Non-Enzymatic Protein Acetylation by 7-Acetoxy-4-Methylcoumarin: Implications in Protein Biochemistry

Page: [736 - 743] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The semi-synthetic acetoxycoumarins are known to acetylate proteins using novel enzymatic Calreticulin Transacetylase (CRTAase) system in cells. However, the nonenzymatic protein acetylation by polyphenolic acetates is not known.

Objective: To investigate the ability of 7-acetoxy-4-methyl coumarin (7-AMC) to acetylate proteins non-enzymatically in the test tube.

Methods: We incubated 7-AMC with BSA and analyzed the protein acetylation using Western blot technique. Further, BSA induced biophysical changes in the spectroscopic properties of 7-AMC was analyzed using Fluorescence spectroscopy.

Results: Using pan anti-acetyl lysine antibody, herein we demonstrate that 7-AMC acetylates Bovine Serum Albumin (BSA) in time and concentration dependent manner in the absence of any enzyme. 7-AMC is a relatively less fluorescent molecule compared to the parental compound, 7- hydroxy-4-methylcoumarin (7-HMC), however the fluorescence of 7-AMC increased by two fold on incubation with BSA, depending on the time of incubation and concentration of BSA. Analysis of the reaction mixture of 7-AMC and BSA after filtration revealed that the increased fluorescence is associated with the compound of lower molecular weight in the filtrate and not residual BSA, suggesting that the less fluorescent 7-AMC undergoes self-hydrolysis in the presence of protein to give highly fluorescent parental molecule 7-HMC and acetate ion in polar solvent (phosphate buffered saline, PBS). The protein augmented conversion of 7-AMC to 7-HMC was found to be linearly related to the protein concentration.

Conclusion: Thus protein acetylation induced by 7-AMC could also be non-enzymatic in nature and this molecule can be exploited for quantification of proteins.

Keywords: Protein acetylation, 7-AMC, polyphenolic acetates, coumarins, BSA, fluorescence.

Graphical Abstract

[1]
Pérez-Cruz, F.; Villamena, F.A.; Zapata-Torres, G.; Das, A.; Headley, C.A.; Quezada, E.; Lopez-Alarcon, C.; Olea-Azar, C. Selected hydroxycoumarins as antioxidants in cells: Physicochemical and reactive oxygen species scavenging studies. J. Phys. Org. Chem., 2013, 26, 773-783.
[http://dx.doi.org/10.1002/poc.3155]
[2]
Kanakis, C.D.; Tarantilis, P.A.; Polissiou, M.G.; Diamantoglou, S.; Tajmir-Riahi, H.A. DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. J. Biomol. Struct. Dyn., 2005, 22(6), 719-724.
[http://dx.doi.org/10.1080/07391102.2005.10507038] [PMID: 15842176]
[3]
Shahidi, F.; Wanasundara, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 1992, 32(1), 67-103.
[http://dx.doi.org/10.1080/10408399209527581] [PMID: 1290586]
[4]
Shahidi, F. Antioxidants: Extraction, identification, application and efficacy measurement. Electron. J. Environ. Agric. Food Chem., 2008, 7, 3325-3330.
[5]
Stanchev, S.; Jensen, F.; Hinkov, A.; Atanasov, V.; Genova-Kalou, P.; Argirova, R.; Manolov, I. Synthesis and inhibiting activity of some 4-hydroxycoumarin derivatives on HIV-1 protease. ISRN Pharm., 2011, 2011137637
[http://dx.doi.org/10.5402/2011/137637] [PMID: 22389842]
[6]
Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull., 2006, 29(11), 2226-2235.
[http://dx.doi.org/10.1248/bpb.29.2226] [PMID: 17077519]
[7]
Kamshad, M.; Jahanshah Talab, M.; Beigoli, S.; Sharifirad, A.; Chamani, J. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. J. Biomol. Struct. Dyn., 2019, 37(8), 2030-2040.
[http://dx.doi.org/10.1080/07391102.2018.1475258] [PMID: 29757090]
[8]
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[9]
Barfeh, Z.S.; Beigoli, S.; Marouzi, S.; Rad, A.S.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: Binary and ternary systems. J. Solution Chem., 2017, 46, 488-504.
[http://dx.doi.org/10.1007/s10953-017-0590-2]
[10]
Mokaberi, P.; Reyhani, V.; Tehranizadeh, Z.A.; Saberi, M.R.; Beigoli, S.; Samandara, F.; Chamani, J. New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: Binary and ternary approaches. New J. Chem., 2019, 43, 8132.
[http://dx.doi.org/10.1039/C9NJ01048C]
[11]
Sanei, H.; Asoodeh, A.; Hamedakbari-Tusi, S.; Chamani, J. Multi-spectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: Binary and ternary systems. J. Solution Chem., 2011, 40, 1905-1931.
[http://dx.doi.org/10.1007/s10953-011-9766-3]
[12]
Raj, H.G.; Parmar, V.S.; Jain, S.C.; Goel, S.; Singh, A.; Tyagi, Y.K.; Jha, H.N.; Olsen, C.E.; Wengel, J. Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part 4: Hyperbolic activation of rat liver microsomal NADPH-cytochrome C reductase by the novel acetylator 7,8-diacetoxy-4-methylcoumarin. Bioorg. Med. Chem., 1999, 7(2), 369-373.
[http://dx.doi.org/10.1016/S0968-0896(98)00228-4] [PMID: 10218830]
[13]
Raj, H.G.; Parmar, V.S.; Jain, S.C.; Kohli, E.; Ahmad, N.; Goel, S.; Tyagi, Y.K.; Sharma, S.K.; Wengel, J.; Olsen, C.E. Mechanism of biochemical action of substituted 4-methylbenzopyran-2-ones. Part 7: Assay and characterization of 7,8-diacetoxy-4-methylcoumarin: Protein transacetylase from rat liver microsomes based on the irreversible inhibition of cytosolic glutathione S-transferase. Bioorg. Med. Chem., 2000, 8(7), 1707-1712.
[http://dx.doi.org/10.1016/S0968-0896(00)00104-8] [PMID: 10976517]
[14]
Raj, H.G.; Singh, B.K.; Kohli, E.; Dwarkanath, B.S.; Jain, S.C.; Rastogi, R.C.; Kumar, A.; Adhikari, J.S.; Watterson, A.C.; Olsen, C.E.; Parmar, V.S. Acetoxy drug: Protein transacetylase: A novel enzyme-mediating protein acetylation by polyphenolicperacetates. Pure Appl. Chem., 2005, 77, 245-250.
[http://dx.doi.org/10.1351/pac200577010245]
[15]
Ponnan, P.; Kumar, A.; Singh, P.; Gupta, P.; Joshi, R.; Gaspari, M.; Saso, L.; Prasad, A.K.; Rastogi, R.C.; Parmar, V.S.; Raj, H.G. Comparison of protein acetyltransferase action of CRTAase with the prototypes of HAT. ScientificWorldJournal, 2014, 2014578956
[http://dx.doi.org/10.1155/2014/578956] [PMID: 24688408]
[16]
Singh, P.; Ponnan, P.; Krishnan, S.; Tyagi, T.K.; Priya, N.; Bansal, S.; Scumaci, D.; Gaspari, M.; Cuda, G.; Joshi, P.; Gambhir, J.K.; Saluja, D.; Prasad, A.K.; Saso, L.; Rastogi, R.C.; Parmar, V.S.; Raj, H.G. Protein acyltransferase function of purified calreticulin. Part 1: Characterization of propionylation of protein utilizing propoxycoumarin as the propionyl group donor. J. Biochem., 2010, 147(5), 625-632.
[http://dx.doi.org/10.1093/jb/mvq002] [PMID: 20071373]
[17]
Verma, A.; Bhatt, A.N.; Farooque, A.; Khanna, S.; Khaitan, D.; Arya, M.B.; Arya, A.; Dhawan, A.; Raj, H.G.; Saluja, D.; Prasad, A.K.; Parmar, V.S.; Dwarakanath, B.S. 7, 8-diacetoxy-4-methylcoumarin induced cell death in human tumor cells is influenced by calreticulin. Biochimie, 2011, 93(3), 497-505.
[http://dx.doi.org/10.1016/j.biochi.2010.10.023] [PMID: 21075165]
[18]
Verma, A.; Venkateswaran, K.; Farooque, A.; Bhatt, A.N.; Kalra, N.; Arya, A.; Dhawan, A.; Arya, M.B.; Raj, H.G.; Prasad, A.K.; Parmar, V.S.; Dwarakanath, B.S. Cytotoxic and radio-sensitizing effects of polyphenolic acetates in a human glioma cell line (BMG-1). Curr. Pharm. Des., 2014, 20(7), 1161-1169.
[http://dx.doi.org/10.2174/1381612820666140220112720] [PMID: 24552186]
[19]
Venkateswaran, K.; Verma, A.; Bhatt, A.N.; Agrawala, P.K.; Raj, H.G.; Malhotra, S.; Prasad, A.K.; Wever, O.D.; Bracke, M.E.; Saso, L.; Parmar, V.S.; Shrivastava, A.; Dwarakanath, B.S. Modifications of cell signalling and redox balance by targeting protein acetylation using natural and engineered molecules: Implications in cancer therapy. Curr. Top. Med. Chem., 2014, 14(22), 2495-2507.
[http://dx.doi.org/10.2174/1568026614666141203122005] [PMID: 25478886]
[20]
Joshi, R.; Rohil, V.; Arora, S.; Kumar, A.; Manral, S.; Goel, S.; Priya, N.; Singh, P.; Ponnan, P.; Chatterji, S.; Dwarakanath, B.S.; Saluja, D.; Rawat, D.S.; Prasad, A.K.; Saso, L.; Kohli, E.; DePass, A.L.; Bracke, M.E.; Parmar, V.S.; Raj, H.G. The competence of 7,8-diacetoxy-4-methylcoumarin and other polyphenolic acetates in mitigating the oxidative stress and their role in angiogenesis. Curr. Top. Med. Chem., 2015, 15(2), 179-186.
[http://dx.doi.org/10.2174/1568026615666141209162446] [PMID: 25547104]
[21]
Venkateswaran, K.; Shrivastava, A.; Agrawala, P.K.; Prasad, A.; Kalra, N.; Pandey, P.R.; Manda, K.; Raj, H.G.; Parmar, V.S.; Dwarakanath, B.S. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice. Sci. Rep., 2016, 6, 37305.
[http://dx.doi.org/10.1038/srep37305] [PMID: 27849061]
[22]
Raj, H.G.; Kohli, E.; Goswami, R.; Goel, S.; Rastogi, R.C.; Jain, S.C.; Wengel, J.; Olsen, C.E.; Parmar, V.S. Mechanism of biochemical action of substituted benzopyran-2-ones. Part 8: Acetoxycoumarin: Protein transacetylase specificity for aromatic nuclear acetoxy groups in proximity to the oxygen heteroatom. Bioorg. Med. Chem., 2001, 9(5), 1085-1089.
[http://dx.doi.org/10.1016/S0968-0896(00)00328-X] [PMID: 11377166]
[23]
Bhatt, A.N.; Khan, M.Y.; Bhakuni, V. The C-terminal domain of dimeric serine hydroxymethyltransferase plays a key role in stabilization of the quaternary structure and cooperative unfolding of protein: Domain swapping studies with enzymes having high sequence identity. Protein Sci., 2004, 13(8), 2184-2195.
[http://dx.doi.org/10.1110/ps.04769004] [PMID: 15273312]
[24]
Chamani, J. Energetic domains analysis of bovine a-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J. Mol. Struct., 2010, 979, 227-234.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.035]
[25]
Nakamura, N. Effects of acetylation with acetic anhydride. Agric. Biol. Chem., 1973, 37, 569-574.
[http://dx.doi.org/10.1080/00021369.1973.10860721]
[26]
Bhatt, A.N.; Bhakuni, V.; Kumar, A.; Khan, M.Y.; Siddiqi, M.I. Alkaline pH-dependent differential unfolding characteristics of mesophilic and thermophilic homologs of dimeric serine hydroxylmethyltransferase. Biochim. Biophy. Acta, 2010, 1804(6), 1294-1300.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.023] [PMID: 20152942]
[27]
Dwarakanath, B.S.; Verma, A.; Bhatt, A.N.; Parmar, V.S.; Raj, H.G. Targeting protein acetylation for improving cancer therapy. Indian J. Med. Res., 2008, 128(1), 13-21.
[PMID: 18820353]
[28]
Wagner, G.R.; Hirschey, M.D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol. Cell, 2014, 54(1), 5-16.
[http://dx.doi.org/10.1016/j.molcel.2014.03.027] [PMID: 24725594]
[29]
Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[http://dx.doi.org/10.1038/newbio231232a0] [PMID: 5284360]
[30]
Alfonso, L.; Ai, G.; Spitale, R.C.; Bhat, G.J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer, 2014, 111(1), 61-67.
[http://dx.doi.org/10.1038/bjc.2014.271] [PMID: 24874482]
[31]
Dovizio, M.; Tacconelli, S.; Sostres, C.; Ricciotti, E.; Patrignani, P. Mechanistic and pharmacological issues of aspirin as an anticancer agent. Pharmaceuticals (Basel), 2012, 5(12), 1346-1371.
[http://dx.doi.org/10.3390/ph5121346] [PMID: 24281340]
[32]
Seema; Kumari, R.; Gupta, G.; Saluja, D.; Kumar, A.; Goel, S.; Tyagi, Y.K.; Gulati, R.; Vinocha, A.; Muralidhar, K.; Dwarakanth, B.S.; Rastogi, R.C.; Parmar, V.S.; Patkar, S.A.; Raj, H.G. Characterization of protein transacetylase from human placenta as a signaling molecule calreticulin using polyphenolicperacetates as the acetyl group donors. Cell Biochem. Biophys., 2007, 47, 53-64.
[http://dx.doi.org/10.1385/CBB:47:1:53] [PMID: 17420526]
[33]
Sani, F.D.; Shakibapour, N.; Beigoli, S.; Sadeghian, H.; Hosainzadeh, M.; Chamani, J. Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. J. Lumin., 2018, 203, 599-608.
[http://dx.doi.org/10.1016/j.jlumin.2018.06.083]