Effect of Silk Sericin Content on the Electrospun Silk Nanofibrous Membrane Property

Page: [67 - 73] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Silk sericin has a significant influence on the regenerated silk solution and silk-based materials property, while few reports were found to investigate this topic.

Aim: The aim is to discuss the effect of silk sericin content on the electrospun silk nanofibrous membrane.

Methods: Four degumming conditions (none degumming, boiling water degumming, 0.05 % Na2CO3 degumming, 0.5 % Na2CO3 degumming) were carried out for a systematic investigation in terms of (1) the silk sericin content after degumming; (2) the morphology of regenerated silk nanofibrous membrane was characterized by a Scanning Electron Microscope (SEM); and (3) structural properties of regenerated silk nanofibrous membrane by Fourier transform infrared (FTIR) spectroscopy, X-Ray Diffraction (XRD).

Result and Conclusion: The results show that 0.5 % Na2CO3 degumming results in poor spinnability. The solutions derived from none degumming and boiling water degumming present high viscosity, leading to a hard silk nanofiber fabrication process. The silk nanofiber from the 0.05 % Na2CO3 degumming shows an easier fabrication process and better nanofiber morphology. These results will benefit the silk-based materials preparation, biomedical and separation application.

Keywords: Sericin, silk, nanofiber, water treatment, separation, biomedical.

Graphical Abstract

[1]
Ling, S.; Kaplan, D.L.; Buehler, M.J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater., 2018, 3(4), 18016.
[http://dx.doi.org/10.1038/natrevmats.2018.16]
[2]
Lintz, E.S.; Neinhuis, C.; Scheibel, T. Altering silk film surface properties through lotus‐like mechanisms. Macromol. Mater. Eng., 2018, 303(4)1700637
[http://dx.doi.org/10.1002/mame.201700637]
[3]
Kumari, S.; Bargel, H.; Mette, U. Anby, Lafargue, D.; Scheibel, T.; Recombinant spider silk hydrogels for sustained release of biologicals. ACS Biomater. Sci. Eng., 2018, 4(5), 1750-1759.
[4]
Qi, W.; Jian, M.; Wang, C.; Zhang, Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater., 2017, 27(9)1605657
[http://dx.doi.org/10.1002/adfm.201605657]
[5]
Wang, L.; Lu, G.; Qiang, L.; David, L.K. Controlling cell behavior on silk nanofiber hydrogels with tunable anisotropic structures. ACS Biomater. Sci. Eng., 2018, 4(3), 933-941.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00969]
[6]
Chen, C.H.; Chen, S.H.; Kuo, C.Y.; Li, M.L.; Chen, J.P. Response of dermal fibroblasts to biochemical and physical cues in aligned polycaprolactone/silk fibroin nanofiber scaffolds for application in tendon tissue engineering. Nanomaterials (Basel), 2017, 7(8), 219.
[http://dx.doi.org/10.3390/nano7080219 ]
[7]
Liu, J.; Ding, Z.; Lu, G.; Wang, J.; Wang, L.; Lu, Q. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties. Macromol. Biosci., 2019, 19(12)e1900326
[http://dx.doi.org/10.1002/mabi.201900326 ]
[8]
Zhu, Y.; Xie, W.; Zhang, F.; Xing, T.; Jin, J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl. Mater. Interfaces, 2017, 9(11), 9603-9613.
[http://dx.doi.org/10.1021/acsami.6b15682 ]
[9]
Zhu, X.; Lin, H.; Yun, Z.; Tian, T.L.; Yan, Q.; Fu, L. Robust superhydrophilic polylactide (PLA) membrane with TiO2 nano-particles inlayed surface for oil/water separation. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(14), 6538-6545.
[http://dx.doi.org/10.1039/C6TA11156D]
[10]
Goetz, L.A.; Jalvo, B.; Rosal, R.; Mathew, A.P. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci., 2016, 510, 238-248.
[http://dx.doi.org/10.1016/j.memsci.2016.02.069]
[11]
Liu, Z.; Qin, D.; Zhao, J.; Feng, Q.; Li, Z.; Bai, H.; Sun, D.D. Efficient oil/water separation membrane derived from super-flexible and superhydrophilic core-shell organic/inorganic nanofibrous architectures. Polymers (Basel), 2019, 11(6), 974.
[http://dx.doi.org/10.3390/polym11060974 ]
[12]
Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev., 2019, 119(8), 5298-5415.
[http://dx.doi.org/10.1021/acs.chemrev.8b00593 ]
[13]
Liu, Z.; Ju, K.; Wang, Z.; Li, W.; Ke, H.; He, J. Electrospun jets number and nanofiber morphology effected by voltage value: numerical simulation and experimental verification. Nanoscale Res. Lett., 2019, 14(1), 310.
[http://dx.doi.org/10.1186/s11671-019-3148-y ]
[14]
Tian, D.; Zhou, C.J.; He, J.H. Strength of bubble walls and the Hall-Petch effect in bubble-spinning. Text. Res. J., 2019, 89(7), 1340-1344.
[http://dx.doi.org/10.1177/0040517518770679]
[15]
Zhao, L.; Liu, P.; He, J.H. Sudden solvent evaporation in bubble electrospinning for fabrication of unsmooth nanofibers. Therm. Sci., 2017, 21(4), 1827-1832.
[http://dx.doi.org/10.2298/TSCI160725075Z]
[16]
Liu, F.; Li, S.; Fang, Y.; Zheng, F.; Li, J.; He, J. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning. Appl. Surf. Sci., 2017, 421, 61-67.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.204]
[17]
Liu, Z.; Cao, R.; Wei, A.; Zhao, J.; He, J. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration. Appl. Nanosci., 2019, 1-10.
[http://dx.doi.org/10.1007/s13204-019-01014-4]
[18]
Lan, T.; Shao, Z.Q.; Gu, M.J.; Zhou, Z.W.; Wang, Y.L.; Wang, W.J.; Wang, W.J.; Wang, J.Q. Electrospun nanofibrous cellulose diacetate nitrate membrane for protein separation. J. Membr. Sci., 2015, 489, 204-211.
[http://dx.doi.org/10.1016/j.memsci.2015.04.009]
[19]
Gao, A.; Xie, K.; Song, X.; Zhang, K.; Hou, A. Removal of the heavy metal ions from aqueous solution using modified natural biomaterial membrane based on silk fibroin. Ecol. Eng., 2017, 99, 343-348.
[http://dx.doi.org/10.1016/j.ecoleng.2016.11.008]
[20]
Li, Z.; Tan, C.M.; Tio, W.; Ang, J.; Sun, D.D. Manta ray gill inspired radially distributed nanofibrous membrane for efficient and continuous oil-water separation. Environ. Sci. Nano, 2018, 5(6), 1466-1472.
[http://dx.doi.org/10.1039/C8EN00258D]
[21]
Yu, D.N.; Tian, D.; He, J.H. Snail-based nanofibers. Mater. Lett., 2018, 220, 5-7.
[http://dx.doi.org/10.1016/j.matlet.2018.02.076]
[22]
Zhou, C.J.; Li, Y.; Yao, S.W.; He, J.H. Silkworm-based silk fibers by electrospinning., Results Phys., 2019.
[http://dx.doi.org/10.1016/j.rinp.2019.102646]
[23]
Gore, P.M.; Naebe, M.; Wang, X.; Kandasubramanian, B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J., 2019.
[http://dx.doi.org/10.1016/j.cej.2019.05.163]
[24]
Dou, H.; Zuo, B. Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J. Textil. Inst., 2015, 106(3), 311-319.
[http://dx.doi.org/10.1080/00405000.2014.919065]
[25]
Zhang, F.; Lu, Q.; Ming, J.; Dou, H.; Liu, Z.; Zuo, B.; Qin, M.; Li, F.; Kaplan, D.; Zhang, X. Silk dissolution and regeneration at the nanofibril scale. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(24), 3879-3885.
[http://dx.doi.org/10.1039/c3tb21582b]
[26]
Zhang, F.; You, X.; Dou, H.; Liu, Z.; Zuo, B.; Zhang, X. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Appl. Mater. Interfaces, 2015, 7(5), 3352-3361.
[http://dx.doi.org/10.1021/am508319h ]
[27]
Hang, Y.; Zhang, Y.; Jin, Y.; Shao, H.; Hu, X. Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. Int. J. Biol. Macromol., 2012, 51(5), 980-986.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.010 ]
[28]
Ki, C.S.; Kim, J.W.; Oh, H.J.; Lee, K.H.; Park, Y.H. The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Int. J. Biol. Macromol., 2007, 41(3), 346-353.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.05.005 ]
[29]
Liu, Z.; Wan, Y.; Dou, H.; He, J.H. Effect of Na2CO3 degumming concentration on LiBr-FORMIC ACID-silk fibroin solution properties. Therm. Sci., 2016, 20(3), 985-991.
[http://dx.doi.org/10.2298/TSCI1603985L]
[30]
Jing, Z.; Zhao, Z.; Hu, R.; Tao, F.; Liu, Y.; Ming, L. Magnetic silk fabrics through swelling-fixing method with Fe3O4 nanoparticles. Surf. Coat. Tech., 2018, 342, 23-28.
[31]
Nalvuran, H.; Elçin, A.E.; Elçin, Y.M. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. Int. J. Biol. Macromol., 2018, 114, 77-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.072 ]
[32]
Terada, D.; Yokoyama, Y.; Hattori, S.; Kobayashi, H.; Tamada, Y. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation. Mater. Sci. Eng. C, 2016, 58, 119-126.
[http://dx.doi.org/10.1016/j.msec.2015.07.041 ]
[33]
Zhou, Z.; Zhang, S.; Cao, Y.; Marelli, B.; Xia, X.; Tao, T.H. Engineering the future of silk materials through advanced manufacturing. Adv. Mater., 2018, 30(33)e1706983
[http://dx.doi.org/10.1002/adma.201706983 ]
[34]
Hu, Y.; Yu, J.; Liu, L.; Fan, Y. Preparation of natural amphoteric silk nanofibers by acid hydrolysis. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(9), 1450-1459.
[http://dx.doi.org/10.1039/C8TB03005G]
[35]
Pang, L.; Ming, J.; Pan, F.; Ning, X. Fabrication of Silk Fibroin Fluorescent Nanofibers via Electrospinning. Polymers (Basel), 2019, 11(6), 986.
[http://dx.doi.org/10.3390/polym11060986 ]
[36]
Zhang, C.; Zhang, Y.; Shao, H.; Hu, X. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solutions. ACS Appl. Mater. Interfaces, 2016, 8(5), 3349-3358.
[http://dx.doi.org/10.1021/acsami.5b11245 ]
[37]
Kalani, M.M.; Nourmohammadi, J.; Negahdari, B. Osteogenic potential of Rosuvastatin immobilized on silk fibroin nanofibers using argon plasma treatment. Biomed. Mater., 2018, 14(2)025002
[http://dx.doi.org/10.1088/1748-605X/aaec26 ]
[38]
Wang, S.D.; Ma, Q.; Wang, K.; Chen, H.W. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide. ACS Omega, 2018, 3(1), 406-413.
[http://dx.doi.org/10.1021/acsomega.7b01210]