An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses

Page: [915 - 962] Pages: 48

  • * (Excluding Mailing and Handling)

Abstract

Background: Emerging viral zoonotic diseases are one of the major obstacles to secure the “One Health” concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour.

Methods: Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs.

Results: Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies.

Conclusion: This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.

Keywords: Viral Zoonoses, Nanomedicine, Vaccine, Diagnostics, Therapeutics, Ebola virus infection.

Graphical Abstract

[1]
Carroll, D.; Daszak, P.; Wolfe, N.D.; Gao, G.F.; Morel, C.M.; Morzaria, S.; Pablos-Méndez, A.; Tomori, O.; Mazet, J.A.K. The Global Virome Project. Science, 2018, 359(6378), 872-874.
[http://dx.doi.org/10.1126/science.aap7463] [PMID: 29472471]
[2]
Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature, 2017, 546(7660), 646-650.
[http://dx.doi.org/10.1038/nature22975] [PMID: 28636590]
[3]
Carroll, D.; Watson, B.; Togami, E.; Daszak, P.; Mazet, J.A.; Chrisman, C.J.; Rubin, E.M.; Wolfe, N.; Morel, C.M.; Gao, G.F.; Burci, G.L.; Fukuda, K.; Auewarakul, P.; Tomori, O. Building a global atlas of zoonotic viruses. Bull. World Health Organ., 2018, 96(4), 292-294.
[http://dx.doi.org/10.2471/BLT.17.205005] [PMID: 29695886]
[4]
Roser, M. Life Expectancy. OurWorldInData.org, 2018.https://ourworldindata.org/life-expectancy
[5]
World Health Organization. Disease outbreaks by year WHO, 2019.https://www.who.int/csr/don/archive/year/en/
[6]
Kreuder Johnson, C.; Hitchens, P.L.; Smiley Evans, T.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; Mazet, J.K. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep., 2015, 5, 14830.
[http://dx.doi.org/10.1038/srep14830] [PMID: 26445169]
[7]
Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun., 2017, 8(1), 1124.
[http://dx.doi.org/10.1038/s41467-017-00923-8] [PMID: 29066781]
[8]
Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature, 2008, 451(7181), 990-993.
[http://dx.doi.org/10.1038/nature06536] [PMID: 18288193]
[9]
O’Neil, J. Zoonotic Infections From Common Household Pets. J. Nurse Pract., 2018, 14(5), 363-370.
[http://dx.doi.org/10.1016/j.nurpra.2017.12.025]
[10]
Christiansen, J. Global Infections by the Numbers. Sci. Am., 2018, 318, 48.
[11]
Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System CDC, 2017.https://wwwn.cdc.gov/nndss/infectious-tables.html
[12]
CDC. Sexually transmitted disease Surveillance. Available from:. https://www.cdc.gov/std/stats17/2017-STD-Surveillance-Report_ CDC-clearance-9.10.18.pdf (Accessed 2017).
[13]
World Health Organization. Global Health Estimates (GHE). 2018.https://www.who.int/healthinfo/global_burden_disease/en/
[14]
World Health Organization.. Disease burden and mortality estimates, WHO 2018.https://www.who.int/healthinfo/ global_burden_disease/estimates/en/index1.html
[15]
Global Health Estimates. Deaths by cause, age, sex, by country and by region, 2000-2016. World Health Organization: Geneva, 2018.
[16]
World Health Organization. Influenza (Seasonal) WHO, 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
[17]
Morris, S.K.; Awasthi, S.; Khera, A.; Bassani, D.G.; Kang, G.; Parashar, U.D.; Kumar, R.; Shet, A.; Glass, R.I.; Jha, P. Rotavirus mortality in India: estimates based on a nationally representative survey of diarrhoeal deaths. Bull. World Health Organ., 2012, 90(10), 720-727.
[http://dx.doi.org/10.2471/BLT.12.101873] [PMID: 23109739]
[18]
Nair, H.; Brooks, W.A.; Katz, M.; Roca, A.; Berkley, J.A.; Madhi, S.A.; Simmerman, J.M.; Gordon, A.; Sato, M.; Howie, S.; Krishnan, A.; Ope, M.; Lindblade, K.A.; Carosone-Link, P.; Lucero, M.; Ochieng, W.; Kamimoto, L.; Dueger, E.; Bhat, N.; Vong, S.; Theodoratou, E.; Chittaganpitch, M.; Chimah, O.; Balmaseda, A.; Buchy, P.; Harris, E.; Evans, V.; Katayose, M.; Gaur, B.; O’Callaghan-Gordo, C.; Goswami, D.; Arvelo, W.; Venter, M.; Briese, T.; Tokarz, R.; Widdowson, M.A.; Mounts, A.W.; Breiman, R.F.; Feikin, D.R.; Klugman, K.P.; Olsen, S.J.; Gessner, B.D.; Wright, P.F.; Rudan, I.; Broor, S.; Simões, E.A.; Campbell, H. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet, 2011, 378(9807), 1917-1930.
[http://dx.doi.org/10.1016/S0140-6736(11)61051-9] [PMID: 22078723]
[19]
Staples, J.E.; Breiman, R.F.; Powers, A.M. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin. Infect. Dis., 2009, 49(6), 942-948.
[http://dx.doi.org/10.1086/605496] [PMID: 19663604]
[20]
World Health Organization. Asia Pacific Strategy for Emerging Diseases 2010.
[21]
Rabozzi, G.; Bonizzi, L.; Crespi, E.; Somaruga, C.; Sokooti, M.; Tabibi, R.; Vellere, F.; Brambilla, G.; Colosio, C. Emerging zoonoses: the “one health approach”. Saf. Health Work, 2012, 3(1), 77-83.
[http://dx.doi.org/10.5491/SHAW.2012.3.1.77] [PMID: 22953235]
[22]
Sobrino, F.; Domingo, E. Foot-and-mouth disease in Europe. FMD is economically the most important disease of farm animals. Its re-emergence in Europe is likely to have consequences that go beyond severe alterations of livestock production and trade. EMBO Rep., 2001, 2(6), 459-461.
[http://dx.doi.org/10.1093/embo-reports/kve122] [PMID: 11415972]
[23]
RTHK. HK plans pig cull after second swine fever case Available from:. https://news.rthk.hk/rthk/en/component/k2/1460380-20190-531.htm (Accessed in 2018).
[24]
Phys.org. Japan culling 122,000 more birds for avian flu. Available from:. https://phys.org/news/2016-12-japan-culling-birds-avianflu_ 1_2.html (Accessed in 2016).
[25]
McLeod, A.; Morgan, N.; Prakash, A.; Hinrichs, J. Economic and Social Impacts of Avian Influenza; FAO: Rome, 2005.
[26]
World Bank. People, pathogens, and our planet: Volume one: towards a one health approach for controlling zoonotic diseases (English).World Bank: Washington, DC, 2010.
[27]
Litzba, N.; Schuffenecker, I.; Zeller, H.; Drosten, C.; Emmerich, P.; Charrel, R.; Kreher, P.; Niedrig, M. Evaluation of the first commercial chikungunya virus indirect immunofluorescence test. J. Virol. Methods, 2008, 149(1), 175-179.
[http://dx.doi.org/10.1016/j.jviromet.2008.01.004] [PMID: 18294706]
[28]
Lakshmi, V.; Neeraja, M.; Subbalaxmi, M.V.; Parida, M.M.; Dash, P.K.; Santhosh, S.R.; Rao, P.V. Clinical features and molecular diagnosis of Chikungunya fever from South India. Clin. Infect. Dis., 2008, 46(9), 1436-1442.
[http://dx.doi.org/10.1086/529444] [PMID: 18419449]
[29]
Ahmed, R.; Burton, D.R. Viral vaccines: past successes and future challenges. Curr. Opin. Virol., 2013, 3(3), 307-308.
[http://dx.doi.org/10.1016/j.coviro.2013.06.007] [PMID: 23809262]
[30]
Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R.A.; Alves, F.; Andrews, A.M.; Ashraf, S.; Balogh, L.P.; Ballerini, L.; Bestetti, A.; Brendel, C.; Bosi, S.; Carril, M.; Chan, W.C.; Chen, C.; Chen, X.; Chen, X.; Cheng, Z.; Cui, D.; Du, J.; Dullin, C.; Escudero, A.; Feliu, N.; Gao, M.; George, M.; Gogotsi, Y.; Grünweller, A.; Gu, Z.; Halas, N.J.; Hampp, N.; Hartmann, R.K.; Hersam, M.C.; Hunziker, P.; Jian, J.; Jiang, X.; Jungebluth, P.; Kadhiresan, P.; Kataoka, K.; Khademhosseini, A.; Kopeček, J.; Kotov, N.A.; Krug, H.F.; Lee, D.S.; Lehr, C.M.; Leong, K.W.; Liang, X.J.; Ling Lim, M.; Liz-Marzán, L.M.; Ma, X.; Macchiarini, P.; Meng, H.; Möhwald, H.; Mulvaney, P.; Nel, A.E.; Nie, S.; Nordlander, P.; Okano, T.; Oliveira, J.; Park, T.H.; Penner, R.M.; Prato, M.; Puntes, V.; Rotello, V.M.; Samarakoon, A.; Schaak, R.E.; Shen, Y.; Sjöqvist, S.; Skirtach, A.G.; Soliman, M.G.; Stevens, M.M.; Sung, H.W.; Tang, B.Z.; Tietze, R.; Udugama, B.N.; VanEpps, J.S.; Weil, T.; Weiss, P.S.; Willner, I.; Wu, Y.; Yang, L.; Yue, Z.; Zhang, Q.; Zhang, Q.; Zhang, X.E.; Zhao, Y.; Zhou, X.; Parak, W.J. Diverse Applications of Nanomedicine. ACS Nano, 2017, 11(3), 2313-2381.
[http://dx.doi.org/10.1021/acsnano.6b06040] [PMID: 28290206]
[31]
Maclachlan, N.; Dubovi, E.J. Fenner’s Veterinary Virology, 5th ed; Academic Press: Cambridge, 2016.
[32]
Knipe, D.M.; Howley, P.M. Fields Virology, 6th ed; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013.
[33]
Kumar, B.; Manuja, A.; Tripathi, B.N. Why trans-boundary and one health preparedness for Rift Valley fever is required. Travel Med. Infect. Dis., 2019, 30, 139-140.
[http://dx.doi.org/10.1016/j.tmaid.2019.04.011] [PMID: 31054319]
[34]
World Health Organization. Rift valley fever, 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever
[35]
Palmer, S.R. Oxford textbook of zoonoses: biology, clinical practice, and public health control, 2nd Ed; Oxford University Press: Oxford, 2011.
[http://dx.doi.org/10.1093/med/9780198570028.001.0001]
[36]
CDC. Rift Valley Fever(RVF) 2016. Available from:. https://www.cdc.gov/vhf/rvf/ (Accessed on 23rd November, 2018).
[37]
Kocak Tufan, Z.; Weidmann, M.; Bulut, C.; Kinikli, S.; Hufert, F.T.; Dobler, G.; Demiroz, A.P. Clinical and laboratory findings of a sandfly fever Turkey Virus outbreak in Ankara. J. Infect., 2011, 63(5), 375-381.
[http://dx.doi.org/10.1016/j.jinf.2011.07.011] [PMID: 21824495]
[38]
Karabatsos, N. International catalogue of arboviruses: including certain other viruses of vertebrates. In: Published for the Subcommittee on Information Exchange of the American Committee on Arthropod-borne Viruses by the American Society of Tropical Medicine and Hygiene, 3rd ed; San Antonio, 1985.
[39]
Papa, A.; Konstantinou, G.; Pavlidou, V.; Antoniadis, A. Sandfly fever virus outbreak in Cyprus. Clin. Microbiol. Infect., 2006, 12(2), 192-194.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01330.x] [PMID: 16441462]
[40]
Izri, A.; Temmam, S.; Moureau, G.; Hamrioui, B.; de Lamballerie, X.; Charrel, R.N. Sandfly fever Sicilian virus, Algeria. Emerg. Infect. Dis., 2008, 14(5), 795-797.
[http://dx.doi.org/10.3201/eid1405.071487] [PMID: 18439364]
[41]
Shiraly, R.; Khosravi, A.; Farahangiz, S. Seroprevalence of sandfly fever virus infection in military personnel on the western border of Iran. J. Infect. Public Health, 2017, 10(1), 59-63.
[http://dx.doi.org/10.1016/j.jiph.2016.02.014] [PMID: 27017407]
[42]
Dionisio, D.; Esperti, F.; Vivarelli, A.; Valassina, M. Epidemiological, clinical and laboratory aspects of sandfly fever. Curr. Opin. Infect. Dis., 2003, 16(5), 383-388.
[http://dx.doi.org/10.1097/00001432-200310000-00003] [PMID: 14501989]
[43]
Peyrefitte, C.N.; Devetakov, I.; Pastorino, B.; Villeneuve, L.; Bessaud, M.; Stolidi, P.; Depaquit, J.; Segura, L.; Gravier, P.; Tock, F.; Durand, F.; Vagneur, J.P.; Tolou, H.J.; Grandadam, M. Toscana virus and acute meningitis, France. Emerg. Infect. Dis., 2005, 11(5), 778-780.
[http://dx.doi.org/10.3201/eid1105.041122] [PMID: 15898178]
[44]
CDC. Crimean-Congo Hemorrhagic Fever (CCHF) 2014. Available from:. https://www.cdc.gov/vhf/crimean-congo/index. html (Accessed on 23rd November, 2018).
[45]
Messina, J.P.; Pigott, D.M.; Golding, N.; Duda, K.A.; Brownstein, J.S.; Weiss, D.J.; Gibson, H.; Robinson, T.P.; Gilbert, M.; William Wint, G.R.; Nuttall, P.A.; Gething, P.W.; Myers, M.F.; George, D.B.; Hay, S.I. The global distribution of Crimean-Congo hemorrhagic fever. Trans. R. Soc. Trop. Med. Hyg., 2015, 109(8), 503-513.
[http://dx.doi.org/10.1093/trstmh/trv050] [PMID: 26142451]
[46]
Voorhees, M.A.; Padilla, S.L.; Jamsransuren, D.; Koehler, J.W.; Delp, K.L.; Adiyadorj, D.; Baasandagwa, U.; Jigjav, B.; Olschner, S.P.; Minogue, T.D.; Schoepp, R.J. Crimean-congo hemorrhagic fever virus, Mongolia, 2013-2014. Emerg. Infect. Dis., 2018, 24(12), 2202-2209.
[http://dx.doi.org/10.3201/eid2412.180175] [PMID: 30457521]
[47]
Yadav, P.D.; Thacker, S.; Patil, D.Y.; Jain, R.; Mourya, D.T. Crimean-congo hemorrhagic fever in migrant worker returning from Oman to India, 2016. Emerg. Infect. Dis., 2017, 23(6), 1005-1008.
[http://dx.doi.org/10.3201/eid2306.161950] [PMID: 28518037]
[48]
CDC. Understanding crimean-congo hemorrhagic fever in Kazakhstan 2018. Available from:. https://www.cdc.gov/onehealth/ in-action/cchf.html (Accessed on 23rd November, 2018).
[49]
Ergönül, O. Crimean-Congo haemorrhagic fever. Lancet Infect. Dis., 2006, 6(4), 203-214.
[http://dx.doi.org/10.1016/S1473-3099(06)70435-2] [PMID: 16554245]
[50]
World Health Organization. Crimean-Congo haemorrhagic fever 2013. Available from:. https://www.who.int/news-room/factsheets/ detail/crimean-congo-haemorrhagic-fever (Accessed on 24th November, 2018).
[51]
CDC. Crimean-congo hemorrhagic fever (CCHF) 2013. Available from:. https://www.cdc.gov/vhf/crimean-congo/prevention/index. html (Accessed on: 24th November, 2018).
[52]
Hammon, W.M.; Reeves, W.C.; Sather, G. California encephalitis virus, a newly described agent. II. Isolations and attempts to identify and characterize the agent. J. Immunol., 1952, 69(5), 493-510.
[PMID: 13011307]
[53]
Hammon, W.M.; Reeves, W.C. California encephalitis virus, a newly described agent. Calif. Med., 1952, 77(5), 303-309.
[PMID: 13009479]
[54]
Eldridge, B.F.; Glaser, C.; Pedrin, R.E.; Chiles, R.E. The first reported case of California encephalitis in more than 50 years. Emerg. Infect. Dis., 2001, 7(3), 451-452.
[http://dx.doi.org/10.3201/eid0703.017316] [PMID: 11384526]
[55]
CDC. La Crosse Encephalitis 2019. Available from:. https://www.cdc.gov/lac/tech/virus.html (Accessed on 24th November, 2018).
[56]
Medscape. California encephalitis 2016. Available from:. https://emedicine.medscape.com/article/234159-overview (Accessed on 24th November, 2018).
[57]
Byrd, B.D. La Crosse Encephalitis: A Persistent Arboviral Threat in North Carolina. N. C. Med. J., 2016, 77(5), 330-333.
[http://dx.doi.org/10.18043/ncm.77.5.330] [PMID: 27621342]
[58]
Gould, E.A.; Higgs, S.; Buckley, A.; Gritsun, T.S. Potential arbovirus emergence and implications for the United Kingdom. Emerg. Infect. Dis., 2006, 12(4), 549-555.
[http://dx.doi.org/10.3201/eid1204.051010] [PMID: 16704800]
[59]
Bulychev, V.P.; Alekseev, A.N.; Kostiukov, M.A.; Tukhtaev, T.M.; Gordeeva, Z.E. [Isolation of Tahyna virus from mosquitoes collected in Dushanbe]. Med. Parazitol. (Mosk.), 1985, 4(4), 81-83.
[PMID: 2932629]
[60]
L’vov, D.K.; Kostiukov, M.A.; Pak, T.P.; Gordeeva, Z.E.; Bun’etbekov, A.A. Isolation of Tahyna virus (California antigenic group, family Bunyaviridae) from the blood of febrile patients in the Tadzhik SSR). Vopr. Virusol., 1977, 6(6), 682-685. [in Russian].
[PMID: 146311]
[61]
Hubálek, Z.; Zeman, P.; Halouzka, J.; Juricová, Z.; Stovicková, E.; Bálková, H.; Sikutová, S.; Rudolf, I. Mosquitoborne viruses, Czech Republic, 2002. Emerg. Infect. Dis., 2005, 11(1), 116-118.
[http://dx.doi.org/10.3201/eid1101.040444] [PMID: 15705333]
[62]
Bennett, R.S.; Gresko, A.K.; Murphy, B.R.; Whitehead, S.S. Tahyna virus genetics, infectivity, and immunogenicity in mice and monkeys. Virol. J., 2011, 8, 135.
[http://dx.doi.org/10.1186/1743-422X-8-135] [PMID: 21435229]
[63]
Li, W.; Cao, Y.; Fu, S.; Wang, J.; Li, M.; Jiang, S.; Wang, X.; Xing, S.; Feng, L.; Wang, Z.; Shi, Y.; Zhao, S.; Wang, H.; Wang, Z.; Liang, G. Tahyna virus infection, a neglected arboviral disease in the Qinghai-Tibet Plateau of China. Vector Borne Zoonotic Dis., 2014, 14(5), 353-357.
[http://dx.doi.org/10.1089/vbz.2013.1351] [PMID: 24745971]
[64]
Lu, Z.; Lu, X.J.; Fu, S.H.; Zhang, S.; Li, Z.X.; Yao, X.H.; Feng, Y.P.; Lambert, A.J.; Ni, X.; Wang, F.T.; Tong, S.X.; Nasci, R.S.; Feng, Y.; Dong, Q.; Zhai, Y.G.; Gao, X.Y.; Wang, H.Y.; Tang, Q.; Liang, G.D. Tahyna virus and human infection, China. Emerg. Infect. Dis., 2009, 15(2), 306-309.
[http://dx.doi.org/10.3201/eid1502.080722] [PMID: 19193280]
[65]
Pinheiro, F.P.; Travassos da Rosa, A.P. Handbook of Zoonoses; Beran, G.W., Ed.; CRC Press: Bocaraton, FL, 1994.
[66]
Travassos da Rosa, J.F.; de Souza, W.M.; Pinheiro, F.P.; Figueiredo, M.L.; Cardoso, J.F.; Acrani, G.O.; Nunes, M.R.T. Oropouche virus: clinical, epidemiological, and molecular aspects of a neglected orthobunyavirus. Am. J. Trop. Med. Hyg., 2017, 96(5), 1019-1030.
[PMID: 28167595]
[67]
World Health Organization. Oropouche virus disease – Peru 2016.. Available from:. https://www.who.int/csr/don/03-june-2016-oropoucheperu/en/ (Accessed on 24th November, 2018).
[68]
Pinheiro, F.P.; Travassos da Rosa, A.P.; Travassos da Rosa, J.F.; Ishak, R.; Freitas, R.B.; Gomes, M.L.; LeDuc, J.W.; Oliva, O.F. Oropouche virus. I. A review of clinical, epidemiological, and ecological findings. Am. J. Trop. Med. Hyg., 1981, 30(1), 149-160.
[http://dx.doi.org/10.4269/ajtmh.1981.30.149] [PMID: 6782898]
[69]
European, C.D.C. Facts about hantavirus 2019. Available from:. https://ecdc.europa.eu/en/hantavirusinfection/facts (Accessed on 25th November, 2018).
[70]
CDC. Reported cases of hantavirus disease 2017. Available from:. https://www.cdc.gov/hantavirus/surveillance/index.html (Accessed on: 25th November, 2018).
[71]
Chandy, S.; Boorugu, H.; Chrispal, A.; Thomas, K.; Abraham, P.; Sridharan, G. Hantavirus infection: a case report from India. Indian J. Med. Microbiol., 2009, 27(3), 267-270.
[http://dx.doi.org/10.4103/0255-0857.53215] [PMID: 19584514]
[72]
Lundkvist, A.; Niklasson, B. Hemorrhagic fever with renal syndrome and other hantavirus infections. Rev. Med. Virol., 1994, 4, 177-184.
[http://dx.doi.org/10.1002/rmv.1980040304]
[73]
M.S.D., Manuals Hantavirus Infection 2018. Available from:. https://www.msdmanuals.com/home/infections/arboviruses,-arena-viruses,-and-filoviruses/hantavirus-infection (Accessed on 25th November, 2018).
[74]
World Health Organization. Zika virus 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/zika-virus (Accessed on 25th November, 2018).
[75]
World Health Organization. Laboratory testing for Zika virus infection. 2016. Available from:. http://apps.who.int/iris/bitstream/ handle/10665/204671/WHO_ZIKV_LAB_16.1_eng.pdf;jsessioni=A560CC01B49333CEE5A5B453FD657613?sequence=1 (Accessed on 25th November, 2018).
[76]
CDC. Zika virus 2018. Available from:. https://www.cdc.gov/zika/ symptoms/treatment.html (Accessed on, 25th November, 2018).
[77]
World Health Organization. West Nile virus 2017. Available from:. www.who.int/news-room/fact-sheets/detail/west-nile-virus (Accessed on 25th November, 2018).
[78]
CDC. West Nile virus 2018. Available from:. https://www.cdc.gov/westnile/index.html (Accessed on: 25th November, 2018).
[79]
Murphy, F.; Gibbs, E.; Horzinek, M.; Studdert, M. Veterinary Virology, 3rd ed; Academic Press: Cambridge, 1991.
[80]
European Centre for Disease Prevention and Control. West Nile fever 2018. Available from:. https://ecdc.europa.eu/en/west-nile-fever (Accessed on 25th November, 2018).
[81]
Centers for Disease Control and Prevention. Preliminary Maps & Data for 2018 2019. Available from:. www.cdc.gov/westnile/ statsmaps/preliminarymapsdata2018/index.html (Accessed on 25th November, 2018).
[82]
WHO. Collaborating centre for drug statistics methodology 2019. Available from:. www.whocc.no/atcvet/atcvet_index/?code=QI05AA10 (Accessed on 25th November, 2018).
[83]
CDC. Saint louis encephalitis 2018. Available from:. https://www.cdc.gov/sle/ (Accessed on 25th November, 2018).
[84]
CDC. Tick-borne Encephalitis (TBE) 2014. Available from:. https://www.cdc.gov/vhf/tbe/index.html (Accessed on 25th November, 2018).
[85]
World Health Organization. Tick-borne encephalitis 2019. Available from:. https://www.who.int/ith/diseases/tbe/en/ (Accessed on 25th November, 2018).
[86]
CDC. Dengue 2019. Available from:. https://www.cdc.gov/ dengue/index.html (Accessed on 25th November, 2018).
[87]
World Health Organization. Dengue control 2019. Available from:. https://www.who.int/denguecontrol/disease/en/ (Accessed on 25th November, 2018).
[88]
CDC. Yellow Fever 2019. Available from:. https://www.cdc.gov/ yellowfever/index.html (Accessed on 25th November, 2018).
[89]
World Health Organization. Yellow fever 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/yellow-fever (Accessed on 25th November, 2018).
[90]
Nichter, M. Kyasanur forest disease: an ethnography of a disease of development. Med. Anthropol. Q., 1987, 1(4), 406-423.
[http://dx.doi.org/10.1525/maq.1987.1.4.02a00040]
[91]
National Health Portal. Kyasanur forest disease 2016. Available from:. https://www.nhp.gov.in/disease/communicable-disease/kyasanurforest-disease (Accessed on:25th November, 2018).
[92]
CDC. Kyasanur Forest Disease (KFD), 2014. Available from:. https://www.cdc.gov/vhf/kyasanur/index.html (Accessed on 25th November, 2018).
[93]
Holbrook, M.R. Kyasanur forest disease. Antiviral Res., 2012, 96(3), 353-362.
[http://dx.doi.org/10.1016/j.antiviral.2012.10.005] [PMID: 23110991]
[94]
Sitata Inc. Kyasanur Forest Disease Vaccine CDC 2018. Available from:. https://www.sitata.com/en/sitata-inc/vaccinations/kyasanur-forestdisease-vaccine (Accessed on 25th November, 2018).
[95]
Campbell, G.L.; Hills, S.L.; Fischer, M.; Jacobson, J.A.; Hoke, C.H.; Hombach, J.M.; Marfin, A.A.; Solomon, T.; Tsai, T.F.; Tsu, V.D.; Ginsburg, A.S. Estimated global incidence of Japanese encephalitis: a systematic review. Bull. World Health Organ., 2011, 89(10), 766-774, 774A-774E.
[http://dx.doi.org/10.2471/BLT.10.085233] [PMID: 22084515]
[96]
Park, K. Park’s textbook of preventive and social medicine, 23rd ed; Bhanot Publishers: Bhopal, 2015.
[97]
Ghosh, D.; Basu, A. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl. Trop. Dis., 2009, 3(9) e437.
[http://dx.doi.org/10.1371/journal.pntd.0000437] [PMID: 19787040]
[98]
CDC. Infectious Diseases Related to Travel 2017. Available from:. www.cdc.gov/travel/yellowbook/2018/infectious-diseases-related-to-travel/japaneseencephalitis (Accessed on 27th November, 2018).
[99]
World Health Organization. Japanese encephalitis 2015. Available from:. https://www.who.int/news-room/fact-sheets/detail/japaneseencephalitis (Accessed on 27th November, 2018).
[100]
CDC. Japanese Encephalitis 2015. Available from:. https://www.cdc.gov/japaneseencephalitis/index.html (Accessed on 27th November, 2018).
[101]
Schiøler, K.L.; Samuel, M.; Wai, K.L. Vaccines for preventing Japanese encephalitis. Cochrane Database Syst. Rev., 2007, 3(3) CD004263.
[PMID: 17636750]
[102]
Meyer, K.F.; Haring, C.M.; Howitt, B. The etiology of epizootic encephalomyelitis of horses in the san joaquin valley, 1930. Science, 1931, 74(1913), 227-228.
[http://dx.doi.org/10.1126/science.74.1913.227] [PMID: 17834966]
[103]
CDC. Eastern equine encephalitis 2018. Available from:. https://www.cdc.gov/easternequineencephalitis/index.html (Accessed on 27th November, 2018).
[104]
CDC. Chikungunya Virus 2018. Available from:. https://www.cdc.gov/chikungunya/index.html (Accessed on 27th November, 2018).
[105]
World Health Organization. Chikungunya 2017.https://www.who.int/news-room/factsheets/detail/chikungunya (Accessed on 27th November, 2018).
[106]
Carpenter, S.; Mellor, P.S.; Fall, A.G.; Garros, C.; Venter, G.J. African horse sickness virus: history, transmission, and current status. Annu. Rev. Entomol., 2017, 62, 343-358.
[http://dx.doi.org/10.1146/annurev-ento-031616-035010] [PMID: 28141961]
[107]
Weyer, C.T.; Grewar, J.D.; Burger, P.; Rossouw, E.; Lourens, C.; Joone, C.; le Grange, M.; Coetzee, P.; Venter, E.; Martin, D.P.; MacLachlan, N.J.; Guthrie, A.J. African horse sickness caused by genome reassortment and reversion to virulence of live, attenuated vaccine viruses, South Africa, 2004-2014. Emerg. Infect. Dis., 2016, 22(12), 2087-2096.
[http://dx.doi.org/10.3201/eid2212.160718] [PMID: 27442883]
[108]
Colorado Tick-Borne Disease Awareness Association. Colorado tick fever 2018. Available from:. https://coloradoticks.org/ tickborne-diseases/colorado-tick-fever/ (Accessed on 27th November, 2018).
[109]
Centers for Disease Control and Prevention. Colorado Tick Fever (CTF) 2018. Available from:. https://www.cdc.gov/ coloradotickfever/index.html (Accessed on 27th November, 2018).
[110]
World Health Organization. Rabies 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/rabies (Accessed on 27th November, 2018).
[111]
Centers for Disease Control and Prevention. Rabies 2016. Available from:. https://www.cdc.gov/rabies/prevention/ people.html (Accessed on 27th November, 2018).
[112]
Knobel, D.L.; Cleaveland, S.; Coleman, P.G.; Fèvre, E.M.; Meltzer, M.I.; Miranda, M.E.; Shaw, A.; Zinsstag, J.; Meslin, F.X. Re-evaluating the burden of rabies in Africa and Asia. Bull. World Health Organ., 2005, 83(5), 360-368.
[PMID: 15976877]
[113]
Wilde, H.; Hemachudha, T.; Wacharapluesadee, S.; Lumlertdacha, B.; Tepsumethanon, V. One health: the human-animal-environment interfaces in emerging infectious diseases; Springer: Berlin, 2013, p. 185.
[114]
WHO Expert Consultation on Rabies & World Health Organization. WHO Expert Consultation on Rabies: first report; World Health Organization: Geneva, 2005.
[115]
Feder, H.M., Jr; Petersen, B.W.; Robertson, K.L.; Rupprecht, C.E. Rabies: still a uniformly fatal disease? Historical occurrence, epidemiological trends, and paradigm shifts. Curr. Infect. Dis. Rep., 2012, 14(4), 408-422.
[http://dx.doi.org/10.1007/s11908-012-0268-2] [PMID: 22699971]
[116]
Centers for Disease Control and Prevention. Vaccine Information statements. Vaccine Information Statements (VISs) 2013. Available from:. https://www.cdc.gov/vaccines/hcp/vis/vis-statements/rabies.html (Accessed on 27th November, 2018).
[117]
Animal and Plant Health Inspection Service Veterinary Services. Vesicular stomatitis 2012. Available from:. https://www.aphis.usda.gov/publications/animal_health/content/printable_version/fs_vesicular_stomatitis_2012.pdf (Accessed on 27th November, 2018).
[118]
The Center for Food Security and Public Health. Vesicular stomatitis 2006. Available from:. http://www.cfsph.iastate.edu/ FastFacts/pdfs/vesicular_stomatitis_F.pdf (Accessed on 27th November, 2018).
[119]
Marzi, A.; Feldmann, F.; Geisbert, T.W.; Feldmann, H.; Safronetz, D. Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg. Infect. Dis., 2015, 21(2), 305-307.
[http://dx.doi.org/10.3201/eid2102.141649] [PMID: 25625358]
[120]
Pelkonen, P.M.; Tarvainen, K.; Hynninen, A.; Kallio, E.R.K.; Henttonen, K.; Palva, A.; Vaheri, A.; Vapalahti, O. Cowpox with severe generalized eruption, Finland. Emerg. Infect. Dis., 2003, 9(11), 1458-1461.
[http://dx.doi.org/10.3201/eid0911.020814] [PMID: 14718092]
[121]
Durski, K.N.; McCollum, A.M.; Nakazawa, Y.; Petersen, B.W.; Reynolds, M.G.; Briand, S.; Djingarey, M.H.; Olson, V.; Damon, I.K.; Khalakdina, A. Emergence of Monkeypox - West and Central Africa, 1970-2017. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(10), 306-310.
[http://dx.doi.org/10.15585/mmwr.mm6710a5] [PMID: 29543790]
[122]
McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis., 2014, 58(2), 260-267.
[http://dx.doi.org/10.1093/cid/cit703] [PMID: 24158414]
[123]
World Health Organization. Human Monkeypox (MPX) 2019. Available from:. https://www.who.int/emergencies/diseases/monkeypox/en (Accessed on 27th November, 2018).
[124]
World Health Organization. Monkeypox 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/monkeypox (Accessed on 27th November, 2018).
[125]
Centers for Disease Control and Prevention. Monkeypox 2015. Available from:. https://www.cdc.gov/poxvirus/monkeypox/ (Accessed on 27th November, 2018).
[126]
Kradin, R.L. Diagnostic Pathology of Infectious Disease, 2nd ed; Elsevier: Amsterdam, 2018.
[127]
Cohen, J.; Powderly, W.G.; Opal, S.M. Infectious Diseases, 4th ed; Elsevier: Amsterdam, 2018.
[128]
Centers for Disease Control and Prevention. Orf Virus (Sore Mouth Infection) CDC 2015. Available from:. https://www.cdc.gov/ poxvirus/orfvirus/people.html (Accessed on 27th November, 2018).
[129]
National Health Service (NHS). Orf 2016. Available from:. https://www.nhs.uk/conditions/orf/ (Accessed on 27th November, 2018).
[130]
Centers for Disease Control and Prevention. B Virus (herpes B,monkey B virus, herpesvirus simiae, and herpesvirus B) 2014. Available from:. https://www.cdc.gov/herpesbvirus/index.htm (27th November, 2018).
[131]
Cohen, J.I.; Davenport, D.S.; Stewart, J.A.; Deitchman, S.; Hilliard, J.K.; Chapman, L.E. Recommendations for prevention of and therapy for exposure to B virus (cercopithecine herpesvirus 1). Clin. Infect. Dis., 2002, 35(10), 1191-1203.
[http://dx.doi.org/10.1086/344754] [PMID: 12410479]
[132]
Centers for Disease Control and Prevention. Lymphocytic Choriomeningitis (LCM) 2014. Available from:. https://www.cdc.gov/vhf/lcm/index.html (Accessed on 27th November, 2018).
[133]
Centers for Disease Control and Prevention. Lassa fever 2015. Available from:. https://www.cdc.gov/vhf/lassa/index.html (Accessed on 27th November, 2018).
[134]
World Health Organization. Lassa fever 2017. Available from:. https://www.who.int/news-room/fact-sheets/detail/lassa-fever (Accessed on 27th November, 2018).
[135]
OIE - World Organisation for Animal Health. Foot and Mouth Disease 2013. Available from:. http://www.oie.int/ fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/FOOT_AND_MOUTH_DISEASE.pdf (Accessed on 28th November, 2018).
[136]
Paton, D.J.; Gubbins, S.; King, D.P. Understanding the transmission of foot-and-mouth disease virus at different scales. Curr. Opin. Virol., 2018, 28, 85-91.
[http://dx.doi.org/10.1016/j.coviro.2017.11.013] [PMID: 29245054]
[137]
Helwig, F.C.; Schmidt, C.H. A filter-passing agent producing interstitial myocarditis in anthropoid apes and small animals. Science, 1945, 102(2637), 31-33.
[http://dx.doi.org/10.1126/science.102.2637.31] [PMID: 17787415]
[138]
Czechowicz, J.; Huaman, J.L.; Forshey, B.M.; Morrison, A.C.; Castillo, R.; Huaman, A.; Caceda, R.; Eza, D.; Rocha, C.; Blair, P.J.; Olson, J.G.; Kochel, T.J. Prevalence and risk factors for encephalomyocarditis virus infection in Peru. Vector Borne Zoonotic Dis., 2011, 11(4), 367-374.
[http://dx.doi.org/10.1089/vbz.2010.0029] [PMID: 21395427]
[139]
Carocci, M.; Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence, 2012, 3(4), 351-367.
[http://dx.doi.org/10.4161/viru.20573] [PMID: 22722247]
[140]
Centers for Disease Control and Prevention. Severe Acute Respiratory Syndrome (SARS) CDC 2017. Available from:. https://www.cdc.gov/sars/index.html (Accessed on 28th November, 2018).
[141]
World Health Organization. Severe Acute Respiratory Syndrome (SARS) WHO 2019. Available from:. https://www.who.int/csr/sars /en/ (Accessed on 28th November, 2018).
[142]
Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS) CDC 2017. Available from:. https://www.cdc.gov/coronavirus/mers/index.html (Accessed on 28th November, 2018).
[143]
World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) 2019. Available from:. https://www.who.int/en/news-room/fact-sheets/detail/middle-east-respiratory-syndromecoronavirus-(mers-cov) (Accessed on 28th November, 2018).
[144]
World Health Organization. WHO MERS Global Summary and Assessment of Risk 2018. Available from:. https://www.who.int/csr/disease/coronavirus_infections/risk-assessment-august-2018.pdf?ua=1 (Accessed on 28th November, 2018).
[145]
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res., 2018, 159, 35-44.
[http://dx.doi.org/10.1016/j.antiviral.2018.09.002] [PMID: 30236531]
[146]
Centers for Disease Control and Prevention. Influenza (Flu) 2019. Available from:. https://www.cdc.gov/flu/index.htm (Accessed on 29th November, 2018).
[147]
World Health Organization. Global Influenza Surveillance and Response System (GISRS) 2019. Available from:. https://www.who.int/influenza/gisrs_laboratory/en/ (Accessed on 29th November, 2018).
[148]
Centers for Disease Control and Prevention. National Pandemic Strategy 2017. Available from:. https://www.cdc.gov/flu/ pandemicresources/ national-strategy/index.html (Accessed on 29th November, 2018).
[149]
World Health Organization. Influenza 2019. Available from:. https://www.who.int/influenza/vaccines/en/ (Accessed on 29th November, 2018).
[150]
Centers for Disease Control and Prevention. Nipah Virus (NiV) 2018. Available from:. https://www.cdc.gov/vhf/nipah/ pdf/factsheet.pdf (Accessed on 9th November, 2018).
[151]
United States Department of Agriculture. Newcastle disease standard operating procedures, Overview of etiology and ecology 2013. Available from:. https://www.aphis.usda.gov/ animal_health/emergency_management/downloads/sop/sop_nd_e-e.pdf (Accessed on 29th November, 2018).
[152]
Goebel, S.J.; Taylor, J.; Barr, B.C.; Kiehn, T.E.; Castro-Malaspina, H.R.; Hedvat, C.V.; Rush-Wilson, K.A.; Kelly, C.D.; Davis, S.W.; Samsonoff, W.A.; Hurst, K.R.; Behr, M.J.; Masters, P.S. Isolation of avian paramyxovirus 1 from a patient with a lethal case of pneumonia. J. Virol., 2007, 81(22), 12709-12714.
[http://dx.doi.org/10.1128/JVI.01406-07] [PMID: 17855523]
[153]
Illinois Department of Public Health. Human health concerns about raising poultry 2012. Available from:. http://www.idph.state.il.us/ health/infect/Poultry.htm (Accessed on: 29th November, 2018).
[154]
Swayne, D.E.; King, D.J. Avian influenza and Newcastle disease. J. Am. Vet. Med. Assoc., 2003, 222(11), 1534-1540.
[http://dx.doi.org/10.2460/javma.2003.222.1534] [PMID: 12784958]
[155]
Kamar, N.; Dalton, H.R.; Abravanel, F.; Izopet, J. Hepatitis E virus infection. Clin. Microbiol. Rev., 2014, 27(1), 116-138.
[http://dx.doi.org/10.1128/CMR.00057-13] [PMID: 24396139]
[156]
Pavio, N.; Meng, X.J.; Renou, C. Zoonotic hepatitis E: animal reservoirs and emerging risks. Vet. Res., 2010, 41(6), 46.
[http://dx.doi.org/10.1051/vetres/2010018] [PMID: 20359452]
[157]
Satou, K.; Nishiura, H. Transmission dynamics of hepatitis E among swine: potential impact upon human infection. BMC Vet. Res., 2007, 3, 9.
[http://dx.doi.org/10.1186/1746-6148-3-9] [PMID: 17493260]
[158]
World Health Organization. Hepatitis E 2018. Available from:. https://www.who.int/en/news-room/fact-sheets/detail/hepatitis-e (Accessed on 29th November, 2018).
[159]
Li, S.W.; Zhao, Q.; Wu, T.; Chen, S.; Zhang, J.; Xia, N.S. The development of a recombinant hepatitis E vaccine HEV 239. Hum. Vaccin. Immunother., 2015, 11(4), 908-914.
[http://dx.doi.org/10.1080/21645515.2015.1008870] [PMID: 25714510]
[160]
Baron, R.C.; McCormick, J.B.; Zubeir, O.A. Ebola virus disease in southern Sudan: hospital dissemination and intrafamilial spread. Bull. World Health Organ., 1983, 61(6), 997-1003.
[PMID: 6370486]
[161]
Towner, J.S.; Rollin, P.E.; Bausch, D.G.; Sanchez, A.; Crary, S.M.; Vincent, M.; Lee, W.F.; Spiropoulou, C.F.; Ksiazek, T.G.; Lukwiya, M.; Kaducu, F.; Downing, R.; Nichol, S.T. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J. Virol., 2004, 78(8), 4330-4341.
[http://dx.doi.org/10.1128/JVI.78.8.4330-4341.2004] [PMID: 15047846]
[162]
MacNeil, A.; Farnon, E.C.; Wamala, J.; Okware, S.; Cannon, D.L.; Reed, Z.; Towner, J.S.; Tappero, J.W.; Lutwama, J.; Downing, R.; Nichol, S.T.; Ksiazek, T.G.; Rollin, P.E. Proportion of deaths and clinical features in Bundibugyo Ebola virus infection, Uganda. Emerg. Infect. Dis., 2010, 16(12), 1969-1972.
[http://dx.doi.org/10.3201/eid1612.100627] [PMID: 21122234]
[163]
Towner, J.S.; Sealy, T.K.; Khristova, M.L.; Albariño, C.G.; Conlan, S.; Reeder, S.A.; Quan, P.L.; Lipkin, W.I.; Downing, R.; Tappero, J.W.; Okware, S.; Lutwama, J.; Bakamutumaho, B.; Kayiwa, J.; Comer, J.A.; Rollin, P.E.; Ksiazek, T.G.; Nichol, S.T. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog., 2008, 4(11) e1000212.
[http://dx.doi.org/10.1371/journal.ppat.1000212] [PMID: 19023410]
[164]
Wamala, J.F.; Lukwago, L.; Malimbo, M.; Nguku, P.; Yoti, Z.; Musenero, M.; Amone, J.; Mbabazi, W.; Nanyunja, M.; Zaramba, S.; Opio, A.; Lutwama, J.J.; Talisuna, A.O.; Okware, S.I. Ebola hemorrhagic fever associated with novel virus strain, Uganda, 2007-2008. Emerg. Infect. Dis., 2010, 16(7), 1087-1092.
[http://dx.doi.org/10.3201/eid1607.091525] [PMID: 20587179]
[165]
Towner, J.S.; Khristova, M.L.; Sealy, T.K.; Vincent, M.J.; Erickson, B.R.; Bawiec, D.A.; Hartman, A.L.; Comer, J.A.; Zaki, S.R.; Ströher, U.; Gomes da Silva, F.; del Castillo, F.; Rollin, P.E.; Ksiazek, T.G.; Nichol, S.T. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol., 2006, 80(13), 6497-6516.
[http://dx.doi.org/10.1128/JVI.00069-06] [PMID: 16775337]
[166]
Bausch, D.G.; Borchert, M.; Grein, T.; Roth, C.; Swanepoel, R.; Libande, M.L.; Talarmin, A.; Bertherat, E.; Muyembe-Tamfum, J.J.; Tugume, B.; Colebunders, R.; Kondé, K.M.; Pirad, P.; Olinda, L.L.; Rodier, G.R.; Campbell, P.; Tomori, O.; Ksiazek, T.G.; Rollin, P.E. Risk factors for Marburg hemorrhagic fever, Democratic Republic of the Congo. Emerg. Infect. Dis., 2003, 9(12), 1531-1537.
[http://dx.doi.org/10.3201/eid0912.030355] [PMID: 14720391]
[167]
World Health Organization. Ebola virus disease WHO. 2018. Available from:. https://www.who.int/news-room/fact-sheets/detail/ebola-virusdisease (Accessed on 29th November, 2018).
[168]
Centers for Disease Control and Prevention. Marburg hemorrhagic fever (Marburg HF) CDC 2014. Available from:. https://www.cdc.gov/vhf/marburg/resources/outbreak-table.html (Accessed on 29th November, 2018).
[169]
Centers for Disease Control and Prevention. Viral Hemorrhagic Fevers (VHFs) CDC 2018. Available from:. https://www.cdc.gov/vhf/virusfamilies/filoviridae.html (Accessed on 29th November, 2018).
[170]
U.S. National Library of Medicine. Clinical Trial of Ebola Vaccines cAd3-EBO, cAd3-EBOZ and MVA-EbolaZ in Healthy Adults in Uganda 2017. Available from:. https://clinicaltrials.gov/ct2/show/NCT02354404 (Accessed on 29th November, 2018).
[171]
Marzi, A.; Ebihara, H.; Callison, J.; Groseth, A.; Williams, K.J.; Geisbert, T.W.; Feldmann, H. Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy. J. Infect. Dis., 2011, 204(Suppl. 3), S1066-S1074.
[http://dx.doi.org/10.1093/infdis/jir348] [PMID: 21987743]
[172]
Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; Draguez, B.; Duraffour, S.; Enwere, G.; Grais, R.; Gunther, S.; Gsell, P.S.; Hossmann, S.; Watle, S.V.; Kondé, M.K.; Kéïta, S.; Kone, S.; Kuisma, E.; Levine, M.M.; Mandal, S.; Mauget, T.; Norheim, G.; Riveros, X.; Soumah, A.; Trelle, S.; Vicari, A.S.; Røttingen, J.A.; Kieny, M.P. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet, 2017, 389(10068), 505-518.
[http://dx.doi.org/10.1016/S0140-6736(16)32621-6] [PMID: 28017403]
[173]
Kulshreshtha, N.M.; Jadhav, I.; Dixit, M.; Sinha, N.; Shrivastava, D.; Bisen, P.S. Nanostructures as antimicrobial therapeutics. antimicrobial nanoarchitectonics; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 29-59.
[http://dx.doi.org/10.1016/B978-0-323-52733-0.00002-1]
[174]
Lien, G.; Heymann, D.L. The problems with polio: toward eradication. Infect. Dis. Ther., 2013, 2(2), 167-174.
[http://dx.doi.org/10.1007/s40121-013-0014-6] [PMID: 25134479]
[175]
Chappuis, F.; Farinelli, T.; Deckx, H.; Sarnecki, M.; Go, O.; Salzgeber, Y.; Stals, C. Immunogenicity and estimation of antibody persistence following vaccination with an inactivated virosomal hepatitis A vaccine in adults: A 20-year follow-up study. Vaccine, 2017, 35(10), 1448-1454.
[http://dx.doi.org/10.1016/j.vaccine.2017.01.031] [PMID: 28190741]
[176]
Paz-Zulueta, M.; Álvarez-Paredes, L.; Rodríguez Díaz, J.C.; Parás-Bravo, P.; Andrada Becerra, M.E.; Rodríguez Ingelmo, J.M.; Ruiz García, M.M.; Portilla, J.; Santibañez, M. Prevalence of high-risk HPV genotypes, categorised by their quadrivalent and nine-valent HPV vaccination coverage, and the genotype association with high-grade lesions. BMC Cancer, 2018, 18(1), 112.
[http://dx.doi.org/10.1186/s12885-018-4033-2] [PMID: 29382323]
[177]
Pezzotti, P.; Bellino, S.; Prestinaci, F.; Iacchini, S.; Lucaroni, F.; Camoni, L.; Barbieri, M.M.; Ricciardi, W.; Stefanelli, P.; Rezza, G. The impact of immunization programs on 10 vaccine preventable diseases in Italy: 1900-2015. Vaccine, 2018, 36(11), 1435-1443.
[http://dx.doi.org/10.1016/j.vaccine.2018.01.065] [PMID: 29428176]
[178]
Treuel, L.; Jiang, X.; Nienhaus, G.U. New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface, 2013, 10(82) 20120939.
[http://dx.doi.org/10.1098/rsif.2012.0939] [PMID: 23427093]
[179]
Pati, R.; Shevtsov, M.; Sonawane, A. Nanoparticle vaccines against infectious diseases. Front. Immunol., 2018, 9, 16.
[http://dx.doi.org/10.3389/fimmu.2018.02224]
[180]
Nandedkar, T.D. Nanovaccines: recent developments in vaccination. J. Biosci., 2009, 34(6), 995-1003.
[http://dx.doi.org/10.1007/s12038-009-0114-3] [PMID: 20093753]
[181]
Peek, L.J.; Middaugh, C.R.; Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev., 2008, 60(8), 915-928.
[http://dx.doi.org/10.1016/j.addr.2007.05.017] [PMID: 18325628]
[182]
Zhao, L.; Seth, A.; Wibowo, N.; Zhao, C.X.; Mitter, N.; Yu, C.; Middelberg, A.P. Nanoparticle vaccines. Vaccine, 2014, 32(3), 327-337.
[http://dx.doi.org/10.1016/j.vaccine.2013.11.069] [PMID: 24295808]
[183]
Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9, 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[184]
Chiu, C.C.; Moore, P.B.; Shinoda, W.; Nielsen, S.O. Size-dependent hydrophobic to hydrophilic transition for nanoparticles: a molecular dynamics study. J. Chem. Phys., 2009, 131(24) 244706.
[http://dx.doi.org/10.1063/1.3276915] [PMID: 20059098]
[185]
Zolnik, B.S.; González-Fernández, A.; Sadrieh, N.; Dobrovolskaia, M.A. Nanoparticles and the immune system. Endocrinology, 2010, 151(2), 458-465.
[http://dx.doi.org/10.1210/en.2009-1082] [PMID: 20016026]
[186]
Arama, C.; Giusti, P.; Boström, S.; Dara, V.; Traore, B.; Dolo, A.; Doumbo, O.; Varani, S.; Troye-Blomberg, M. Interethnic differences in antigen-presenting cell activation and TLR responses in Malian children during Plasmodium falciparum malaria. PLoS One, 2011, 6(3) e18319.
[http://dx.doi.org/10.1371/journal.pone.0018319] [PMID: 21483827]
[187]
Bolhassani, A.; Javanzad, S.; Saleh, T.; Hashemi, M.; Aghasadeghi, M.R.; Sadat, S.M. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccin. Immunother., 2014, 10(2), 321-332.
[http://dx.doi.org/10.4161/hv.26796] [PMID: 24128651]
[188]
Alshamsan, A. Nanotechnology-Based Cancer Vaccine. Methods Mol. Biol., 2017, 1530, 257-270.
[http://dx.doi.org/10.1007/978-1-4939-6646-2_15] [PMID: 28150207]
[189]
Wadhwa, S.; Jain, A.; Woodward, J.G.; Mumper, R.J. Lipid nanocapsule as vaccine carriers for his-tagged proteins: evaluation of antigen-specific immune responses to HIV I His-Gag p41 and systemic inflammatory responses. Eur. J. Pharm. Biopharm., 2012, 80(2), 315-322.
[http://dx.doi.org/10.1016/j.ejpb.2011.10.016] [PMID: 22068049]
[190]
Zaric, M.; Lyubomska, O.; Touzelet, O.; Poux, C.; Al-Zahrani, S.; Fay, F.; Wallace, L.; Terhorst, D.; Malissen, B.; Henri, S.; Power, U.F.; Scott, C.J.; Donnelly, R.F.; Kissenpfennig, A. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano, 2013, 7(3), 2042-2055.
[http://dx.doi.org/10.1021/nn304235j] [PMID: 23373658]
[191]
Christensen, D.; Korsholm, K.S.; Andersen, P.; Agger, E.M. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines, 2011, 10(4), 513-521.
[http://dx.doi.org/10.1586/erv.11.17] [PMID: 21506648]
[192]
Silva, A.L.; Soema, P.C.; Slütter, B.; Ossendorp, F.; Jiskoot, W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccin. Immunother., 2016, 12(4), 1056-1069.
[http://dx.doi.org/10.1080/21645515.2015.1117714] [PMID: 26752261]
[193]
Moon, J.J.; Suh, H.; Bershteyn, A.; Stephan, M.T.; Liu, H.; Huang, B.; Sohail, M.; Luo, S.; Um, S.H.; Khant, H.; Goodwin, J.T.; Ramos, J.; Chiu, W.; Irvine, D.J. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater., 2011, 10(3), 243-251.
[http://dx.doi.org/10.1038/nmat2960] [PMID: 21336265]
[194]
Cordeiro, A.S.; Alonso, M.J.; de la Fuente, M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol. Adv., 2015, 33(6 Pt 3), 1279-1293.
[http://dx.doi.org/10.1016/j.biotechadv.2015.05.010] [PMID: 26049133]
[195]
Trovato, M.; De Berardinis, P. Novel antigen delivery systems. World J. Virol., 2015, 4(3), 156-168.
[http://dx.doi.org/10.5501/wjv.v4.i3.156] [PMID: 26279977]
[196]
Sanders, M.T.; Brown, L.E.; Deliyannis, G.; Pearse, M.J. ISCOM-based vaccines: the second decade. Immunol. Cell Biol., 2005, 83(2), 119-128.
[http://dx.doi.org/10.1111/j.1440-1711.2005.01319.x] [PMID: 15748208]
[197]
Sulczewski, F.B.; Liszbinski, R.B.; Romão, P.R.T.; Rodrigues Junior, L.C. Nanoparticle vaccines against viral infections. Arch. Virol., 2018, 163(9), 2313-2325.
[http://dx.doi.org/10.1007/s00705-018-3856-0] [PMID: 29728911]
[198]
Kim, M.G.; Park, J.Y.; Shon, Y.; Kim, G.; Shim, G.; Oh, Y.K. Nanotechnology and vaccine development. Asian J. Pharma. Sci., 2014, 9(5), 227-235.
[http://dx.doi.org/10.1016/j.ajps.2014.06.002]
[199]
Gao, Y.; Wijewardhana, C.; Mann, J.F.S. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front. Immunol., 2018, 9, 345.
[http://dx.doi.org/10.3389/fimmu.2018.00345] [PMID: 29541072]
[200]
Charlton Hume, H.K.; Vidigal, J.; Carrondo, M.J.T.; Middelberg, A.P.J.; Roldão, A.; Lua, L.H.L. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol. Bioeng., 2019, 116(4), 919-935.
[http://dx.doi.org/10.1002/bit.26890] [PMID: 30597533]
[201]
Kole, S.; Qadiri, S.S.N.; Shin, S.M.; Kim, W.S.; Lee, J.; Jung, S.J. Nanoencapsulation of inactivated-viral vaccine using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in olive flounder (Paralichthys olivaceus) against viral haemorrhagic septicaemia virus (VHSV) infection. Fish Shellfish Immunol., 2019, 91, 136-147.
[http://dx.doi.org/10.1016/j.fsi.2019.05.017] [PMID: 31096061]
[202]
López-Sagaseta, J.; Malito, E.; Rappuoli, R.; Bottomley, M.J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J., 2015, 14, 58-68.
[http://dx.doi.org/10.1016/j.csbj.2015.11.001] [PMID: 26862374]
[203]
Kleid, D.G.; Yansura, D.; Small, B.; Dowbenko, D.; Moore, D.M.; Grubman, M.J.; McKercher, P.D.; Morgan, D.O.; Robertson, B.H.; Bachrach, H.L. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science, 1981, 214(4525), 1125-1129.
[http://dx.doi.org/10.1126/science.6272395] [PMID: 6272395]
[204]
Valenzuela, P.; Medina, A.; Rutter, W.J.; Ammerer, G.; Hall, B.D. Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature, 1982, 298(5872), 347-350.
[http://dx.doi.org/10.1038/298347a0] [PMID: 7045698]
[205]
Liu, Y.V.; Massare, M.J.; Pearce, M.B.; Sun, X.; Belser, J.A.; Maines, T.R.; Creager, H.M.; Glenn, G.M.; Pushko, P.; Smith, G.E.; Tumpey, T.M. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine, 2015, 33(18), 2152-2158.
[http://dx.doi.org/10.1016/j.vaccine.2015.03.009] [PMID: 25772674]
[206]
Yusibov, V.; Hooper, D.C.; Spitsin, S.V.; Fleysh, N.; Kean, R.B.; Mikheeva, T.; Deka, D.; Karasev, A.; Cox, S.; Randall, J.; Koprowski, H. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 2002, 20(25-26), 3155-3164.
[http://dx.doi.org/10.1016/S0264-410X(02)00260-8] [PMID: 12163267]
[207]
Fries, L.F.; Smith, G.E.; Glenn, G.M. A recombinant viruslike particle influenza A (H7N9) vaccine. N. Engl. J. Med., 2013, 369(26), 2564-2566.
[http://dx.doi.org/10.1056/NEJMc1313186] [PMID: 24224560]
[208]
Kanekiyo, M.; Bu, W.; Joyce, M.G.; Meng, G.; Whittle, J.R.; Baxa, U.; Yamamoto, T.; Narpala, S.; Todd, J.P.; Rao, S.S.; McDermott, A.B.; Koup, R.A.; Rossmann, M.G.; Mascola, J.R.; Graham, B.S.; Cohen, J.I.; Nabel, G.J. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell, 2015, 162(5), 1090-1100.
[http://dx.doi.org/10.1016/j.cell.2015.07.043] [PMID: 26279189]
[209]
Lawson, D.M.; Artymiuk, P.J.; Yewdall, S.J.; Smith, J.M.; Livingstone, J.C.; Treffry, A.; Luzzago, A.; Levi, S.; Arosio, P.; Cesareni, G.; Thomas, C.D.; Shaw, W.V.; Harrison, P.M. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature, 1991, 349(6309), 541-544.
[http://dx.doi.org/10.1038/349541a0] [PMID: 1992356]
[210]
Smith, G.; Raghunandan, R.; Wu, Y.; Liu, Y.; Massare, M.; Nathan, M.; Zhou, B.; Lu, H.; Boddapati, S.; Li, J.; Flyer, D.; Glenn, G. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats. PLoS One, 2012, 7(11) e50852.
[http://dx.doi.org/10.1371/journal.pone.0050852] [PMID: 23226404]
[211]
Glenn, G.M.; Fries, L.F.; Thomas, D.N.; Smith, G.; Kpamegan, E.; Lu, H.; Flyer, D.; Jani, D.; Hickman, S.P.; Piedra, P.A. A randomized, blinded, controlled, dose-ranging study of a respiratory syncytial virus recombinant fusion (F) nanoparticle vaccine in healthy women of childbearing age. J. Infect. Dis., 2016, 213(3), 411-422.
[http://dx.doi.org/10.1093/infdis/jiv406] [PMID: 26259809]
[212]
Mischler, R.; Metcalfe, I.C. Inflexal V a trivalent virosome subunit influenza vaccine: production. Vaccine, 2002, 20(Suppl. 5), B17-B23.
[http://dx.doi.org/10.1016/S0264-410X(02)00512-1] [PMID: 12477413]
[213]
Raman, S.; Machaidze, G.; Lustig, A.; Olivieri, V.; Aebi, U.; Burkhard, P. Design of peptide nanoparticles using simple protein oligomerization domains. Open Nanomed. J., 2009, 2, 15-26.
[http://dx.doi.org/10.2174/1875933500902010015]
[214]
Li, J. Self-adjuvanted nanoparticle based vaccines for poultry viral respiratory diseases. doctoral dissertations. PLoS One, 2018, 13(9) e0203771.
[http://dx.doi.org/10.1371/journal.pone.0203771]
[215]
Knuschke, T.; Sokolova, V.; Rotan, O.; Wadwa, M.; Tenbusch, M.; Hansen, W.; Staeheli, P.; Epple, M.; Buer, J.; Westendorf, A.M. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol., 2013, 190(12), 6221-6229.
[http://dx.doi.org/10.4049/jimmunol.1202654] [PMID: 23667109]
[216]
Dhakal, S.; Cheng, X.; Salcido, J.; Renu, S.; Bondra, K.; Lakshmanappa, Y.S.; Misch, C.; Ghimire, S.; Feliciano-Ruiz, N.; Hogshead, B.; Krakowka, S.; Carson, K.; McDonough, J.; Lee, C.W.; Renukaradhya, G.J. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. Int. J. Nanomedicine, 2018, 13, 6699-6715.
[http://dx.doi.org/10.2147/IJN.S178809] [PMID: 30425484]
[217]
Deng, L.; Chang, T.Z.; Wang, Y.; Li, S.; Wang, S.; Matsuyama, S.; Yu, G.; Compans, R.W.; Li, J.D.; Prausnitz, M.R.; Champion, J.A.; Wang, B.Z. Heterosubtypic influenza protection elicited by double-layered polypeptide nanoparticles in mice. Proc. Natl. Acad. Sci. USA, 2018, 115(33), E7758-E7767.
[http://dx.doi.org/10.1073/pnas.1805713115] [PMID: 30065113]
[218]
Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; de van der Schueren, W.; Snijder, J.; Hodge, E.; Benhaim, M.; Ravichandran, R.; Carter, L.; Sheffler, W.; Brunner, L.; Lawrenz, M.; Dubois, P.; Lanzavecchia, A.; Sallusto, F.; Lee, K.K.; Veesler, D.; Correnti, C.E.; Stewart, L.J.; Baker, D.; Loré, K.; Perez, L.; King, N.P. Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell, 2019, 176(6), 1420-1431.e17.
[http://dx.doi.org/10.1016/j.cell.2019.01.046] [PMID: 30849373]
[219]
Yusuf, H.; Kett, V. Current prospects and future challenges for nasal vaccine delivery. Hum. Vaccin. Immunother., 2017, 13(1), 34-45.
[http://dx.doi.org/10.1080/21645515.2016.1239668] [PMID: 27936348]
[220]
NOVAVAX. Clinical Stage Pipeline. Available from:. http://www.novavax.com/page/11/clinical-stage-pipeline (Accessed on 25 November, 2018).
[221]
Tallury, P.; Malhotra, A.; Byrne, L.M.; Santra, S. Nanobioimaging and sensing of infectious diseases. Adv. Drug Deliv. Rev., 2010, 62(4-5), 424-437.
[http://dx.doi.org/10.1016/j.addr.2009.11.014] [PMID: 19931579]
[222]
Wang, Y.; Yu, L.; Kong, X.; Sun, L. Application of nanodiagnostics in point-of-care tests for infectious diseases. Int. J. Nanomedicine, 2017, 12, 4789-4803.
[http://dx.doi.org/10.2147/IJN.S137338] [PMID: 28740385]
[223]
Xu, K.; Liang, Z.C.; Ding, X.; Hu, H.; Liu, S.; Nurmik, M.; Bi, S.; Hu, F.; Ji, Z.; Ren, J.; Yang, S.; Yang, Y.Y.; Li, L. Nanomaterials in the Prevention, Diagnosis, and Treatment of Mycobacterium Tuberculosis Infections. Adv. Healthc. Mater., 2018, 7(1) 1700509.
[http://dx.doi.org/10.1002/adhm.201700509] [PMID: 28941042]
[224]
Kulkarni, G.S.; Zang, W.; Zhong, Z. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm. Acc. Chem. Res., 2016, 49(11), 2578-2586.
[http://dx.doi.org/10.1021/acs.accounts.6b00329] [PMID: 27668314]
[225]
Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7), 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[226]
Carter, J.R.; Balaraman, V.; Kucharski, C.A.; Fraser, T.S.; Fraser, M.J., Jr A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches. Virol. J., 2013, 10, 201.
[http://dx.doi.org/10.1186/1743-422X-10-201] [PMID: 23809208]
[227]
Vollmer, F.; Arnold, S.; Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20701-20704.
[http://dx.doi.org/10.1073/pnas.0808988106] [PMID: 19075225]
[228]
Cretich, M.; Daaboul, G.G.; Sola, L.; Ünlü, M.S.; Chiari, M. Digital detection of biomarkers assisted by nanoparticles: application to diagnostics. Trends Biotechnol., 2015, 33(6), 343-351.
[http://dx.doi.org/10.1016/j.tibtech.2015.03.002] [PMID: 25896126]
[229]
Ahmed, S.R.; Nagy, E.; Neethirajan, S. Self-assembled star-shaped chiroplasmonic gold nanoparticles for an ultrasensitive chiro-immunosensor for viruses. RSC Adv., 2017, 65(7), 40849-40857.
[http://dx.doi.org/10.1039/C7RA07175B]
[230]
Lai, H.C.; Chin, S.F.; Pang, S.C.; Henry Sum, M.S.; Perera, D. Carbon Nanoparticles Based Electrochemical Biosensor Strip for Detection of Japanese Encephalitis Virus. J. Nanomater., 2017, 1-7.
[http://dx.doi.org/10.1155/2017/3615707]
[231]
Bai, X.; Shao, C.; Han, X.; Li, Y.; Guan, Y.; Deng, Z. Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Biosens. Bioelectron., 2010, 25(8), 1984-1988.
[http://dx.doi.org/10.1016/j.bios.2010.01.012] [PMID: 20138749]
[232]
Yrad, F.M.; Castañares, J.M.; Alocilja, E.C. Visual Detection of Dengue-1 RNA Using Gold Nanoparticle-Based Lateral Flow Biosensor. Diagnostics (Basel), 2019, 9(3), 74.
[http://dx.doi.org/10.3390/diagnostics9030074] [PMID: 31336721]
[233]
Daaboul, G.G.; Yurt, A.; Zhang, X.; Hwang, G.M.; Goldberg, B.B.; Ünlü, M.S. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett., 2010, 10(11), 4727-4731.
[http://dx.doi.org/10.1021/nl103210p] [PMID: 20964282]
[234]
Hamdy, M.E.; Del Carlo, M.; Hussein, H.A.; Salah, T.A.; El-Deeb, A.H.; Emara, M.M.; Pezzoni, G.; Compagnone, D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J. Nanobiotechnology, 2018, 16(1), 48.
[http://dx.doi.org/10.1186/s12951-018-0374-x] [PMID: 29751767]
[235]
Kumvongpin, R.; Jearanaikool, P.; Wilailuckana, C.; Sae-Ung, N.; Prasongdee, P.; Daduang, S.; Wongsena, M.; Boonsiri, P.; Kiatpathomchai, W.; Swangvaree, S.S.; Sandee, A.; Daduang, J. High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J. Virol. Methods, 2016, 234, 90-95.
[http://dx.doi.org/10.1016/j.jviromet.2016.04.008] [PMID: 27086727]
[236]
Draz, M.S.; Venkataramani, M.; Lakshminarayanan, H.; Saygili, E.; Moazeni, M.; Vasan, A.; Li, Y.; Sun, X.; Hua, S.; Yu, X.G.; Shafiee, H. Nanoparticle-enhanced electrical detection of Zika virus on paper microchips. Nanoscale, 2018, 10(25), 11841-11849.
[http://dx.doi.org/10.1039/C8NR01646A] [PMID: 29881853]
[237]
Tuan, M.A.; Hai, N.H. DNA enrichment by functionalized magnetic nanoparticles for on-site and fast detection of virus in biomedical application. J. Phys. Conf. Ser., 2009, 187 012059.
[http://dx.doi.org/10.1088/1742-6596/187/1/012059]
[238]
Matsubara, T.; Kubo, A.; Sato, T. Detection of influenza virus by agglutination using nanoparticles conjugated with a sialic acid-mimic peptide. Polym. J., 2020, 52, 261-266.
[http://dx.doi.org/10.1038/s41428-019-0252-x]
[239]
Hu, Y.; Fine, D.H.; Tasciotti, E.; Bouamrani, A.; Ferrari, M. Nanodevices in diagnostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(1), 11-32.
[http://dx.doi.org/10.1002/wnan.82] [PMID: 20229595]
[240]
Koehler, J.W.; Douglas, C.E.; Minogue, T.D. A highly multiplexed broad pathogen detection assay for infectious disease diagnostics. PLoS Negl. Trop. Dis., 2018, 12(11) e0006889.
[http://dx.doi.org/10.1371/journal.pntd.0006889] [PMID: 30395567]
[241]
Tram, D.T.; Wang, H.; Sugiarto, S.; Li, T.; Ang, W.H.; Lee, C.; Pastorin, G. Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol. Adv., 2016, 34(8), 1275-1288.
[http://dx.doi.org/10.1016/j.biotechadv.2016.09.003] [PMID: 27686397]
[242]
Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron., 2018, 117, 112-128.
[http://dx.doi.org/10.1016/j.bios.2018.05.050] [PMID: 29890393]
[243]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593] [PMID: 28748089]
[244]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I.; J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[245]
Szunerits, S.; Barras, A.; Khanal, M.; Pagneux, Q.; Boukherroub, R. Nanostructures for the Inhibition of Viral Infections. Molecules, 2015, 20(8), 14051-14081.
[http://dx.doi.org/10.3390/molecules200814051] [PMID: 26247927]
[246]
Devi, C.S.; Modi, M.A.; Unnikrishnan, U.; Mohanasrinivasan, V. A review on Chikungunya and suggesting a hypothesis of nano-based drug delivery. Biosci. Biotechnol. Res. Asia, 2013, 11(1), 155-158.
[http://dx.doi.org/10.13005/bbra/1246]
[247]
Dunning, J.; Sahr, F.; Rojek, A.; Gannon, F.; Carson, G.; Idriss, B.; Massaquoi, T.; Gandi, R.; Joseph, S.; Osman, H.K.; Brooks, T.J.; Simpson, A.J.; Goodfellow, I.; Thorne, L.; Arias, A.; Merson, L.; Castle, L.; Howell-Jones, R.; Pardinaz-Solis, R.; Hope-Gill, B.; Ferri, M.; Grove, J.; Kowalski, M.; Stepniewska, K.; Lang, T.; Whitehead, J.; Olliaro, P.; Samai, M.; Horby, P.W. Experimental Treatment of Ebola Virus Disease with TKM-130803: A Single-Arm Phase 2 Clinical Trial. PLoS Med., 2016, 13(4) e1001997.
[http://dx.doi.org/10.1371/journal.pmed.1001997] [PMID: 27093560]
[248]
Chowdhury, P.; Bora, T.; Khan, S.A.; Chakraborty, B.; Senapati, K.; Sengupta, M.; Borchetia, S.; Bandyopadhyay, T. Inhibition of Japanese encephalitis virus infection by biogenic catechin silver nanoparticles: An in vitro study. Int. J. Infect. Dis., 2016, 45(S1), 276.
[http://dx.doi.org/10.1016/j.ijid.2016.02.611]
[249]
LaBauve, A.E.; Rinker, T.E.; Noureddine, A.; Serda, R.E.; Howe, J.Y.; Sherman, M.B.; Rasley, A.; Brinker, C.J.; Sasaki, D.Y.; Negrete, O.A. Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection. Sci. Rep., 2018, 8(1), 13990.
[http://dx.doi.org/10.1038/s41598-018-32033-w] [PMID: 30228359]
[250]
Karimi, M.; Zangabad, P.S.; Mehdizadeh, F.; Malekzad, H.; Ghasemi, A.; Bahrami, S.; Zare, H.; Moghoofei, M.; Hekmatmanesh, A.; Hamblin, M.R. Nanocaged platforms: modification, drug delivery and nanotoxicity. Opening synthetic cages to release the tiger. Nanoscale, 2017, 9(4), 1356-1392.
[http://dx.doi.org/10.1039/C6NR07315H] [PMID: 28067384]
[251]
Chakravarthy, K.V.; Bonoiu, A.C.; Davis, W.G.; Ranjan, P.; Ding, H.; Hu, R.; Bowzard, J.B.; Bergey, E.J.; Katz, J.M.; Knight, P.R.; Sambhara, S.; Prasad, P.N. Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10172-10177.
[http://dx.doi.org/10.1073/pnas.0914561107] [PMID: 20498074]
[252]
Sironmani, T.A. Immuno - Functionalized Silver Nanoparticles for Diagnostics, Therapeutics and Protection of Rabies Viral Infection. Curr. Nanomed., 2017, 7(1), 73-82.
[http://dx.doi.org/10.2174/2468187306666161009221159]
[253]
Thi, E.P.; Mire, C.E.; Lee, A.C.; Geisbert, J.B.; Zhou, J.Z.; Agans, K.N.; Snead, N.M.; Deer, D.J.; Barnard, T.R.; Fenton, K.A.; MacLachlan, I.; Geisbert, T.W. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature, 2015, 521(7552), 362-365.
[http://dx.doi.org/10.1038/nature14442] [PMID: 25901685]
[254]
Ayithan, N.; Bradfute, S.B.; Anthony, S.M.; Stuthman, K.S.; Bavari, S.; Bray, M.; Ozato, K. Virus-like particles activate type I interferon pathways to facilitate post-exposure protection against Ebola virus infection. PLoS One, 2015, 10(2) e0118345.
[http://dx.doi.org/10.1371/journal.pone.0118345] [PMID: 25719445]
[255]
Cagno, V.; Andreozzi, P.; D’Alicarnasso, M.; Jacob Silva, P.; Mueller, M.; Galloux, M.; Le Goffic, R.; Jones, S.T.; Vallino, M.; Hodek, J.; Weber, J.; Sen, S.; Janeček, E.R.; Bekdemir, A.; Sanavio, B.; Martinelli, C.; Donalisio, M.; Rameix Welti, M.A.; Eleouet, J.F.; Han, Y.; Kaiser, L.; Vukovic, L.; Tapparel, C.; Král, P.; Krol, S.; Lembo, D.; Stellacci, F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater., 2018, 17(2), 195-203.
[http://dx.doi.org/10.1038/nmat5053] [PMID: 29251725]
[256]
Aderibigbe, B.A. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules, 2017, 22(8), 1370.
[http://dx.doi.org/10.3390/molecules22081370] [PMID: 28820471]
[257]
Rafiei, S.; Rezatofighi, S.E.; Roayaei Ardakani, M.; Rastegarzadeh, S. Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication. IEEE Trans. Nanobioscience, 2016, 15(1), 34-40.
[http://dx.doi.org/10.1109/TNB.2015.2508718] [PMID: 26685261]
[258]
Borrego, B.; Lorenzo, G.; Mota-Morales, J.D.; Almanza-Reyes, H.; Mateos, F.; López-Gil, E.; de la Losa, N.; Burmistrov, V.A.; Pestryakov, A.N.; Brun, A.; Bogdanchikova, N. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine (Lond.), 2016, 12(5), 1185-1192.
[http://dx.doi.org/10.1016/j.nano.2016.01.021]
[259]
Do Comm Cnmo, E.R. Viral Pathogens and Severe Acute Respiratory Syndrome: Oligodynamic Ag+ for Direct Immune Intervention. J. Nutr. Environ. Med., 2003, 13(2), 109-118.
[http://dx.doi.org/10.1080/13590840310001594061]
[260]
Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev., 2015, 115(4), 1990-2042.
[http://dx.doi.org/10.1021/cr5004198] [PMID: 25602130]
[261]
Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Martín Rodríguez, E.; García Solé, J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16), 9494-9530.
[http://dx.doi.org/10.1039/C4NR00708E] [PMID: 25030381]
[262]
Deatsch, A.E.; Evans, B.A. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater., 2014, 354, 163-172.
[http://dx.doi.org/10.1016/j.jmmm.2013.11.006]
[263]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Doss, C.G.P.; Lee, S.S. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. Mol. Ther. Nucleic Acids, 2017, 8, 132-143.
[http://dx.doi.org/10.1016/j.omtn.2017.06.005] [PMID: 28918016]
[264]
Weissig, V.; Pettinger, T.K.; Murdock, N. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomedicine, 2014, 9, 4357-4373.
[http://dx.doi.org/10.2147/IJN.S46900] [PMID: 25258527]
[265]
Alnylam Pharmaceuticals. Complete Results of our ALN-RSV01 Phase IIb Study 2012. Available from:. http://www.alnylam.com/capella/presentations/complete-results-of-our-aln-rsv01-Phase-IIb-study/ (Accessed on 25th November, 2018).
[266]
Zhang, W.; Yang, H.; Kong, X.; Mohapatra, S.; San Juan-Vergara, H.; Hellermann, G.; Behera, S.; Singam, R.; Lockey, R.F.; Mohapatra, S.S. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med., 2005, 11(1), 56-62.
[http://dx.doi.org/10.1038/nm1174] [PMID: 15619625]
[267]
Alghrair, Z.K.; Fernig, D.G.; Ebrahimi, B. Enhanced inhibition of influenza virus infection by peptide-noble-metal nanoparticle conjugates. Beilstein J. Nanotechnol., 2019, 10, 1038-1047.
[http://dx.doi.org/10.3762/bjnano.10.104] [PMID: 31165030]
[268]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[269]
Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499(7456), 102-106.
[http://dx.doi.org/10.1038/nature12202] [PMID: 23698367]
[270]
Deng, L.; Mohan, T.; Chang, T.Z.; Gonzalez, G.X.; Wang, Y.; Kwon, Y.M.; Kang, S.M.; Compans, R.W.; Champion, J.A.; Wang, B.Z. Double-layered protein nanoparticles induce broad protection against divergent influenza A viruses. Nat. Commun., 2018, 9(1), 359.
[http://dx.doi.org/10.1038/s41467-017-02725-4] [PMID: 29367723]
[271]
Al-Halifa, S.; Gauthier, L.; Arpin, D.; Bourgault, S.; Archambault, D. Nanoparticle-based vaccines against respiratory viruses. Front. Immunol., 2019, 10, 22.
[http://dx.doi.org/10.3389/fimmu.2019.00022] [PMID: 30733717]
[272]
van de Sandt, C.E.; Kreijtz, J.H.; Geelhoed-Mieras, M.M.; Vogelzang-van Trierum, S.E.; Nieuwkoop, N.J.; van de Vijver, D.A.; Fouchier, R.A.; Osterhaus, A.D.; Morein, B.; Rimmelzwaan, G.F. Novel G3/DT adjuvant promotes the induction of protective T cells responses after vaccination with a seasonal trivalent inactivated split-virion influenza vaccine. Vaccine, 2014, 32(43), 5614-5623.
[http://dx.doi.org/10.1016/j.vaccine.2014.08.003] [PMID: 25140929]
[273]
Even-Or, O.; Samira, S.; Rochlin, E.; Balasingam, S.; Mann, A.J.; Lambkin-Williams, R.; Spira, J.; Goldwaser, I.; Ellis, R.; Barenholz, Y. Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine. Vaccine, 2010, 28(39), 6527-6541.
[http://dx.doi.org/10.1016/j.vaccine.2010.04.011] [PMID: 20412874]
[274]
Lay, M.; Callejo, B.; Chang, S.; Hong, D.K.; Lewis, D.B.; Carroll, T.D.; Matzinger, S.; Fritts, L.; Miller, C.J.; Warner, J.F.; Liang, L.; Fairman, J. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone) increases antibody response, cellular immunity, and antigenically drifted protection. Vaccine, 2009, 27(29), 3811-3820.
[http://dx.doi.org/10.1016/j.vaccine.2009.04.054] [PMID: 19406188]
[275]
Sullivan, S.M.; Doukas, J.; Hartikka, J.; Smith, L.; Rolland, A. Vaxfectin: a versatile adjuvant for plasmid DNA- and protein-based vaccines. Expert Opin. Drug Deliv., 2010, 7(12), 1433-1446.
[http://dx.doi.org/10.1517/17425247.2010.538047] [PMID: 21118032]
[276]
Bengtsson, K.L.; Song, H.; Stertman, L.; Liu, Y.; Flyer, D.C.; Massare, M.J.; Xu, R.H.; Zhou, B.; Lu, H.; Kwilas, S.A.; Hahn, T.J.; Kpamegan, E.; Hooper, J.; Carrion, R., Jr; Glenn, G.; Smith, G. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine, 2016, 34(16), 1927-1935.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.033] [PMID: 26921779]
[277]
Vaxinano, S.E. Vaxinano specializes in the development of prophylactic and therapeutic vaccines for infectious diseases, for human and animal health markets 2017. Available from:. http://www.vaxinano.com/ (Accessed on 25th November, 2018).
[278]
Emergex Vaccines. Impact report 2017. Available from:. http://www.impactinvestmentnetwork.com/wpcontent/uploads/2018/02/Emergex-Vaccines-Impact-Report-February-2017.pdf (Accessed on 25th November, 2018).
[279]
CaPtivate Pharmaceuticals. Calcium phosphate nanoparticle vaccine adjuvant 2016. Available from:. http://www.captivatepharma.com/technology/capnanoparticleadjuvant.html (Accessed on 26th November, 2018).
[280]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[281]
Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech, 2014, 15(6), 1527-1534.
[http://dx.doi.org/10.1208/s12249-014-0177-9] [PMID: 25047256]
[282]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[283]
Pita, R.; Ehmann, F.; Thürmer, R. Regulation of Biomedical Applications of Functionalized Nanomaterials in the European Union In: Micro and Nano Technologies; Sarmento, B.; Neves, J.das, Eds.; >Elsevier., 2018; pp. 653-679.
[http://dx.doi.org/10.1016/B978-0-323-50878-0.00022-7]
[284]
Babych, M.; Bertheau-Mailhot, G.; Zottig, X.; Dion, J.; Gauthier, L.; Archambault, D.; Bourgault, S. Engineering and evaluation of amyloid assemblies as a nanovaccine against the Chikungunya virus. Nanoscale, 2018, 10(41), 19547-19556.
[http://dx.doi.org/10.1039/C8NR05948A] [PMID: 30324958]
[285]
Bazzill, J.D.; Stronsky, S.M.; Kalinyak, L.C.; Ochyl, L.J.; Steffens, J.T.; van Tongeren, S.A.; Cooper, C.L.; Moon, J.J. Vaccine nanoparticles displaying recombinant Ebola virus glycoprotein for induction of potent antibody and polyfunctional T cell responses. Nanomedicine, 2018, 18, 30556-30562.
[286]
Kraaijeveld, C.A.; Schilham, M.; Jansen, J.; Benaissa-Trouw, B.; Harmsen, M.; van Houte, A.J.; Snippe, H. The effect of liposomal charge on the neutralizing antibody response against inactivated encephalomyocarditis and Semliki Forest viruses. Clin. Exp. Immunol., 1984, 56(3), 509-514.
[PMID: 6086188]
[287]
Greenwood, D.L.; Dynon, K.; Kalkanidis, M.; Xiang, S.; Plebanski, M.; Scheerlinck, J.P. Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine, 2008, 26(22), 2706-2713.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.025] [PMID: 18448209]
[288]
Acuña, R.; Cifuentes-Muñoz, N.; Márquez, C.L.; Bulling, M.; Klingström, J.; Mancini, R.; Lozach, P.Y.; Tischler, N.D. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles. J. Virol., 2014, 88(4), 2344-2348.
[http://dx.doi.org/10.1128/JVI.03118-13] [PMID: 24335294]
[289]
Shan, S.; Poinern, E.; Ellis, T.; Fenwick, S.; Le, X.; Edwards, J.; Jiang, Z.T. Development of a Nano-vaccine against a Wild Bird H6N2 Avian Influenza Virus. Procedia Vaccinol., 2010, 2(1), 40-43.
[http://dx.doi.org/10.1016/j.provac.2010.03.008]
[290]
Li, J.; Helal, Z.; Ladman, B.; Karch, C.; Gelb, J.; Burkhard, P.; Khan, M.I. Nanoparticle Vaccine for Avian Influenza Virus: A Challenge Study against Highly Pathogenic H5N2 Subtype. J. Virol. Antivir. Res., 2018, 7(1)
[http://dx.doi.org/10.4172/2324-8955.1000179]
[291]
Okamoto, S.; Yoshii, H.; Ishikawa, T.; Akagi, T.; Akashi, M.; Takahashi, M.; Yamanishi, K.; Mori, Y. Single dose of inactivated Japanese encephalitis vaccine with poly(gamma-glutamic acid) nanoparticles provides effective protection from Japanese encephalitis virus. Vaccine, 2008, 26(5), 589-594.
[http://dx.doi.org/10.1016/j.vaccine.2007.11.067] [PMID: 18180081]
[292]
Kojima, A.; Yasuda, A.; Asanuma, H.; Ishikawa, T.; Takamizawa, A.; Yasui, K.; Kurata, T. Stable high-producer cell clone expressing virus-like particles of the Japanese encephalitis virus e protein for a second-generation subunit vaccine. J. Virol., 2003, 77(16), 8745-8755.
[http://dx.doi.org/10.1128/JVI.77.16.8745-8755.2003] [PMID: 12885894]
[293]
de Wispelaere, M.; Ricklin, M.; Souque, P.; Frenkiel, M.P.; Paulous, S.; Garcìa-Nicolàs, O.; Summerfield, A.; Charneau, P.; Desprès, P. A Lentiviral vector expressing japanese encephalitis virus-like particles elicits broad neutralizing antibody response in pigs. PLoS Negl. Trop. Dis., 2015, 9(10) e0004081.
[http://dx.doi.org/10.1371/journal.pntd.0004081] [PMID: 26437302]
[294]
Demento, S.L.; Bonafé, N.; Cui, W.; Kaech, S.M.; Caplan, M.J.; Fikrig, E.; Ledizet, M.; Fahmy, T.M. TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J. Immunol., 2010, 185(5), 2989-2997.
[http://dx.doi.org/10.4049/jimmunol.1000768] [PMID: 20660705]
[295]
Zhai, Y.; Zhou, Y.; Li, X.; Feng, G. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor. Mol. Med. Rep., 2015, 12(1), 199-209.
[http://dx.doi.org/10.3892/mmr.2015.3419] [PMID: 25738258]
[296]
Spohn, G.; Jennings, G.T.; Martina, B.E.; Keller, I.; Beck, M.; Pumpens, P.; Osterhaus, A.D.; Bachmann, M.F. A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol. J., 2010, 7, 146.
[http://dx.doi.org/10.1186/1743-422X-7-146] [PMID: 20604940]
[297]
Prow, T.W.; Chen, X.; Prow, N.A.; Fernando, G.J.; Tan, C.S.; Raphael, A.P.; Chang, D.; Ruutu, M.P.; Jenkins, D.W.; Pyke, A.; Crichton, M.L.; Raphaelli, K.; Goh, L.Y.; Frazer, I.H.; Roberts, M.S.; Gardner, J.; Khromykh, A.A.; Suhrbier, A.; Hall, R.A.; Kendall, M.A. Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice. Small, 2010, 6(16), 1776-1784.
[http://dx.doi.org/10.1002/smll.201000331] [PMID: 20665754]
[298]
Lawrence Livermore National Laboratory. Nanolipoprotein Particles for Vaccine and Adjuvant Delivery Available from:. https://ipo.llnl.gov/technologies/nlps_for_vaccines (Accessed on 23rd November, 2018).
[299]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5), 3926-3938.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[300]
Fischer, N.O.; Infante, E.; Ishikawa, T.; Blanchette, C.D.; Bourne, N.; Hoeprich, P.D.; Mason, P.W. Conjugation to nickel-chelating nanolipoprotein particles increases the potency and efficacy of subunit vaccines to prevent West Nile encephalitis. Bioconjug. Chem., 2010, 21(6), 1018-1022.
[http://dx.doi.org/10.1021/bc100083d] [PMID: 20509624]
[301]
Nivedh, K.; Namasivayam, S.K.R.; Nishanth, A.N. Effect of functionalization of polymeric nanoparticles incorporated with whole attenuated rabies virus antigen on sustained release and efficacy. Resource-Efficient Technologies., 2016, 2, S25-S38.
[http://dx.doi.org/10.1016/j.reffit.2016.10.007]
[302]
Asgary, V.; Mafi, O. K.; Khosravy, M. S.; Janani, A.; Asl, N. N.; Bashar, R.; Poortaghi, H.; Cohan, H. A.; Shoari, A.; Cohan, R. A. Evaluation of the Effect of Silver Nanoparticles on Induction of Neutraliz-ing Antibodies against Inactivated Rabies Virus. vacres., 2014, 1(1), 31-34.
[303]
Liu, X.; Lin, H.; Tang, Q.; Li, C.; Yang, S.; Wang, Z.; Wang, C.; He, Q.; Cao, B.; Feng, Z.; Guan, X.; Zhu, J. Characterization of a human antibody fragment Fab and its calcium phosphate nanoparticles that inhibit rabies virus infection with vaccine. PLoS One, 2011, 6(5) e19848.
[http://dx.doi.org/10.1371/journal.pone.0019848] [PMID: 21573024]
[304]
Asgary, V.; Shoari, A.; Baghbani-Arani, F.; Sadat Shandiz, S.A.; Khosravy, M.S.; Janani, A.; Bigdeli, R.; Bashar, R.; Cohan, R.A. Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. Int. J. Nanomedicine, 2016, 11, 3597-3605.
[http://dx.doi.org/10.2147/IJN.S109098] [PMID: 27536101]
[305]
Lutz, J.; Lazzaro, S.; Habbeddine, M.; Schmidt, K.E.; Baumhof, P.; Mui, B.L.; Tam, Y.K.; Madden, T.D.; Hope, M.J.; Heidenreich, R.; Fotin-Mleczek, M. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines, 2017, 2, 29.
[http://dx.doi.org/10.1038/s41541-017-0032-6] [PMID: 29263884]
[306]
Asgary, V.; Shoari, A.; Afshar Moayad, M.; Shafiee Ardestani, M.; Bigdeli, R.; Ghazizadeh, L.; Khosravy, M.S.; Panahnejad, E.; Janani, A.; Bashar, R.; Abedi, M.; Ahangari Cohan, R. Evaluation of G2 citric acid-based dendrimer as an adjuvant in veterinary rabies vaccine. Viral Immunol., 2018, 31(1), 47-54.
[http://dx.doi.org/10.1089/vim.2017.0024] [PMID: 29328884]
[307]
Bansal, A.; Wu, X.; Olson, V.; D’Souza, M.J. Characterization of rabies pDNA nanoparticulate vaccine in poloxamer 407 gel. Int. J. Pharm., 2018, 545(1-2), 318-328.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.018] [PMID: 29746999]
[308]
Pimentel, T.A.P.F.; Yan, Z.; Jeffers, S.A.; Holmes, K.V.; Hodges, R.S.; Burkhard, P. Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem. Biol. Drug Des., 2009, 73(1), 53-61.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00746.x] [PMID: 19152635]
[309]
Coleman, C.M.; Liu, Y.V.; Mu, H.; Taylor, J.K.; Massare, M.; Flyer, D.C.; Smith, G.E.; Frieman, M.B. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine, 2014, 32(26), 3169-3174.
[http://dx.doi.org/10.1016/j.vaccine.2014.04.016] [PMID: 24736006]
[310]
Liu, Y.V.; Massare, M.J.; Barnard, D.L.; Kort, T.; Nathan, M.; Wang, L.; Smith, G. Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. Vaccine, 2011, 29(38), 6606-6613.
[http://dx.doi.org/10.1016/j.vaccine.2011.06.111] [PMID: 21762752]
[311]
Tseng, C.T.; Sbrana, E.; Iwata-Yoshikawa, N.; Newman, P.C.; Garron, T.; Atmar, R.L.; Peters, C.J.; Couch, R.B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One, 2012, 7(4) e35421.
[http://dx.doi.org/10.1371/journal.pone.0035421] [PMID: 22536382]
[312]
Shim, B.S.; Park, S.M.; Quan, J.S.; Jere, D.; Chu, H.; Song, M.K.; Kim, D.W.; Jang, Y.S.; Yang, M.S.; Han, S.H.; Park, Y.H.; Cho, C.S.; Yun, C.H. Intranasal immunization with plasmid DNA encoding spike protein of SARS-coronavirus/polyethylenimine nanoparticles elicits antigen-specific humoral and cellular immune responses. BMC Immunol., 2010, 11, 65.
[http://dx.doi.org/10.1186/1471-2172-11-65] [PMID: 21194475]
[313]
Mortola, E.; Roy, P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett., 2004, 576(1-2), 174-178.
[http://dx.doi.org/10.1016/j.febslet.2004.09.009] [PMID: 15474033]
[314]
Wang, C.; Zheng, X.; Gai, W.; Zhao, Y.; Wang, H.; Wang, H.; Feng, N.; Chi, H.; Qiu, B.; Li, N.; Wang, T.; Gao, Y.; Yang, S.; Xia, X. MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget, 2017, 8(8), 12686-12694.
[http://dx.doi.org/10.18632/oncotarget.8475] [PMID: 27050368]
[315]
Coleman, C.M.; Venkataraman, T.; Liu, Y.V.; Glenn, G.M.; Smith, G.E.; Flyer, D.C.; Frieman, M.B. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection. Vaccine, 2017, 35(12), 1586-1589.
[http://dx.doi.org/10.1016/j.vaccine.2017.02.012] [PMID: 28237499]
[316]
Kim, Y.S.; Son, A.; Kim, J.; Kwon, S.B.; Kim, M.H.; Kim, P.; Kim, J.; Byun, Y.H.; Sung, J.; Lee, J.; Yu, J.E.; Park, C.; Kim, Y.S.; Cho, N.H.; Chang, J.; Seong, B.L. Chaperna-Mediated Assembly of Ferritin-Based Middle East Respiratory Syndrome-Coronavirus Nanoparticles. Front. Immunol., 2018, 9, 1093.
[http://dx.doi.org/10.3389/fimmu.2018.01093] [PMID: 29868035]
[317]
Soliman, M.G.; Mohamed, A.F.; El Sayed, R.A.; Elqasem, A.A.A. Immunohistochemical and histological changes in the spleen induced by gold nanoparticles as alternative adjuvant against rift vally fever virus. European J. Biomed. Pharma. Sci., 2017, 4, 529.
[318]
Abd el-Razek, N.E.E.; Shoman, S.A.; Mohamed, A.F. Nanocapsulated rift valley fever vaccine candidates and relative immunological and histopathological reactivity in out bred swiss mice. J. Vaccines Vaccin., 2011, 2(1), 115.
[http://dx.doi.org/10.4172/2157-7560.1000115]
[319]
Näslund, J.; Lagerqvist, N.; Habjan, M.; Lundkvist, A.; Evander, M.; Ahlm, C.; Weber, F.; Bucht, G. Vaccination with virus-like particles protects mice from lethal infection of Rift Valley Fever Virus. Virology, 2009, 385(2), 409-415.
[http://dx.doi.org/10.1016/j.virol.2008.12.012] [PMID: 19157482]
[320]
Mandell, R.B.; Koukuntla, R.; Mogler, L.J.; Carzoli, A.K.; Freiberg, A.N.; Holbrook, M.R.; Martin, B.K.; Staplin, W.R.; Vahanian, N.N.; Link, C.J.; Flick, R. A replication-incompetent Rift Valley fever vaccine: chimeric virus-like particles protect mice and rats against lethal challenge. Virology, 2010, 397(1), 187-198.
[http://dx.doi.org/10.1016/j.virol.2009.11.001] [PMID: 19932911]
[321]
Pepini, T.; Pulichino, A.M.; Carsillo, T.; Carlson, A.L.; Sari-Sarraf, F.; Ramsauer, K.; Debasitis, J.C.; Maruggi, G.; Otten, G.R.; Geall, A.J.; Yu, D.; Ulmer, J.B.; Iavarone, C. Induction of an IFN-mediated antiviral response by a self-amplifying RNA vaccine: implications for vaccine design. J. Immunol., 2017, 198(10), 4012-4024.
[http://dx.doi.org/10.4049/jimmunol.1601877] [PMID: 28416600]
[322]
Fan, Y.; Stronsky, S.M.; Xu, Y.; Steffens, J.T.; van Tongeren, S.A.; Erwin, A.; Cooper, C.L.; Moon, J.J. Multilamellar vaccine particle elicits potent immune activation with protein antigens and protects mice against ebola virus infection. ACS Nano, 2019, 13(10), 11087-11096.
[http://dx.doi.org/10.1021/acsnano.9b03660] [PMID: 31497947]
[323]
Liu, Y.; Ye, L.; Lin, F.; Gomaa, Y.; Flyer, D.; Carrion, R., Jr; Patterson, J.L.; Prausnitz, M.R.; Smith, G.; Glenn, G.; Wu, H.; Compans, R.W.; Yang, C. Intradermal immunization by Ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. Sci. Rep., 2018, 8(1), 11193.
[http://dx.doi.org/10.1038/s41598-018-29135-w] [PMID: 30046140]
[324]
Yang, H.W.; Ye, L.; Guo, X.D.; Yang, C.; Compans, R.W.; Prausnitz, M.R. Ebola vaccination using a DNA vaccine coated on PLGA-PLL/γPGA nanoparticles administered using a microneedle patch. Adv. Healthc. Mater., 2017, 6(1) 1600750.
[http://dx.doi.org/10.1002/adhm.201600750] [PMID: 28075069]
[325]
Chahal, J.S.; Khan, O.F.; Cooper, C.L.; McPartlan, J.S.; Tsosie, J.K.; Tilley, L.D.; Sidik, S.M.; Lourido, S.; Langer, R.; Bavari, S.; Ploegh, H.L.; Anderson, D.G. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA, 2016, 113(29), E4133-E4142.
[http://dx.doi.org/10.1073/pnas.1600299113] [PMID: 27382155]
[326]
Warfield, K.L.; Aman, M.J. Advances in virus-like particle vaccines for filoviruses. J. Infect. Dis., 2011, 204(Suppl. 3), S1053-S1059.
[http://dx.doi.org/10.1093/infdis/jir346] [PMID: 21987741]
[327]
Warfield, K.L.; Bosio, C.M.; Welcher, B.C.; Deal, E.M.; Mohamadzadeh, M.; Schmaljohn, A.; Aman, M.J.; Bavari, S. Ebola virus-like particles protect from lethal Ebola virus infection. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15889-15894.
[http://dx.doi.org/10.1073/pnas.2237038100] [PMID: 14673108]
[328]
Warfield, K.L.; Swenson, D.L.; Olinger, G.G.; Kalina, W.V.; Aman, M.J.; Bavari, S. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge. J. Infect. Dis., 2007, 196(Suppl. 2), S430-S437.
[http://dx.doi.org/10.1086/520583] [PMID: 17940980]
[329]
Martins, K.A.; Steffens, J.T.; van Tongeren, S.A.; Wells, J.B.; Bergeron, A.A.; Dickson, S.P.; Dye, J.M.; Salazar, A.M.; Bavari, S. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS One, 2014, 9(2) e89735.
[http://dx.doi.org/10.1371/journal.pone.0089735] [PMID: 24586996]
[330]
Martins, K.; Carra, J.H.; Cooper, C.L.; Kwilas, S.A.; Robinson, C.G.; Shurtleff, A.C.; Schokman, R.D.; Kuehl, K.A.; Wells, J.B.; Steffens, J.T.; van Tongeren, S.A.; Hooper, J.W.; Bavari, S. Cross-protection conferred by filovirus virus-like particles containing trimeric hybrid glycoprotein. Viral Immunol., 2015, 28(1), 62-70.
[http://dx.doi.org/10.1089/vim.2014.0071] [PMID: 25514232]
[331]
Rao, M.; Matyas, G.R.; Grieder, F.; Anderson, K.; Jahrling, P.B.; Alving, C.R. Cytotoxic T lymphocytes to Ebola Zaire virus are induced in mice by immunization with liposomes containing lipid A. Vaccine, 1999, 17(23-24), 2991-2998.
[http://dx.doi.org/10.1016/S0264-410X(99)00170-X] [PMID: 10462234]
[332]
Rao, M.; Bray, M.; Alving, C.R.; Jahrling, P.; Matyas, G.R. Induction of immune responses in mice and monkeys to Ebola virus after immunization with liposome-encapsulated irradiated Ebola virus: protection in mice requires CD4(+) T cells. J. Virol., 2002, 76(18), 9176-9185.
[http://dx.doi.org/10.1128/JVI.76.18.9176-9185.2002] [PMID: 12186901]
[333]
Carra, J.H.; Martins, K.A.O.; Schokman, R.D.; Robinson, C.G.; Steffens, J.T.; Bavari, S. A thermostable, chromatographically purified Ebola nano-VLP vaccine. J. Transl. Med., 2015, 13, 228.
[http://dx.doi.org/10.1186/s12967-015-0593-y] [PMID: 26174690]
[334]
Warfield, K.L.; Posten, N.A.; Swenson, D.L.; Olinger, G.G.; Esposito, D.; Gillette, W.K.; Hopkins, R.F.; Costantino, J.; Panchal, R.G.; Hartley, J.L.; Aman, M.J.; Bavari, S. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J. Infect. Dis., 2007, 196(Suppl. 2), S421-S429.
[http://dx.doi.org/10.1086/520612] [PMID: 17940979]
[335]
Walpita, P.; Cong, Y.; Jahrling, P.B.; Rojas, O.; Postnikova, E.; Yu, S.; Johns, L.; Holbrook, M.R. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines, 2017, 2, 21.
[http://dx.doi.org/10.1038/s41541-017-0023-7] [PMID: 29263876]
[336]
Vera-Velasco, N.M.; García-Murria, M.J.; Sánchez Del Pino, M.M.; Mingarro, I.; Martinez-Gil, L. Proteomic composition of Nipah virus-like particles. J. Proteomics, 2018, 172, 190-200.
[http://dx.doi.org/10.1016/j.jprot.2017.10.012] [PMID: 29092793]
[337]
Walpita, P.; Barr, J.; Sherman, M.; Basler, C.F.; Wang, L. Vaccine potential of Nipah virus-like particles. PLoS One, 2011, 6(4) e18437.
[http://dx.doi.org/10.1371/journal.pone.0018437] [PMID: 21494680]
[338]
Metz, S.W.; Tian, S.; Hoekstra, G.; Yi, X.; Stone, M.; Horvath, K.; Miley, M.J.; DeSimone, J.; Luft, C.J.; de Silva, A.M. Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses. PLoS Negl. Trop. Dis., 2016, 10(10) e0005071.
[http://dx.doi.org/10.1371/journal.pntd.0005071] [PMID: 27764114]
[339]
Metz, S.W.; Thomas, A.; Brackbill, A.; Xianwen, Y.; Stone, M.; Horvath, K.; Miley, M.J.; Luft, C.; DeSimone, J.M.; Tian, S.; de Silva, A.M. Nanoparticle delivery of a tetravalent E protein subunit vaccine induces balanced, type-specific neutralizing antibodies to each dengue virus serotype. PLoS Negl. Trop. Dis., 2018, 12(9) e0006793.
[http://dx.doi.org/10.1371/journal.pntd.0006793] [PMID: 30248097]
[340]
Swaminathan, G.; Thoryk, E.A.; Cox, K.S.; Smith, J.S.; Wolf, J.J.; Gindy, M.E.; Casimiro, D.R.; Bett, A.J. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci. Rep., 2016, 6, 34215.
[http://dx.doi.org/10.1038/srep34215] [PMID: 27703172]
[341]
Zhang, S.; Liang, M.; Gu, W.; Li, C.; Miao, F.; Wang, X.; Jin, C.; Zhang, L.; Zhang, F.; Zhang, Q.; Jiang, L.; Li, M.; Li, D. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice. Virol. J., 2011, 8, 333.
[http://dx.doi.org/10.1186/1743-422X-8-333] [PMID: 21714940]
[342]
Liu, Y.; Zhou, J.; Yu, Z.; Fang, D.; Fu, C.; Zhu, X.; He, Z.; Yan, H.; Jiang, L. Tetravalent recombinant dengue virus-like particles as potential vaccine candidates: immunological properties. BMC Microbiol., 2014, 14, 233.
[http://dx.doi.org/10.1186/s12866-014-0233-3] [PMID: 25520151]
[343]
Chahal, J.S.; Fang, T.; Woodham, A.W.; Khan, O.F.; Ling, J.; Anderson, D.G.; Ploegh, H.L. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep., 2017, 7(1), 252.
[http://dx.doi.org/10.1038/s41598-017-00193-w] [PMID: 28325910]
[344]
Garg, H.; Sedano, M.; Plata, G.; Punke, E.B.; Joshi, A. Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus. J. Virol., 2017, 91(20), e00834-e17.
[http://dx.doi.org/10.1128/JVI.00834-17] [PMID: 28794019]
[345]
Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C.; Ciaramella, G.; Diamond, M S. Modified mRNA Vaccines Protect against Zika Virus Infection., Cell., 2017, 168(6), P1114-P1125. e10.
[346]
Richner, J.M.; Himansu, S.; Dowd, K.A.; Butler, S.L.; Salazar, V.; Fox, J.M.; Julander, J.G.; Tang, W.W.; Shresta, S.; Pierson, T.C.; Ciaramella, G.; Diamond, M.S. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 2017, 169(1), 176.
[http://dx.doi.org/10.1016/j.cell.2017.03.016] [PMID: 28340344]
[347]
Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; Wagner, W.; Granados, A.; Greenhouse, J.; Walker, M.; Willis, E.; Yu, J.S.; McGee, C.E.; Sempowski, G.D.; Mui, B.L.; Tam, Y.K.; Huang, Y.J.; Vanlandingham, D.; Holmes, V.M.; Balachandran, H.; Sahu, S.; Lifton, M.; Higgs, S.; Hensley, S.E.; Madden, T.D.; Hope, M.J.; Karikó, K.; Santra, S.; Graham, B.S.; Lewis, M.G.; Pierson, T.C.; Haynes, B.F.; Weissman, D. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543(7644), 248-251.
[http://dx.doi.org/10.1038/nature21428] [PMID: 28151488]
[348]
Richner, J.M.; Jagger, B.W.; Shan, C.; Fontes, C.R.; Dowd, K.A.; Cao, B.; Himansu, S.; Caine, E.A.; Nunes, B.T.D.; Medeiros, D.B.A.; Muruato, A.E.; Foreman, B.M.; Luo, H.; Wang, T.; Barrett, A.D.; Weaver, S.C.; Vasconcelos, P.F.C.; Rossi, S.L.; Ciaramella, G.; Mysorekar, I.U.; Pierson, T.C.; Shi, P.Y.; Diamond, M.S. Vaccine mediated protection against zika virus-induced congenital disease. Cell, 2017, 170(2), 273-283.e12.
[http://dx.doi.org/10.1016/j.cell.2017.06.040] [PMID: 28708997]
[349]
Boigard, H.; Alimova, A.; Martin, G.R.; Katz, A.; Gottlieb, P.; Galarza, J.M. Zika virus-like particle (VLP) based vaccine. PLoS Negl. Trop. Dis., 2017, 11(5) e0005608.
[http://dx.doi.org/10.1371/journal.pntd.0005608] [PMID: 28481898]
[350]
Dai, S.; Zhang, T.; Zhang, Y.; Wang, H.; Deng, F. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice. Virol. Sin., 2018, 33(3), 213-226.
[http://dx.doi.org/10.1007/s12250-018-0030-5] [PMID: 29774519]
[351]
Salvo, M.A.; Kingstad-Bakke, B.; Salas-Quinchucua, C.; Camacho, E.; Osorio, J.E. Zika virus like particles elicit protective antibodies in mice. PLoS Negl. Trop. Dis., 2018, 12(2) e0006210.
[http://dx.doi.org/10.1371/journal.pntd.0006210] [PMID: 29401460]
[352]
Guirakhoo, F.; Domi, A.; McCurley, N.; Robinson, H. Development of a Zika vaccine using a novel MVA-VLP platform. Int. J. Infect. Dis., 2016, 53, 16-17.
[http://dx.doi.org/10.1016/j.ijid.2016.11.046]
[353]
Yang, M.; Lai, H.; Sun, H.; Chen, Q. Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Sci. Rep., 2017, 7(1), 7679.
[http://dx.doi.org/10.1038/s41598-017-08247-9] [PMID: 28794424]
[354]
Akahata, W.; Yang, Z.Y.; Andersen, H.; Sun, S.; Holdaway, H.A.; Kong, W.P.; Lewis, M.G.; Higgs, S.; Rossmann, M.G.; Rao, S.; Nabel, G.J. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med., 2010, 16(3), 334-338.
[http://dx.doi.org/10.1038/nm.2105] [PMID: 20111039]
[355]
Metz, S.W.; Gardner, J.; Geertsema, C.; Le, T.T.; Goh, L.; Vlak, J.M.; Suhrbier, A.; Pijlman, G.P. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl. Trop. Dis., 2013, 7(3) e2124.
[http://dx.doi.org/10.1371/journal.pntd.0002124] [PMID: 23516657]
[356]
Noranate, N.; Takeda, N.; Chetanachan, P.; Sittisaman, P.; A-Nuegoonpipat, A.; Anantapreecha, S. Characterization of chikungunya virus-like particles. PLoS One, 2014, 9(9) e108169.
[http://dx.doi.org/10.1371/journal.pone.0108169] [PMID: 25265335]
[357]
Garrison, A.R.; Shoemaker, C.J.; Golden, J.W.; Fitzpatrick, C.J.; Suschak, J.J.; Richards, M.J.; Badger, C.V.; Six, C.M.; Martin, J.D.; Hannaman, D.; Zivcec, M.; Bergeron, E.; Koehler, J.W.; Schmaljohn, C.S. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl. Trop. Dis., 2017, 11(9) e0005908.
[http://dx.doi.org/10.1371/journal.pntd.0005908] [PMID: 28922426]
[358]
Hinkula, J.; Devignot, S.; Åkerström, S.; Karlberg, H.; Wattrang, E.; Bereczky, S.; Mousavi-Jazi, M.; Risinger, C.; Lindegren, G.; Vernersson, C.; Paweska, J.; van Vuren, P.J.; Blixt, O.; Brun, A.; Weber, F.; Mirazimi, A. Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice. J. Virol., 2017, 91(10), e02076-e16.
[http://dx.doi.org/10.1128/JVI.02076-16] [PMID: 28250124]
[359]
Gollapudi, D.; Wycuff, D.L.; Schwartz, R.M.; Cooper, J.W.; Cheng, K.C. Development of high-throughput and high sensitivity capillary gel electrophoresis platform method for Western, Eastern, and Venezuelan equine encephalitis (WEVEE) virus like particles (VLPs) purity determination and characterization. Electrophoresis, 2017, 38(20), 2610-2621.
[http://dx.doi.org/10.1002/elps.201700217] [PMID: 28842921]
[360]
Teng, Z.; Sun, S.; Chen, H.; Huang, J.; Du, P.; Dong, H.; Xu, X.; Mu, S.; Zhang, Z.; Guo, H. Golden-star nanoparticles as adjuvant effectively promotes immune response to foot-and-mouth disease virus-like particles vaccine. Vaccine, 2018, 36(45), 6752-6760.
[http://dx.doi.org/10.1016/j.vaccine.2018.09.030] [PMID: 30268733]
[361]
Wang, G.; Liu, Y.; Feng, H.; Chen, Y.; Yang, S.; Wei, Q.; Wang, J.; Liu, D.; Zhang, G. Immunogenicity evaluation of MS2 phage-mediated chimeric nanoparticle displaying an immunodominant B cell epitope of foot-and-mouth disease virus. PeerJ, 2018, 6 e4823.
[http://dx.doi.org/10.7717/peerj.4823] [PMID: 29844975]
[362]
Tajdini, F.; Amini, M.A.; Mokarram, A.R.; Taghizadeh, M.; Azimi, S.M. Foot and Mouth Disease virus-loaded fungal chitosan nanoparticles for intranasal administration: impact of formulation on physicochemical and immunological characteristics. Pharm. Dev. Technol., 2014, 19(3), 333-341.
[http://dx.doi.org/10.3109/10837450.2013.784335] [PMID: 23590209]
[363]
Chen, Y.S.; Hung, Y.C.; Lin, W.H.; Huang, G.S. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology, 2010, 21(19) 195101.
[http://dx.doi.org/10.1088/0957-4484/21/19/195101] [PMID: 20400818]
[364]
Pan, L.; Zhang, Z.; Lv, J.; Zhou, P.; Hu, W.; Fang, Y.; Chen, H.; Liu, X.; Shao, J.; Zhao, F.; Ding, Y.; Lin, T.; Chang, H.; Zhang, J.; Zhang, Y.; Wang, Y. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int. J. Nanomedicine, 2014, 9, 5603-5618.
[http://dx.doi.org/10.2147/IJN.S72318] [PMID: 25506214]
[365]
Joyappa, D.H.; Kumar, C.A.; Banumathi, N.; Reddy, G.R.; Suryanarayana, V.V. Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet. Microbiol., 2009, 139(1-2), 58-66.
[http://dx.doi.org/10.1016/j.vetmic.2009.05.004] [PMID: 19505774]
[366]
Mohana Subramanian, B.; Madhanmohan, M.; Sriraman, R.; Chandrasekhar Reddy, R.V.; Yuvaraj, S.; Manikumar, K.; Rajalakshmi, S.; Nagendrakumar, S.B.; Rana, S.K.; Srinivasan, V.A. Development of foot-and-mouth disease virus (FMDV) serotype O virus-like-particles (VLPs) vaccine and evaluation of its potency. Antiviral Res., 2012, 96(3), 288-295.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.019] [PMID: 23043941]
[367]
Puckette, M.; Clark, B.A.; Smith, J.D.; Turecek, T.; Martel, E.; Gabbert, L.; Pisano, M.; Hurtle, W.; Pacheco, J.M.; Barrera, J.; Neilan, J.G.; Rasmussen, M. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development. J. Virol., 2017, 91(22), e00924-e17.
[http://dx.doi.org/10.1128/JVI.00924-17] [PMID: 28878081]
[368]
Xiao, Y.; Chen, H.Y.; Wang, Y.; Yin, B.; Lv, C.; Mo, X.; Yan, H.; Xuan, Y.; Huang, Y.; Pang, W.; Li, X.; Yuan, Y.A.; Tian, K. Large-scale production of foot-and-mouth disease virus (serotype Asia1) VLP vaccine in Escherichia coli and protection potency evaluation in cattle. BMC Biotechnol., 2016, 16(1), 56.
[http://dx.doi.org/10.1186/s12896-016-0285-6] [PMID: 27371162]
[369]
Guo, H.C.; Sun, S.Q.; Jin, Y.; Yang, S.L.; Wei, Y.Q.; Sun, D.H.; Yin, S.H.; Ma, J.W.; Liu, Z.X.; Guo, J.H.; Luo, J.X.; Yin, H.; Liu, X.T.; Liu, D.X. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet. Res. (Faisalabad), 2013, 44, 48.
[http://dx.doi.org/10.1186/1297-9716-44-48] [PMID: 23826638]
[370]
Li, C.; Liu, F.; Liang, M.; Zhang, Q.; Wang, X.; Wang, T.; Li, J.; Li, D. Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice. Vaccine, 2010, 28(26), 4294-4300.
[http://dx.doi.org/10.1016/j.vaccine.2010.04.025] [PMID: 20433802]
[371]
Boudreau, E.F.; Josleyn, M.; Ullman, D.; Fisher, D.; Dalrymple, L.; Sellers-Myers, K.; Loudon, P.; Rusnak, J.; Rivard, R.; Schmaljohn, C.; Hooper, J.W. A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine, 2012, 30(11), 1951-1958.
[http://dx.doi.org/10.1016/j.vaccine.2012.01.024] [PMID: 22248821]
[372]
Branco, L.M.; Grove, J.N.; Geske, F.J.; Boisen, M.L.; Muncy, I.J.; Magliato, S.A.; Henderson, L.A.; Schoepp, R.J.; Cashman, K.A.; Hensley, L.E.; Garry, R.F. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol. J., 2010, 7, 279.
[http://dx.doi.org/10.1186/1743-422X-7-279] [PMID: 20961433]
[373]
McGinnes, L.W.; Pantua, H.; Laliberte, J.P.; Gravel, K.A.; Jain, S.; Morrison, T.G. Assembly and biological and immunological properties of Newcastle disease virus-like particles. J. Virol., 2010, 84(9), 4513-4523.
[http://dx.doi.org/10.1128/JVI.01931-09] [PMID: 20181713]
[374]
Firouzamandi, M.; Moeini, H.; Hosseini, S.D.; Bejo, M.H.; Omar, A.R.; Mehrbod, P.; El Zowalaty, M.E.; Webster, T.J.; Ideris, A. Preparation, characterization, and in ovo vaccination of dextran-spermine nanoparticle DNA vaccine coexpressing the fusion and hemagglutinin genes against Newcastle disease. Int. J. Nanomedicine, 2016, 11, 259-267.
[PMID: 26834470]
[375]
Zhao, K.; Zhang, Y.; Zhang, X.; Li, W.; Shi, C.; Guo, C.; Dai, C.; Chen, Q.; Jin, Z.; Zhao, Y.; Cui, H.; Wang, Y. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int. J. Nanomedicine, 2014, 9, 389-402.
[http://dx.doi.org/10.2147/IJN.S54226] [PMID: 24426783]
[376]
Zhao, K.; Han, J.; Zhang, Y.; Wei, L.; Yu, S.; Wang, X.; Jin, Z.; Wang, Y. Enhancing mucosal immune response of newcastle disease virus dna vaccine using N-2-hydroxypropyl trimethylammonium chloride chitosan and N,O-carboxymethyl chitosan nanoparticles as delivery carrier. Mol. Pharm., 2018, 15(1), 226-237.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00826] [PMID: 29172532]
[377]
Babapoor, S.; Neef, T.; Mittelholzer, C.; Girshick, T.; Garmendia, A.; Shang, H.; Khan, M.I.; Burkhard, P. A novel vaccine using nanoparticle platform to present immunogenic m2e against avian influenza infection. Influenza Res. Treat., 2011, 2011 126794.
[http://dx.doi.org/10.1155/2011/126794] [PMID: 23074652]
[378]
Zacharias, Z.R.; Ross, K.A.; Hornick, E.E.; Goodman, J.T.; Narasimhan, B.; Waldschmidt, T.J.; Legge, K.L. Polyanhydride nanovaccine induces robust pulmonary B and T cell immunity and confers protection against homologous and heterologous influenza A virus infections. Front. Immunol., 2018, 9, 1953.
[http://dx.doi.org/10.3389/fimmu.2018.01953] [PMID: 30233573]
[379]
Kreuter, J.; Liehl, E. Long-term studies of microencapsulated and adsorbed influenza vaccine nanoparticles. J. Pharm. Sci., 1981, 70(4), 367-371.
[http://dx.doi.org/10.1002/jps.2600700406] [PMID: 7229943]
[380]
Okamoto, S.; Matsuura, M.; Akagi, T.; Akashi, M.; Tanimoto, T.; Ishikawa, T.; Takahashi, M.; Yamanishi, K.; Mori, Y. Poly(gamma-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine, 2009, 27(42), 5896-5905.
[http://dx.doi.org/10.1016/j.vaccine.2009.07.037] [PMID: 19647814]
[381]
Hervé, P.L.; Raliou, M.; Bourdieu, C.; Dubuquoy, C.; Petit-Camurdan, A.; Bertho, N.; Eléouët, J.F.; Chevalier, C.; Riffault, S. A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J. Virol., 2014, 88(1), 325-338.
[http://dx.doi.org/10.1128/JVI.01141-13] [PMID: 24155388]
[382]
Singhal, C.; Khanuja, M.; Chaudhary, N.; Pundir, C.S.; Narang, J. Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci. Rep., 2018, 8(1), 7734.
[http://dx.doi.org/10.1038/s41598-018-25824-8] [PMID: 29769549]
[383]
Yen, C.W.; de Puig, H.; Tam, J.O.; Gómez-Márquez, J.; Bosch, I.; Hamad-Schifferli, K.; Gehrke, L. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip, 2015, 15(7), 1638-1641.
[http://dx.doi.org/10.1039/C5LC00055F] [PMID: 25672590]
[384]
Yuan, W.; Li, Y.; Wang, J.; Wang, J.; Sun, J. A nanoparticle-assisted PCR assay for the detection of encephalomyocarditis virus. Vet. Arh., 2016, 86(1), 1-8.
[385]
Jain, B.; Lambe, U.; Tewari, A.; Kadian, S.K.; Prasad, M. Development of a rapid test for detection of foot-and-mouth disease virus specific antibodies using gold nanoparticles. Virusdisease, 2018, 29(2), 192-198.
[http://dx.doi.org/10.1007/s13337-018-0450-8] [PMID: 29911152]
[386]
Perez, J.M.; Simeone, F.J.; Saeki, Y.; Josephson, L.; Weissleder, R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc., 2003, 125(34), 10192-10193.
[http://dx.doi.org/10.1021/ja036409g] [PMID: 12926940]
[387]
Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14017-14022.
[http://dx.doi.org/10.1073/pnas.0406159101] [PMID: 15365183]
[388]
Valdivia-Granda, W.; Keating, C.D.; Kann, M.; Beresford, R.; Kelley, S.O. In: Detection of encephalic and hemorrhagic viruses: Integration of micro-and nano-fabrication with computational tools; Proceedings of the International Conference on MEMS, NANO and Smart Systems, ICMENS, Banff:. Canada, 2005 July; pp. 408-414.
[389]
Marín, M.J.; Rashid, A.; Rejzek, M.; Fairhurst, S.A.; Wharton, S.A.; Martin, S.R.; McCauley, J.W.; Wileman, T.; Field, R.A.; Russell, D.A. Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus. Org. Biomol. Chem., 2013, 11(41), 7101-7107.
[http://dx.doi.org/10.1039/c3ob41703d] [PMID: 24057694]
[390]
Zhou, C.H.; Zhao, J.Y.; Pang, D.W.; Zhang, Z.L. Enzyme-induced metallization as a signal amplification strategy for highly sensitive colorimetric detection of avian influenza virus particles. Anal. Chem., 2014, 86(5), 2752-2759.
[http://dx.doi.org/10.1021/ac404177c] [PMID: 24475750]
[391]
Chin, S.F.; Lim, L.S.; Pang, S.C.; Sum, M.S.H.; Perera, D. Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Mikrochim. Acta, 2017, 184, 491-497.
[http://dx.doi.org/10.1007/s00604-016-2029-7]
[392]
Lim, L.S.; Chin, S.F.; Pang, S.C.; Sum, M.S.H.; Perera, D. A novel silver nanoparticles-based sensing probe for the detection of japanese encephalitis virus antigen. Sains Malays., 2017, 46(12), 2447-2454.
[http://dx.doi.org/10.17576/jsm-2017-4612-21]
[393]
Geng, X.; Zhang, F.; Gao, Q.; Lei, Y. Sensitive impedimetric immunoassay of japanese encephalitis virus based on enzyme biocatalyzed precipitation on a gold nanoparticle-modified screen-printed carbon electrode. Anal. Sci., 2016, 32(10), 1105-1109.
[http://dx.doi.org/10.2116/analsci.32.1105] [PMID: 27725612]
[394]
Tran, Q.H.; Nguyen, T.H.H.; Mai, A.T.; Nguyen, T.T.; Vu, Q.K.; Phan, T.N. Development of electrochemical immunosensors based on different serum antibody immobilization methods for detection of Japanese encephalitis virus. Adv. Nat. Sci., 2012, 3 015012.
[http://dx.doi.org/10.1088/2043-6262/3/1/015012]
[395]
Yuan, R.; Zhang, L.; Li, Q.; Chai, Y.; Cao, S. A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine. Anal. Chim. Acta, 2005, 531(1), 1-5.
[http://dx.doi.org/10.1016/j.aca.2004.10.072]
[396]
Zhang, L.; Yuan, R.; Chai, Y.; Chen, S.; Wang, N.; Zhu, Q. Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochem. Eng. J., 2006, 28(3), 231-236.
[http://dx.doi.org/10.1016/j.bej.2005.11.014]
[397]
Huang, S.H.; Yang, T.C.; Tsai, M.H.; Tsai, I.S.; Lu, H.C.; Chuang, P.H.; Wan, L.; Lin, Y.J.; Lai, C.H.; Lin, C.W. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus. Nanotechnology, 2008, 19(40) 405101.
[http://dx.doi.org/10.1088/0957-4484/19/40/405101] [PMID: 21832608]
[398]
Zhang, H.; Harpster, M.H.; Park, H.J.; Johnson, P.A.; Wilson, W.C. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Anal. Chem., 2011, 83(1), 254-260.
[http://dx.doi.org/10.1021/ac1023843] [PMID: 21121693]
[399]
Neng, J.; Harpster, M.H.; Zhang, H.; Mecham, J.O.; Wilson, W.C.; Johnson, P.A. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G. Biosens. Bioelectron., 2010, 26(3), 1009-1015.
[http://dx.doi.org/10.1016/j.bios.2010.08.015] [PMID: 20864330]
[400]
Zhang, L.; Tong, S.; Zhou, J.; Bao, G. Accurate quantification of disease markers in human serum using iron oxide nanoparticle-linked immunosorbent Assay. Theranostics, 2016, 6(9), 1353-1361.
[http://dx.doi.org/10.7150/thno.16093] [PMID: 27375784]
[401]
Li, H.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14036-14039.
[http://dx.doi.org/10.1073/pnas.0406115101] [PMID: 15381774]
[402]
Martínez-Paredes, G.; González-García, M.B.; Costa-García, A. Genosensor for SARS virus detection based on gold nanostructured screen-printed carbon electrodes. Electroanalysis, 2009, 21(3-5), 379-385.
[http://dx.doi.org/10.1002/elan.200804399]
[403]
Roh, C. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. Int. J. Nanomedicine, 2012, 7, 2173-2179.
[http://dx.doi.org/10.2147/IJN.S31379] [PMID: 22619553]
[404]
Roh, C.; Jo, S.K. Quantitative and sensitive detection of SARS coronavirus nucleocapsid protein using quantum dots-conjugated RNA aptamer on chip. J. Chem. Technol. Biotechnol., 2011, 86, 1475-1479.
[http://dx.doi.org/10.1002/jctb.2721]
[405]
Zaher, M.R.; Ahmed, H.A.; Hamada, K.E.Z.; Tammam, R.H. Colorimetric Detection of Unamplified Rift Valley Fever Virus Genetic Material Using Unmodified Gold Nanoparticles. Appl. Biochem. Biotechnol., 2018, 184(3), 898-908.
[PMID: 28918558]
[406]
Shafagati, N.; Lundberg, L.; Baer, A.; Patanarut, A.; Fite, K.; Lepene, B.; Kehn-Hall, K. The use of Nanotrap particles in the enhanced detection of Rift Valley fever virus nucleoprotein. PLoS One, 2015, 10(5) e0128215.
[http://dx.doi.org/10.1371/journal.pone.0128215] [PMID: 26020252]
[407]
Neng, J.; Harpster, M.H.; Wilson, W.C.; Johnson, P.A. Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles. Biosens. Bioelectron., 2013, 41, 316-321.
[http://dx.doi.org/10.1016/j.bios.2012.08.048] [PMID: 23021841]
[408]
Mitra, A.; Deutsch, B.; Ignatovich, F.; Dykes, C.; Novotny, L. Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano, 2010, 4(3), 1305-1312.
[http://dx.doi.org/10.1021/nn901889v] [PMID: 20148575]
[409]
Balcioglu, M.; Rana, M.; Hizir, M.S.; Robertson, N.M.; Haque, K.; Yigit, M.V. Rapid Visual Screening and Programmable Subtype Classification of Ebola Virus Biomarkers. Adv. Healthc. Mater., 2017, 6(2) 1600739.
[http://dx.doi.org/10.1002/adhm.201600739] [PMID: 27990771]
[410]
Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B.S.; Howes, P.D.; Gelkop, S.; Lutwama, J.J.; Dye, J.M.; McKendry, R.A.; Lobel, L.; Stevens, M.M. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano, 2018, 12(1), 63-73.
[http://dx.doi.org/10.1021/acsnano.7b07021] [PMID: 29303554]
[411]
Chen, Y.; Ren, R.; Pu, H.; Guo, X.; Chang, J.; Zhou, G.; Mao, S.; Kron, M.; Chen, J. Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen. Sci. Rep., 2017, 7(1), 10974.
[http://dx.doi.org/10.1038/s41598-017-11387-7] [PMID: 28887479]
[412]
Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297(5586), 1536-1540.
[http://dx.doi.org/10.1126/science.297.5586.1536] [PMID: 12202825]
[413]
Wang, Y.; Zhu, G.; Qi, W.; Li, Y.; Song, Y. A versatile quantitation platform based on platinum nanoparticles incorporated volumetric bar-chart chip for highly sensitive assays. Biosens. Bioelectron., 2016, 85, 777-784.
[http://dx.doi.org/10.1016/j.bios.2016.05.090] [PMID: 27285358]
[414]
Baca, J.T.; Severns, V.; Lovato, D.; Branch, D.W.; Larson, R.S. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors (Basel), 2015, 15(4), 8605-8614.
[http://dx.doi.org/10.3390/s150408605] [PMID: 25875186]
[415]
Joseph, N.M.; Ho, K.L.; Tey, B.T.; Tan, C.S.; Shafee, N.; Tan, W.S. Production of the virus-like particles of nipah virus matrix protein in Pichia pastoris as diagnostic reagents. Biotechnol. Prog., 2016, 32(4), 1038-1045.
[http://dx.doi.org/10.1002/btpr.2279] [PMID: 27088434]
[416]
Bang, J.; Park, H.; Choi, W.I.; Sung, D.; Lee, J.H.; Lee, K.Y.; Kim, S. Sensitive detection of dengue virus NS1 by highly stable affibody-functionalized gold nanoparticles. New J. Chem., 2018, 42(15), 12607-12614.
[http://dx.doi.org/10.1039/C8NJ02244E]
[417]
Vinayagam, S.; Rajaiah, P.; Mukherjee, A.; Natarajan, C. DNA-triangular silver nanoparticles nanoprobe for the detection of dengue virus distinguishing serotype. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202, 346-351.
[http://dx.doi.org/10.1016/j.saa.2018.05.047] [PMID: 29800899]
[418]
Rai, V.; Hapuarachchi, H.C.; Ng, L.C.; Soh, S.H.; Leo, Y.S.; Toh, C.S. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLoS One, 2012, 7(8) e42346.
[http://dx.doi.org/10.1371/journal.pone.0042346] [PMID: 22927927]
[419]
Paul, A.M.; Fan, Z.; Sinha, S.S.; Shi, Y.; Le, L.; Bai, F.; Ray, P.C. Bio-Conjugated Gold Nanoparticle Based SERS Probe for Ultrasensitive Identification of Mosquito-Borne Viruses Using Raman Fingerprinting. J Phys Chem C Nanomater Interfaces, 2015, 119(41), 23669-23775.
[http://dx.doi.org/10.1021/acs.jpcc.5b07387] [PMID: 27441043]
[420]
Bosch, I.; de Puig, H.; Hiley, M.; Carré-Camps, M.; Perdomo-Celis, F.; Narváez, C. F.; Salgado, D. M.; Senthoor, D.; O'Grady, M.; Phillips, E.; Durbin, A.; Fandos, D.; Miyazaki, H.; Yen, C. W.; Gélvez-Ramírez, M.; Warke, R. V.; Ribeiro, L. S.; Teixeira, M. M.; Almeida, R. P.; Muñóz-Medina, J. E.; Ludert, J. E.; Nogueira, M. L.; Colombo, T. E.; Terzian, A. C. B.; Bozza, P. T.; Calheiros, A. S.; Vieira, Y. R.; Barbosa-Lima, G.; Vizzoni, A.; Cerbino-Neto, J.; Bozza, F. A.; Souza, T. M. L.; Trugilho, M. R. O.; de Filippis, A. M. B.; de Sequeira, P. C.; Marques, E. T. A.; Magalhaes, T.; Díaz, F. J.; Restrepo, B. N.; Marín, K.; Mattar, S.; Olson, D.; Asturias, E. J.; Lucera, M.; Singla, M.; Medigeshi, G. R.; de Bosch, N.; Tam, J.; Gómez-Márquez, J.; Clavet, C.; Villar, L.; Hamad-Schifferli, K.; Gehrke, L. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci Transl Med., 2017, 9(409) pii: eaan1589.
[http://dx.doi.org/10.1126/scitranslmed.aan1589]
[421]
Rahman, S.A.; Saadun, R.; Azmi, N.E.; Ariffin, N.; Abdullah, J.; Yusof, N.A.; Sidek, H.; Hajian, R. Label-free dengue detection utilizing PNA/DNA hybridization based on the aggregation process of unmodified gold nanoparticles. J. Nanomater., 2014, 2014 839286.
[422]
Singhal, C.; Pundir, C.S.; Narang, J. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites. Biosens. Bioelectron., 2017, 97, 75-82.
[http://dx.doi.org/10.1016/j.bios.2017.05.047] [PMID: 28577500]
[423]
Rashid, J.I.A.; Yusof, N.A.; Abdullah, J.; Hashim, U. Hajian, ‎ R. A Novel Disposable Biosensor Based on SiNWs/AuNPs Modified-Screen Printed Electrode for Dengue Virus DNA Oligomer Detection. IEEE Sens. J., 2015, 15, 4420-4427.
[http://dx.doi.org/10.1109/JSEN.2015.2417911]
[424]
García, A.A.; Franco, L.S.; Pirez-Gomez, M.A.; Pech-Pacheco, J.L.; Mendez-Galvan, J.F.; Machain-Williams, C.; Talavera-Aguilar, L.; Espinosa-Carrillo, J.H.; Duarte-Villaseñor, M.M.; Be-Ortiz, C.; Espinosa-de Los Monteros, L.E.; Castillo-Pacheco, A.; Garcina-Rejon, J.E. Feasibility Study of an Optical Caustic Plasmonic Light Scattering Sensor for Human Serum Anti-Dengue Protein E Antibody Detection. Diagnostics (Basel), 2017, 7(3) E47.
[http://dx.doi.org/10.3390/diagnostics7030047] [PMID: 28817080]
[425]
Deng, J.; Toh, C.S. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors (Basel), 2013, 13(6), 7774-7785.
[http://dx.doi.org/10.3390/s130607774] [PMID: 23774989]
[426]
Nguyen, B.T.; Peh, A.E.; Chee, C.Y.; Fink, K.; Chow, V.T.; Ng, M.M.; Toh, C.S. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry, 2012, 88, 15-21.
[http://dx.doi.org/10.1016/j.bioelechem.2012.04.006] [PMID: 22763420]
[427]
Peh, A.E.; Li, S.F. Dengue virus detection using impedance measured across nanoporous alumina membrane. Biosens. Bioelectron., 2013, 42, 391-396.
[http://dx.doi.org/10.1016/j.bios.2012.10.054] [PMID: 23220066]
[428]
Camara, A.R.; Gouvêa, P.M.; Dias, A.C.; Braga, A.M.; Dutra, R.F.; de Araujo, R.E.; Carvalho, I.C. Dengue immunoassay with an LSPR fiber optic sensor. Opt. Express, 2013, 21(22), 27023-27031.
[http://dx.doi.org/10.1364/OE.21.027023] [PMID: 24216926]
[429]
Jahanshahi, P.; Zalnezhad, E.; Sekaran, S.D.; Adikan, F.R. Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor. Sci. Rep., 2014, 4, 3851.
[http://dx.doi.org/10.1038/srep03851] [PMID: 24458089]
[430]
Kumbhat, S.; Sharma, K.; Gehlot, R.; Solanki, A.; Joshi, V. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection. J. Pharm. Biomed. Anal., 2010, 52(2), 255-259.
[http://dx.doi.org/10.1016/j.jpba.2010.01.001] [PMID: 20097030]
[431]
Chen, S.H.; Chuang, Y.C.; Lu, Y.C.; Lin, H.C.; Yang, Y.L.; Lin, C.S. A method of layer-by-layer gold nanoparticle hybridization in a quartz crystal microbalance DNA sensing system used to detect dengue virus. Nanotechnology, 2009, 20(21) 215501.
[http://dx.doi.org/10.1088/0957-4484/20/21/215501] [PMID: 19423930]
[432]
Zhang, G.J.; Zhang, L.; Huang, M.J.; Luo, Z.H.H.; Tay, G.K.I.; Lim, E.J.A.; Kang, T.G.; Chen, Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem., 2010, 146(1), 138-144.
[http://dx.doi.org/10.1016/j.snb.2010.02.021]
[433]
Nuzaihan, M N, M.; Hashim, U.; Md Arshad, M.K.; Kasjoo, S.R.; Rahman, S.F.; Ruslinda, A.R.; Fathil, M.F.; Adzhri, R.; Shahimin, M. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens. Bioelectron., 2016, 83, 106-114.
[http://dx.doi.org/10.1016/j.bios.2016.04.033] [PMID: 27107147]
[434]
Huang, M.J.; Xie, H.; Wan, Q.; Zhang, L.; Ning, Y.; Zhang, G.J. Serotype-specific identification of Dengue virus by silicon nanowire array biosensor. J. Nanosci. Nanotechnol., 2013, 13(6), 3810-3817.
[http://dx.doi.org/10.1166/jnn.2013.7220] [PMID: 23862412]
[435]
Baeumner, A.J.; Schlesinger, N.A.; Slutzki, N.S.; Romano, J.; Lee, E.M.; Montagna, R.A. Biosensor for dengue virus detection: sensitive, rapid, and serotype specific. Anal. Chem., 2002, 74(6), 1442-1448.
[http://dx.doi.org/10.1021/ac015675e] [PMID: 11922316]
[436]
Zaytseva, N.V.; Montagna, R.A.; Baeumner, A.J. Microfluidic biosensor for the serotype-specific detection of dengue virus RNA. Anal. Chem., 2005, 77(23), 7520-7527.
[http://dx.doi.org/10.1021/ac0509206] [PMID: 16316157]
[437]
Navakul, K.; Warakulwit, C.; Yenchitsomanus, P.T.; Panya, A.; Lieberzeit, P.A.; Sangma, C. A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomedicine (Lond.), 2017, 13(2), 549-557.
[http://dx.doi.org/10.1016/j.nano.2016.08.009] [PMID: 27558351]
[438]
Ariffin, E.Y.; Tan, L.L.; Abd Karim, N.H.; Yook Heng, L. Optical DNA Biosensor Based on Square-Planar Ethyl Piperidine Substituted Nickel(II) Salphen Complex for Dengue Virus Detection. Sensors (Basel), 2018, 18(4) E1173.
[http://dx.doi.org/10.3390/s18041173] [PMID: 29649118]
[439]
Chu, H.W.; Lai, C.S.; Ko, J.Y.; Harroun, S.G.; Chuang, C.I.; Wang, R.Y.L.; Unnikrishnan, B.; Huang, C.C. Nanoparticle-Based LDI-MS Immunoassay for the Multiple Diagnosis of Viral Infections. ACS Sens., 2019, 4(6), 1543-1551.
[http://dx.doi.org/10.1021/acssensors.9b00054] [PMID: 31066548]
[440]
Adegoke, O.; Morita, M.; Kato, T.; Ito, M.; Suzuki, T.; Park, E.Y. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays. Biosens. Bioelectron., 2017, 94, 513-522.
[http://dx.doi.org/10.1016/j.bios.2017.03.046] [PMID: 28343104]
[441]
Draz, M.S.; Lakshminaraasimulu, N.K.; Krishnakumar, S.; Battalapalli, D.; Vasan, A.; Kanakasabapathy, M.K.; Sreeram, A.; Kallakuri, S.; Thirumalaraju, P.; Li, Y.; Hua, S.; Yu, X.G.; Kuritzkes, D.R.; Shafiee, H. Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellphone. ACS Nano, 2018, 12(6), 5709-5718.
[http://dx.doi.org/10.1021/acsnano.8b01515] [PMID: 29767504]
[442]
Jiang, Q.; Chandar, Y.J.; Cao, S.; Kharasch, E.D.; Singamaneni, S.; Morrissey, J.J. Rapid, point-of-care, paper-based plasmonic biosensor for zika virus diagnosis. Adv. Biosys., 2017, 1 1700096.
[http://dx.doi.org/10.1002/adbi.201700096]
[443]
Sánchez-Purrà, M.; Carré-Camps, M.; de Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Surface-Enhanced Raman Spectroscopy-Based Sandwich Immunoassays for Multiplexed Detection of Zika and Dengue Viral Biomarkers. ACS Infect. Dis., 2017, 3(10), 767-776.
[http://dx.doi.org/10.1021/acsinfecdis.7b00110] [PMID: 28875696]
[444]
Zhang, B.; Pinsky, B.A.; Ananta, J.S.; Zhao, S.; Arulkumar, S.; Wan, H.; Sahoo, M.K.; Abeynayake, J.; Waggoner, J.J.; Hopes, C.; Tang, M.; Dai, H. Diagnosis of Zika virus infection on a nanotechnology platform. Nat. Med., 2017, 23(5), 548-550.
[http://dx.doi.org/10.1038/nm.4302] [PMID: 28263312]
[445]
Shelby, T.; Banerjee, T.; Zegar, I.; Santra, S. Highly Sensitive, Engineered Magnetic Nanosensors to Investigate the Ambiguous Activity of Zika Virus and Binding Receptors. Sci. Rep., 2017, 7(1), 7377.
[http://dx.doi.org/10.1038/s41598-017-07620-y] [PMID: 28785095]
[446]
Afsahi, S.; Lerner, M.B.; Goldstein, J.M.; Lee, J.; Tang, X.; Bagarozzi, D.A., Jr; Pan, D.; Locascio, L.; Walker, A.; Barron, F.; Goldsmith, B.R. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron., 2018, 100, 85-88.
[http://dx.doi.org/10.1016/j.bios.2017.08.051] [PMID: 28865242]
[447]
Kaushik, A.; Yndart, A.; Kumar, S.; Jayant, R.D.; Vashist, A.; Brown, A.N.; Li, C.Z.; Nair, M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci. Rep., 2018, 8(1), 9700.
[http://dx.doi.org/10.1038/s41598-018-28035-3] [PMID: 29946074]
[448]
Yanik, A.A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T.W.; Connor, J.H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett., 2010, 10(12), 4962-4969.
[http://dx.doi.org/10.1021/nl103025u] [PMID: 21053965]
[449]
Ricks, K.M.; Shoemaker, C.J.; Dupuy, L.C., Jr; Flusin, O.; Voorhees, M.A.; Fulmer, A.N.; Six, C.M.; Badger, C.V.; Schmaljohn, C.S.; Schoepp, R.J. Virus-like particles and magnetic microspheres provide a flexible and sustainable multiplexed alphavirus immunodiagnostic platform. bioRxiv, 2018, 335315
[http://dx.doi.org/10.1101/335315]
[450]
Draz, M.S.; Moazeni, M.; Venkataramani, M.; Lakshminarayanan, H.; Saygili, E.; Lakshminaraasimulu, N.K.; Kochehbyoki, K.M.; Kanakasabapathy, M.K.; Shabahang, S.; Vasan, A.; Bijarchi, M.A.; Memic, A.; Shafiee, H. Hybrid Paper-Plastic Microchip for Flexible and High-Performance Point-of-Care Diagnostics. Adv. Funct. Mater., 2018, 28(26) 1707161.
[http://dx.doi.org/10.1002/adfm.201707161] [PMID: 30416415]
[451]
Bhatta, D.; Villalba, M.M.; Johnson, C.L.; Emmerson, G.D.; Ferris, N.P.; King, D.P.; Lowe, C.R. Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Procedia Chem., 2012, 6, 2-10.
[http://dx.doi.org/10.1016/j.proche.2012.10.124]
[452]
Zvirbliene, A.; Kucinskaite-Kodze, I.; Razanskiene, A.; Petraityte-Burneikiene, R.; Klempa, B.; Ulrich, R.G.; Gedvilaite, A. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody. Viruses, 2014, 6(2), 640-660.
[http://dx.doi.org/10.3390/v6020640] [PMID: 24513568]
[453]
Vetcha, S.; Wilkins, E.; Yates, T.; Hjelle, B. Rapid and sensitive handheld biosensor for detection of hantavirus antibodies in wild mouse blood samples under field conditions. Talanta, 2002, 58(3), 517-528.
[http://dx.doi.org/10.1016/S0039-9140(02)00307-7] [PMID: 18968779]
[454]
Liu, H.H.; Cao, X.; Yang, Y.; Liu, M.G.; Wang, Y.F. Array-based nano-amplification technique was applied in detection of hepatitis E virus. J. Biochem. Mol. Biol., 2006, 39(3), 247-252.
[PMID: 16756752]
[455]
Petkovic, K.; Metcalfe, G.; Chen, H.; Gao, Y.; Best, M.; Lester, D.; Zhu, Y. Rapid detection of Hendra virus antibodies: an integrated device with nanoparticle assay and chaotic micromixing. Lab Chip, 2016, 17(1), 169-177.
[http://dx.doi.org/10.1039/C6LC01263A] [PMID: 27921111]
[456]
Lisi, F.; Falcaro, P.; Buso, D.; Hill, A.J.; Barr, J.A.; Crameri, G.; Nguyen, T.L.; Wang, L.F.; Mulvaney, P. Rapid detection of hendra virus using magnetic particles and quantum dots. Adv. Healthc. Mater., 2012, 1(5), 631-634.
[http://dx.doi.org/10.1002/adhm.201200072] [PMID: 23184798]
[457]
Gao, Y.; Pallister, J.; Lapierre, F.; Crameri, G.; Wang, L.F.; Zhu, Y. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. J. Virol. Methods, 2015, 222, 170-177.
[http://dx.doi.org/10.1016/j.jviromet.2015.05.008] [PMID: 26141730]
[458]
Luo, B.; Xu, Y.; Wu, S.; Zhao, M.; Jiang, P.; Shi, S.; Zhang, Z.; Wang, Y.; Wang, L.; Liu, Y. A novel immunosensor based on excessively tilted fiber grating coated with gold nanospheres improves the detection limit of Newcastle disease virus. Biosens. Bioelectron., 2018, 100, 169-175.
[http://dx.doi.org/10.1016/j.bios.2017.08.064] [PMID: 28888179]
[459]
Lin, C.H.; Hung, C.H.; Hsiao, C.Y.; Lin, H.C.; Ko, F.H.; Yang, Y.S. Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosens. Bioelectron., 2009, 24(10), 3019-3024.
[http://dx.doi.org/10.1016/j.bios.2009.03.014] [PMID: 19362813]
[460]
Oh, S.; Kim, J.; Tran, V.T.; Lee, D.K.; Ahmed, S.R.; Hong, J.C.; Lee, J.; Park, E.Y.; Lee, J. Magnetic Nanozyme-Linked Immunosorbent Assay for Ultrasensitive Influenza A Virus Detection. ACS Appl. Mater. Interfaces, 2018, 10(15), 12534-12543.
[http://dx.doi.org/10.1021/acsami.8b02735] [PMID: 29595253]
[461]
Sepunaru, L.; Plowman, B.J.; Sokolov, S.V.; Young, N.P.; Compton, R.G. Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem. Sci. (Camb.), 2016, 7(6), 3892-3899.
[http://dx.doi.org/10.1039/C6SC00412A] [PMID: 30155033]
[462]
Shen, F.; Wang, J.; Xu, Z.; Wu, Y.; Chen, Q.; Li, X.; Jie, X.; Li, L.; Yao, M.; Guo, X.; Zhu, T. Rapid flu diagnosis using silicon nanowire sensor. Nano Lett., 2012, 12(7), 3722-3730.
[http://dx.doi.org/10.1021/nl301516z] [PMID: 22731392]
[463]
Nidzworski, D.; Siuzdak, K.; Niedziałkowski, P.; Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Weiher, P.; Sawczak, M.; Wnuk, E.; Goddard, W.A., III; Jaramillo-Botero, A.; Ossowski, T. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep., 2017, 7(1), 15707.
[http://dx.doi.org/10.1038/s41598-017-15806-7] [PMID: 29146948]
[464]
Gholami, H.; Emami, T.; Golchinfar, F.; Madani, R.; Gheshlaghchaei, S.I. Development of a Nano-ELISA system for the rapid and sensitive detection of H9N2 avian influenza. Arch. Razi Inst., 2016, 71(1), 29-34.
[465]
Ye, W.W.; Tsang, M.K.; Liu, X.; Yang, M.; Hao, J. Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small, 2014, 10(12), 2390-2397.
[http://dx.doi.org/10.1002/smll.201303766] [PMID: 24599581]
[466]
Wiriyachaiporn, N.; Sirikett, H.; Dharakul, T. In: Rapid Influenza a Antigen Detection Using Carbon Nanostrings As Label for Lateral Flow Immunochromatographic Assay; Proceedings of the IEEE 13th International Conference on Nanotechnology (IEEE-NANO), Beijing: China, August 5-8. , 2013.
[467]
Ahmed, S.R.; Neethirajan, S. Chiral MoS2 quantum dots: dual-mode detection approaches for avian influenza viruses. Glob Chall, 2018, 2(4) 1700071.
[http://dx.doi.org/10.1002/gch2.201700071] [PMID: 31565328]
[468]
Arima, A.; Tsutsui, M.; Harlisa, I.H.; Yoshida, T.; Tanaka, M.; Yokota, K.; Tonomura, W.; Taniguchi, M.; Okochi, M.; Washio, T.; Kawai, T. Selective detections of single-viruses using solid-state nanopores. Sci. Rep., 2018, 8(1), 16305.
[http://dx.doi.org/10.1038/s41598-018-34665-4] [PMID: 30390013]
[469]
Zheng, L.; Wei, J.; Lv, X.; Bi, Y.; Wu, P.; Zhang, Z.; Wang, P.; Liu, R.; Jiang, J.; Cong, H.; Liang, J.; Chen, W.; Cao, H.; Liu, W.; Gao, G.F.; Du, Y.; Jiang, X.; Li, X. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens. Bioelectron., 2017, 91, 46-52.
[http://dx.doi.org/10.1016/j.bios.2016.12.037] [PMID: 27987410]
[470]
Kinnamon, D.S.; Krishnan, S.; Brosler, S.; Sun, E.; Prasad, S. Screen Printed Graphene Oxide Textile Biosensor for Applications in Inexpensive and Wearable Point-of-Exposure Detection of Influenza for At-Risk Populations. J. Electrochem. Soc., 2018, 165(8), B3084-B3090.
[http://dx.doi.org/10.1149/2.0131808jes]
[471]
Kim, H.U.; Min, J.; Park, G.; Shin, D.; Sung, G.; Kim, T.; Lee, M.H. Electrochemical Detection of Airborne Influenza Virus Using Air Sampling System. Aerosol Air Qual. Res., 2018, 18, 2721-2727.
[http://dx.doi.org/10.4209/aaqr.2018.06.0221]
[472]
Critchley, P.; Dimmock, N.J. Binding of an influenza A virus to a neomembrane measured by surface plasmon resonance. Bioorg. Med. Chem., 2004, 12(10), 2773-2780.
[http://dx.doi.org/10.1016/j.bmc.2004.02.042] [PMID: 15110858]
[473]
Misono, T.S.; Kumar, P.K.R. Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal. Biochem., 2005, 342(2), 312-317.
[http://dx.doi.org/10.1016/j.ab.2005.04.013] [PMID: 15913532]
[474]
Gopinath, S.C.B.; Awazu, K.; Fujimaki, M.; Shimizu, K.; Shima, T. Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors. PLoS One, 2013, 8(7) e69121.
[http://dx.doi.org/10.1371/journal.pone.0069121] [PMID: 23874887]
[475]
Xu, L.; Wang, R.; Kelso, L.C.; Ying, Y.; Li, Y. A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1. Sens. Actuators B Chem., 2016, 234, 98-108.
[http://dx.doi.org/10.1016/j.snb.2016.04.156]
[476]
Adegoke, O.; Kato, T.; Park, E.Y. An ultrasensitive alloyed near-infrared quinternary quantum dot-molecular beacon nanodiagnostic bioprobe for influenza virus RNA. Biosens. Bioelectron., 2016, 80, 483-490.
[http://dx.doi.org/10.1016/j.bios.2016.02.020] [PMID: 26890823]
[477]
Sivashanmugan, K.; Liao, J.D.; You, J.W.; Wu, C.L. Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection. Sens. Actuators B Chem., 2013, 181, 361-367.
[http://dx.doi.org/10.1016/j.snb.2013.01.035]
[478]
Han, J.H.; Lee, D.; Chew, C.H.C.; Kim, T.; Pak, J.J. A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens. Actuators B Chem., 2016, 228, 36-42.
[http://dx.doi.org/10.1016/j.snb.2015.07.068]
[479]
Tseng, Y.T.; Wang, C.H.; Chang, C.P.; Lee, G.B. Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay. Biosens. Bioelectron., 2016, 82, 105-111.
[http://dx.doi.org/10.1016/j.bios.2016.03.073] [PMID: 27054814]
[480]
Suda, Y.; Nagatomo, M.; Yokoyama, R.; Ohzono, M.; Aoyama, K.; Zhang, X.; Nakajima, K.; Murakami, N.; Shinoda, T.; Hirota, T.; Yanagihara, S.; Nishi, J.I. Highly sensitive detection of influenza virus in saliva by real-time PCR method using sugar chain-immobilized gold nanoparticles; application to clinical studies. Biotechnol. Rep. (Amst.), 2015, 7, 64-71.
[http://dx.doi.org/10.1016/j.btre.2015.05.004] [PMID: 28626716]
[481]
Hall, P.R.; Hjelle, B.; Brown, D.C.; Ye, C.; Bondu-Hawkins, V.; Kilpatrick, K.A.; Larson, R.S. Multivalent presentation of antihantavirus peptides on nanoparticles enhances infection blockade. Antimicrob. Agents Chemother., 2008, 52(6), 2079-2088.
[http://dx.doi.org/10.1128/AAC.01415-07] [PMID: 18391034]
[482]
Bimbo, L.M.; Denisova, O.V.; Mäkilä, E.; Kaasalainen, M.; De Brabander, J.K.; Hirvonen, J.; Salonen, J.; Kakkola, L.; Kainov, D.; Santos, H.A. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS Nano, 2013, 7(8), 6884-6893.
[http://dx.doi.org/10.1021/nn402062f] [PMID: 23889734]
[483]
Wiley, J.A.; Richert, L.E.; Swain, S.D.; Harmsen, A.; Barnard, D.L.; Randall, T.D.; Jutila, M.; Douglas, T.; Broomell, C.; Young, M.; Harmsen, A. Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses. PLoS One, 2009, 4(9) e7142.
[http://dx.doi.org/10.1371/journal.pone.0007142] [PMID: 19774076]
[484]
Narayanan, A.; Kehn-Hall, K.; Senina, S.; Lundberg, L.; Van Duyne, R.; Guendel, I.; Das, R.; Baer, A.; Bethel, L.; Turell, M.; Hartman, A.L.; Das, B.; Bailey, C.; Kashanchi, F. Curcumin inhibits Rift Valley fever virus replication in human cells. J. Biol. Chem., 2012, 287(40), 33198-33214.
[http://dx.doi.org/10.1074/jbc.M112.356535] [PMID: 22847000]
[485]
Paul, A.M.; Shi, Y.; Acharya, D.; Douglas, J.R.; Cooley, A.; Anderson, J.F.; Huang, F.; Bai, F. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. J. Gen. Virol., 2014, 95(Pt 8), 1712-1722.
[http://dx.doi.org/10.1099/vir.0.066084-0] [PMID: 24828333]
[486]
Williams, J.K. Evidence for the Inhibition of Dengue Virus Binding in the Presence of Silver Nanoparticles., Masters Thesis, Air Force Institute of Technology: Kadun. 2015.
[487]
Zivcec, M.; Guerrero, L.I.W.; Albariño, C.G.; Bergeron, É.; Nichol, S.T.; Spiropoulou, C.F. Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antiviral Res., 2017, 146, 112-120.
[http://dx.doi.org/10.1016/j.antiviral.2017.08.014] [PMID: 28842265]
[488]
Rafiei, S.; Rezatofighi, S.E.; Ardakani, M.R.; Madadgar, O. In vitro anti-foot-and-mouth disease virus activity of magnesium oxide nanoparticles. IET Nanobiotechnol., 2015, 9(5), 247-251.
[http://dx.doi.org/10.1049/iet-nbt.2014.0028] [PMID: 26435276]
[489]
Rafiei, S.; Rezatofighi, S.E.; Ardakani, M.R.; Madadgar, O. Restrictive Influence of Silver Nanoparticles on the Life Cycle of the Foot-and-Mouth Disease Virus. Nanosci. Nanotechnol. Asia, 2018, 8(2), 248-254.
[http://dx.doi.org/10.2174/2210681207666170703155244]
[490]
Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation. Nanoscale Res. Lett., 2008, 3(4), 129-133.
[http://dx.doi.org/10.1007/s11671-008-9128-2]
[491]
Anders, C.B. A SERS and SEM-EDX Study of the Antiviral Mechanism of Creighton Silver Nanoparticles against Vaccinia Virus; Masters Thesis, Wright State University: Ohio, 2012. June.
[492]
Darlington, J.W., Jr; Hughes, J.; Constantinides, P.P.; Fang, M.; St. Onge, J.H. Virus-, Bacteria-, and fungi-interacting layered phyllosilicates and methods of use. U.S. Patent 20100272769A1, 2005 3August. https://patents.google.com/patent/US20100272769
[493]
Engel, R.; Rizzo, J.L.I.; Melkonian-Fincher, K. Antiviral compositions. U.S. Patent 20150196032A1, 2007..
[494]
Tavakoli, A.; Ataei-Pirkooh, A.; Mm Sadeghi, G.; Bokharaei-Salim, F.; Sahrapour, P.; Kiani, S.J.; Moghoofei, M.; Farahmand, M.; Javanmard, D.; Monavari, S.H. Polyethylene glycol-coated zinc oxide nanoparticle: an efficient nanoweapon to fight against herpes simplex virus type 1. Nanomedicine (Lond.), 2018, 13(21), 2675-2690.
[http://dx.doi.org/10.2217/nnm-2018-0089] [PMID: 30346253]
[495]
Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One, 2014, 9(8) e104113.
[http://dx.doi.org/10.1371/journal.pone.0104113] [PMID: 25117537]
[496]
Sattler, C.; Moritz, F.; Chen, S.; Steer, B.; Kutschke, D.; Irmler, M.; Beckers, J.; Eickelberg, O.; Schmitt-Kopplin, P.; Adler, H.; Stoeger, T. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part. Fibre Toxicol., 2017, 14(1), 2.
[http://dx.doi.org/10.1186/s12989-016-0181-1] [PMID: 28069010]
[497]
Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett., 2013, 8(1), 93.
[http://dx.doi.org/10.1186/1556-276X-8-93] [PMID: 23421446]
[498]
Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine, 2013, 8, 4303-4314.
[PMID: 24235828]
[499]
Manuja, A.; Manuja, B.K.; Kaushik, J.; Singha, H.; Singh, R.K. Immunotherapeutic potential of CpG oligodeoxynucleotides in veterinary species. Immunopharmacol. Immunotoxicol., 2013, 35(5), 535-544.
[http://dx.doi.org/10.3109/08923973.2013.828743] [PMID: 23981003]
[500]
Lin, Z.; Li, Y.; Gong, G.; Xia, Y.; Wang, C.; Chen, Y.; Hua, L.; Zhong, J.; Tang, Y.; Liu, X.; Zhu, B. Restriction of H1N1 influenza virus infection by selenium nanoparticles loaded with ribavirin via resisting caspase-3 apoptotic pathway. Int. J. Nanomedicine, 2018, 13, 5787-5797.
[http://dx.doi.org/10.2147/IJN.S177658] [PMID: 30310281]
[501]
Papp, I.; Sieben, C.; Ludwig, K.; Roskamp, M.; Böttcher, C.; Schlecht, S.; Herrmann, A.; Haag, R. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small, 2010, 6(24), 2900-2906.
[http://dx.doi.org/10.1002/smll.201001349] [PMID: 21104827]
[502]
Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem., 2009, 20(8), 1497-1502.
[http://dx.doi.org/10.1021/bc900215b] [PMID: 21141805]
[503]
Thi, E.P.; Mire, C.E.; Ursic-Bedoya, R.; Geisbert, J.B.; Lee, A.C.H.; Agans, K.N.; Robbins, M.; Deer, D.J.; Fenton, K.A.; MacLachlan, I.; Geisbert, T.W. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Sci. Transl. Med., 2014, 6(250) 250ra116.
[http://dx.doi.org/10.1126/scitranslmed.3009706] [PMID: 25143366]