wu, "Incorporating biochar into wastewater eco-treatment systems: Popularity, reality, and complexity", Environ. Sci. Technol., vol. 53, no. 7, pp. 3345-3346, 2019.
[http://dx.doi.org/10.1021/acs.est.9b01101]
[90]
L. Dai, L. Li, W. Zhu, H. Ma, H. Huang, Q. Lu, M. Yang, and Y. Ran, "Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(VI) adsorption", Bioresour.Technol, vol. 298 2020, -122576.
[http://dx.doi.org/10.1016/j.biortech.2019.122576]
[91]
P. Yadav, S.N. Reddy, and S. Nanda, Cultivation and conversion of algae for wastewater treatment and biofuel production.Fuel Processing and Energy Utilization., CRC Press: Florida, 2019, pp. 159-175.
[http://dx.doi.org/10.1201/9780429489594-10]
[92]
S. Nanda, S.N. Reddy, H.N. Hunter, D.V.N. Vo, J.A. Kozinski, and I. Gökalp, "Catalytic subcritical and supercritical water gasification as a resource recovery approach from waste tires for hydrogen-rich syngas production", J. Supercrit. Fluids, vol. 154 2019, -104627.
[http://dx.doi.org/10.1016/j.supflu.2019.104627]
[93]
A.R.K. Gollakota, N. Kishore, and S. Gu, "A review on hydrothermal liquefaction of biomass", Renew. Sustain. Energy Rev., vol. 81, pp. 1378-1392, 2018.
[http://dx.doi.org/10.1016/j.rser.2017.05.178]
[94]
J. Yang, Q.S. He, and L. Yang, "A review on hydrothermal co-liquefaction of biomass", Appl. Energy, vol. 250, pp. 926-945, 2019.
[http://dx.doi.org/10.1016/j.apenergy.2019.05.033]
[95]
A. Demirbas, "Mechanisms of liquefaction and pyrolysis reactions of biomass", Energy Convers. Manage., vol. 41, pp. 633-646, 2000.
[http://dx.doi.org/10.1016/S0196-8904(99)00130-2]
[96]
S. Safarian, R. Unnþórsson, and C. Richter, "A review of biomass gasification modelling", Renew. Sustain. Energy Rev., vol. 110, pp. 378-391, 2019.
[http://dx.doi.org/10.1016/j.rser.2019.05.003]
[97]
S. Singh, R. Kumar, H.D. Setiabudi, S. Nanda, and D.V.N. Vo, "Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review", Appl. Catal. A Gen., vol. 559, pp. 57-74, 2018.
[http://dx.doi.org/10.1016/j.apcata.2018.04.015]
[98]
N.T. Tran, Q.V. Le, N.V. Cuong, T.D. Nguyen, N.H.H. Phuc, P.T.T. Phuong, M.U. Monir, A.A. Aziz, Q.D. Truong, S.Z. Abidin, S. Nanda, and D.V.N. Vo, "La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation", J. Energ. Inst.. 2020
[http://dx.doi.org/10.1016/j.joei.2020.01.019]
[99]
D.V.N. Vo, S. Nanda, and H.D. Setiabudi, "Hydrogen energy production from advanced reforming processes and emerging approaches", Chem. Eng. Technol., vol. 43, p. 600, 2020.
[http://dx.doi.org/10.1002/ceat.202070045]
[100]
A. Raheem, W.A.K.G. Wan Azlina, Y.H.T. Yap, M.K. Danquah, and R. Harun, "Thermochemical conversion of microalgal biomass for biofuel production", Renew. Sustain. Energy Rev., vol. 49, pp. 990-999, 2015.
[http://dx.doi.org/10.1016/j.rser.2015.04.186]
[101]
M. Gong, S. Nanda, H.N. Hunter, W. Zhu, A.K. Dalai, and J.A. Kozinski, "Lewis acid catalyzed gasification of humic acid in supercritical water", Catal. Today, vol. 291, pp. 13-23, 2017.
[http://dx.doi.org/10.1016/j.cattod.2017.02.017]
[102]
M. Gong, S. Nanda, M.J. Romero, W. Zhu, and J.A. Kozinski, "Subcritical and supercritical water gasification of humic acid as a model compound of humic substances in sewage sludge", J. Supercrit. Fluids, vol. 119, pp. 130-138, 2017.
[http://dx.doi.org/10.1016/j.supflu.2016.08.018]
[103]
R. Rana, S. Nanda, J.A. Kozinski, and A.K. Dalai, "Investigating the applicability of Athabasca bitumen as a feedstock for hydrogen production through catalytic supercritical water gasification", J. Environ. Chem. Eng., vol. 6, pp. 182-189, 2018.
[http://dx.doi.org/10.1016/j.jece.2017.11.036]
[104]
S.N. Reddy, N. Ding, S. Nanda, A.K. Dalai, and J.A. Kozinski, "“Supercritical water gasification of biomass in diamond anvil cells and fluidized beds”, Biofuels", Bioprod. Bioref., vol. 8, pp. 728-737, 2014.
[http://dx.doi.org/10.1002/bbb.1514]
[105]
S.N. Reddy, S. Nanda, A.K. Dalai, and J.A. Kozinski, "Supercritical water gasification of biomass for hydrogen production", Int. J. Hydrogen Energy, vol. 39, pp. 6912-6926, 2014.
[http://dx.doi.org/10.1016/j.ijhydene.2014.02.125]
[106]
S.N. Reddy, S. Nanda, U.G. Hegde, M.C. Hicks, and J.A. Kozinski, "Ignition of hydrothermal flames", RSC Advances, vol. 5, pp. 36404-36422, 2015.
[http://dx.doi.org/10.1039/C5RA02705E]
[107]
R. Rana, S. Nanda, A. Maclennan, Y. Hu, J.A. Kozinski, and A.K. Dalai, "Comparative evaluation for catalytic gasification of petroleum coke and asphaltene in subcritical and supercritical water", J. Energy Chem., vol. 31, pp. 107-118, 2019.
[http://dx.doi.org/10.1016/j.jechem.2018.05.012]
[108]
J.A. Okolie, S. Nanda, A.K. Dalai, and J.A. Kozinski, "Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products", Int. J. Hydrogen Energy, 2019.
[http://dx.doi.org/10.1016/j.ijhydene.2019.05.132]
[109]
J.A. Okolie, S. Nanda, A.K. Dalai, and J.A. Kozinski, "Hydrothermal gasification of soybean straw and flax straw for hydrogen-rich syngas production: Experimental and thermodynamic modeling", Energy Convers. Manage., 2020.
[http://dx.doi.org/10.1016/j.enconman.2020.112545]
[110]
J.A. Okolie, R. Rana, S. Nanda, A.K. Dalai, and J.A. Kozinski, "Supercritical water gasification of biomass: A state-of-the-art review of process parameters, reaction mechanisms and catalysis", Sustain. Energ Fuel, vol. 3, pp. 578-598, 2019.
[111]
S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, C.M. Michailof, P.A. Pilavachi, and A.A. Lappas, "A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin", J. Anal. Appl. Pyrolysis, vol. 105, pp. 143-150, 2014.
[http://dx.doi.org/10.1016/j.jaap.2013.10.013]
[112]
M.C. Barnés, M.M. de Visser, G. van Rossum, S.R.A. Kersten, and J-P. Lange, "Liquefaction of wood and its model components", J. Anal. Appl. Pyrolysis, vol. 125, pp. 136-143, 2017.
[http://dx.doi.org/10.1016/j.jaap.2017.04.008]
[113]
C. Wua, Z. Wang, J. Huang, and P.T. Williams, "Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts", Fuel, vol. 106, pp. 697-706, 2013.
[http://dx.doi.org/10.1016/j.fuel.2012.10.064]
[114]
H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, and S. Gu, "A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas", Catal. Sci. Technol., vol. 4, pp. 2210-2229, 2014.
[http://dx.doi.org/10.1039/C4CY00327F]
[115]
P.A. Lindahl, "Nickel-carbon bonds in acetyl-coenzyme a synthases/carbon monoxide dehydrogenases", Met. Ions Life Sci., vol. 6, pp. 133-150, 2009.
[http://dx.doi.org/10.1039/9781847559333-00133]