Recent Catalysts Used in the Synthesis of 1,4-Disubstituted 1,2,3-Triazoles by Heterogeneous and Homogeneous Methods

Page: [536 - 549] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

1,2,3-triazoles are popular heterocycles employed in material sciences and medicinal chemistry as they show antiviral, antibacterial, anti-HIV, antitubercular, and antifungal activities. Triazoles are appealing due to their stability and interesting click chemistry properties. The Cu(I) catalyzed reaction between azides and alkynes affords the 1,4- disubstituted derivative exclusively becoming a useful synthetic tool. However, one of the main drawbacks of the catalyzed reaction is the need to use Cu(I), which is unstable at standard conditions and rapidly oxidizes to the non-active Cu(II). The most common approach when synthesizing 1,4-disubstituted-1,2,3-triazoles is to reduce Cu in situ employing inorganic Cu salts and a reducing agent. The resulting Cu(I) needs to be further stabilized with organic ligands for the reaction to take place. The aim of homogeneous catalysis is to produce a ligand with a dual function both in reducing and stabilizing Cu(I) without interfering in the overall reaction. Instead, heterogeneous catalysis offers more options when supporting Cu on nanoparticles, complexes, and composites yielding the desired 1,2,3-triazoles in most cases without the need of a reducing agent under green solvents such as ethanol and water. The catalytic activity of Ag, Ru, and Ce is also discussed. This review exemplifies how the use of homogeneous and heterogeneous catalysts offers new and green methodologies for the synthesis of 1,2,3-triazole derivatives. The materials supporting Cu show catalytic properties like high surface area, acid-base sites or phase transfer. Although there is no ideal catalyst, Cu remains the most effective metal since it is economical, abundant and readily available.

Keywords: 1, 2, 3-triazoles, click chemistry, azide, alkyne, cycloaddition, heterogeneous catalysis, Cu catalysts.

Graphical Abstract

[1]
Hajipour, A.R.; Karimzadeh, M.; Fakhari, F.; Karimi, H. CuFeO2/tetrabutyl-ammonium bromide catalyzes selective synthesis of 1,4-disubstituted 1,2,3-triazoles in neat water at room temperature. Appl. Organomet. Chem., 2016, 30, 946-948.
[http://dx.doi.org/10.1002/aoc.3526]
[2]
Huo, J.P.; Hu, H.W.; Zhang, M.; Hu, X.H.; Chen, M.; Chen, D.C.; Liu, J.W.; Xiao, G.F.; Wang, Y.; Wen, Z.L. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 2017, 7, 2281-2287.
[http://dx.doi.org/10.1039/C6RA27012C]
[3]
Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M.M.; Purkhosrow, A. Synthesis of Vasorelaxaing 1,4-disubstituted 1,2,3-triazoles catalyzed by a 4 '-phenyl-2,2 ':6 ',2 “-terpyridine copper(II) complex immobilized on activated multiwalled carbon nanotubes. Asian J. Org. Chem., 2012, 1(4), 377-388.
[http://dx.doi.org/10.1002/ajoc.201200012]
[4]
Chavan, P.V.; Pandit, K.S.; Desai, U.V.; Wadgaonkar, P.P.; Nawale, L.; Bhansali, S.; Sarkar, D. Click-chemistry-based multicomponent condensation approach for design and synthesis of spirochromene-tethered 1,2,3-triazoles as potential antitubercular agents. Res. Chem. Intermed., 2017, 43(10), 5675-5690.
[http://dx.doi.org/10.1007/s11164-017-2955-y]
[5]
Swarup, H.A.; Mantelingu, K.K.; Rangappa, K.S. Effective and transition-metal-free construction of disubstituted, trisubstituted 1,2,3-NH-triazoles and triazolo pyridazine via intermolecular 1,3-dipolar cycloaddition reaction. ChemistrySelect, 2018, 3(2), 703-708.
[http://dx.doi.org/10.1002/slct.201702547]
[6]
Touj, N.; Ozdemir, I.; Yasar, S.; Hamdi, N. An efficient (NHC) copper (I)-catalyst for azide-alkyne cycloaddition reactions for the synthesis of 1,2,3-trisubstituted triazoles: click chemistry. Inorg. Chim. Acta, 2017, 467, 21-32.
[http://dx.doi.org/10.1016/j.ica.2017.06.065]
[7]
Ramapanicker, R.; Chauhan, P. Click Reactions in Organic Synthesis, 1st ed; Chandrasekaran, S., Ed.; Wiley-VCH: Weinheim, 2016, Vol. 1, pp. 1-23.
[8]
Keivanloo, A.; Bakherad, M.; Lotfi, M. Use of ligand-assisted Click reactions for the rapid synthesis of novel 1,2,3-triazole pharmacophore-based 1,2,4-triazines and their benzo-fused analogues. Tetrahedron, 2017, 73(40), 5872-5882.
[http://dx.doi.org/10.1016/j.tet.2017.08.041]
[9]
Appukkuttan, P.; Dehaen, W.; Fokin, V.V.; Van der Eycken, E. A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett., 2004, 6(23), 4223-4225.
[http://dx.doi.org/10.1021/ol048341v] [PMID: 15524448]
[10]
Kumar, S.S.; Kavitha, H.P. Synthesis and biological applications of triazole derivatives-a review. Mini Rev. Org. Chem., 2013, 1(10), 40-65.
[http://dx.doi.org/10.2174/1570193X11310010004]
[11]
Zheng, Z.J.; Wang, D.; Xu, Z.; Xu, L.W. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry. Beilstein J. Org. Chem., 2015, 11(11), 2557-2576.
[http://dx.doi.org/10.3762/bjoc.11.276] [PMID: 26734102]
[12]
Lal, K.; Rani, P. Recent developments in copper nanoparticle-catalyzed synthesis of 1,4-disubstituted 1,2,3-triazoles in water. ARKIVOC, 2016, 2016(1), 307-341.
[http://dx.doi.org/10.3998/ark.5550190.p009.593]
[13]
Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. Cu-I-catalyzed alkyne-azide “Click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem., 2006, 2006(1), 51-68.
[http://dx.doi.org/10.1002/ejoc.200500483]
[14]
Horne, W.S.; Stout, C.D.; Ghadiri, M.R. A heterocyclic peptide nanotube. J. Am. Chem. Soc., 2003, 125(31), 9372-9376.
[http://dx.doi.org/10.1021/ja034358h] [PMID: 12889966]
[15]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[16]
Fu, N.; Wang, S.; Zhang, Y.; Zhang, C.; Yang, D.; Weng, L.; Zhao, B.; Wang, L. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur. J. Med. Chem., 2017, 136, 596-602.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.001] [PMID: 28551587]
[17]
Thirukovela, N.S.; Kankala, S.; Kankala, R.K.; Paidakula, S.; Gangula, M.R.; Vasam, C.S.; Vadde, R. Regioselective synthesis of some new 1,4-disubstituted sulfonyl-1,2,3-triazoles and their antibacterial activity studies. Med. Chem. Res., 2017, 26(9), 2190-2195.
[http://dx.doi.org/10.1007/s00044-017-1926-6]
[18]
Ay, K.; Ispartaloglu, B.; Halay, E.; Ay, E.; Yasa, I.; Karayildirim, T. Synthesis and antimicrobial evaluation of sulfanilamide- and carbohydrate-derived 1,4-disubstitued-1,2,3-triazoles via Click chemistry. Med. Chem. Res., 2017, 26(7), 1497-1505.
[http://dx.doi.org/10.1007/s00044-017-1864-3]
[19]
Jiang, Y.Q.; Wu, K.; Fan, L.M.; Zhao, J.L.; Yang, Y.Q.; Zhang, W.W. Cu(OAc)2·H2O/NH2 OH·HCl/CH3COONa: a facile and efficient catalyst system for copper-catalyzed azide-alkyne Click reactions in water. J. Chin. Chem. Soc. (Taipei), 2018, 5(65), 505-510.
[http://dx.doi.org/10.1002/jccs.201700339]
[20]
Jishkariani, D.; Hall, C.D.; Oliferenko, A.A.; Leino, D.; Katritzky, A.R. Cu(I)-catalyzed regioselective synthesis of pyrazolo[5,1-c]-1,2,4-triazoles. J. Org. Chem., 2012, 77(13), 5813-5818.
[http://dx.doi.org/10.1021/jo300611a] [PMID: 22612460]
[21]
Hallooman, D.; Bhakhoa, H.; Gutierrez, M.R.; Rhyman, L.; Oliferenko, A.A.; Katritzky, A.R.; Alswaidan, I.A.; Elzagheid, M.I.; Domingo, L.R.; Ramasami, P. Copper(I)-catalysed regioselective synthesis of pyrazolo 5,1-c -1,2,4-triazoles: a DFT mechanistic study. Tetrahedron, 2017, 73(31), 4653-4662.
[http://dx.doi.org/10.1016/j.tet.2017.06.040]
[22]
Qureshi, Z.; Kim, J.Y.; Bruun, T.; Lam, H.; Lautens, M. Cu/Pd-catalyzed synthesis of fully decorated polycyclic triazoles: introducing C-H functionalization to multicomponent Multicatalytic Reactions ((MC)R-2). ACS Catal., 2016, 6(8), 4946-4952.
[http://dx.doi.org/10.1021/acscatal.6b00858]
[23]
Ye, W.J.; Xiao, X.; Wang, L.; Hou, S.C.; Hu, C. Synthesis of mono and binuclear Cu(II) complexes bearing unsymmetrical bipyridine-pyrazole-amine ligand and their applications in azide-alkyne cycloaddition. Organometallics, 2017, 36(11), 2116-2125.
[http://dx.doi.org/10.1021/acs.organomet.7b00154]
[24]
Han, B.F.; Xiao, X.; Wang, L.; Ye, W.J.; Liu, X.P. Highly active binuclear Cu(II) catalyst bearing an unsymmetrical bipyridine-pyrazole-amine ligand for the azide-alkyne cycloaddition reaction. Chin. J. Catal., 2016, 37(9), 1446-1450.
[http://dx.doi.org/10.1016/S1872-2067(15)61121-4]
[25]
Wang, C.L.; Wang, D.; Yu, S.L.; Cornilleau, T.; Ruiz, J.; Salmon, L.; Astruc, D. Design and applications of an efficient amphiphilic “Click” Cu-I catalyst in water. ACS Catal., 2016, 6(8), 5424-5431.
[http://dx.doi.org/10.1021/acscatal.6b01389]
[26]
Wang, S.Y.; Jia, K.; Cheng, J.J.; Chen, Y.; Yuan, Y.F. Dual roles of substituted thiourea as reductant and ligand in CuAAC reaction. Tetrahedron Lett., 2017, 58(38), 3717-3721.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.029]
[27]
Gu, S.; Du, J.; Huang, J.; Xia, H.; Yang, L.; Xu, W.; Lu, C. Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties. Beilstein J. Org. Chem., 2016, 12, 863-873.
[http://dx.doi.org/10.3762/bjoc.12.85] [PMID: 27340477]
[28]
Chassaing, S.; Beneteau, V.; Pale, P. When CuAAC ‘Click chemistry’ goes heterogeneous. Catal. Sci. Technol., 2016, 6(4), 923-957.
[http://dx.doi.org/10.1039/C5CY01847A]
[29]
Sabaqian, S.; Nemati, F.; Heravi, M.M.; Nahzomi, H.T. Copper(I) iodide supported on modified cellulose-based nano-magnetite composite as a biodegradable catalyst for the synthesis of 1,2,3-triazoles. Appl. Organomet. Chem., 2017, 31(8) e3660
[http://dx.doi.org/10.1002/aoc.3660]
[30]
Mogaddam, F.M.; Eslami, M.; Ayati, S.E. Copper (II) ions immobilized onto aminoquinoline-functionalized ferrite: a new efficient and recoverable catalyst for “in water” synthesis of triazole derivatives. ChemistrySelect, 2017, 2(36), 11942-11948.
[http://dx.doi.org/10.1002/slct.201701988]
[31]
Rangaswamy, A.; Prasad, A.N.; Reddy, B.M. Cu-based solid catalysts: applications in organic transformations for N-heterocyclic compounds. Curr. Org. Chem., 2017, 21(8), 660-673.
[http://dx.doi.org/10.2174/1385272820666160804155409]
[32]
Negishi, E. Transition metal-catalyzed organometallic reactions that have revolutionized organic synthesis. Bull. Chem. Soc. Jpn., 2007, 80(2), 233-257.
[http://dx.doi.org/10.1246/bcsj.80.233]
[33]
Tasca, E.; La Sorella, G.; Sperni, L.; Strukul, G.; Scarso, A. Micellar promoted multi-component synthesis of 1,2,3-triazoles in water at room temperature. Green Chem., 2015, 17(3), 1414-1422.
[http://dx.doi.org/10.1039/C4GC02248C]
[34]
Salamatmanesh, A.; Miraki, M.K.; Yazdani, E.; Heydari, A. Copper(I)-caffeine complex immobilized on silica-coated magnetite nanoparticles: a recyclable and eco-friendly catalyst for Click chemistry from organic halides and epoxides. Catal. Lett., 2018, 148(10), 3257-3268.
[http://dx.doi.org/10.1007/s10562-018-2523-0]
[35]
Nunes, A.; Djakovitch, L.; Khrouz, L.; Felpin, F.X.; Dufaud, V. Copper(II)-phenanthroline hybrid material as efficient catalyst for the multicomponent synthesis of 1,2,3-triazoles via sequential azide formation/1,3-dipolar cycloaddition. Mol Catal., 2017, 437, 150-157.
[http://dx.doi.org/10.1016/j.molcata.2016.11.017]
[36]
Diz, P.; Pernas, P.; El Maatougui, A.; Tubio, C.R.; Azuaje, J.; Sotelo, E.; Guitian, F.; Gil, A.; Coelho, A. Sol-gel entrapped Cu in a silica matrix: an efficient heterogeneous nanocatalyst for Huisgen and Ullmann intramolecular coupling reactions. Appl. Catal. A, 2015, 502, 86-95.
[37]
Horzum, N.; Boyaci, E.; Eroğlu, A.E.; Shahwan, T.; Demir, M.M. Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromolecules, 2010, 11(12), 3301-3308.
[http://dx.doi.org/10.1021/bm100755x] [PMID: 21080700]
[38]
Gritsch, L.; Lovell, C.; Goldmann, W.H.; Boccaccini, A.R. Fabrication and characterization of copper(II)-chitosan complexes as antibiotic-free antibacterial biomaterial. Carbohydr. Polym., 2018, 179, 370-378.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.095] [PMID: 29111063]
[39]
Mahdavinia, G.R.; Soleymani, M.; Nikkhoo, M.; Farnia, S.M.F.; Amini, M. Magnetic (chitosan/laponite)-immobilized copper(II) ions: an efficient heterogeneous catalyst for azide-alkyne cycloaddition. New J. Chem., 2017, 41(10), 3821-3828.
[http://dx.doi.org/10.1039/C6NJ03862J]
[40]
Jia, X.; Qian, W.; Wu, D.; Wei, D.; Xu, G.; Liu, X. Cuttlebone-derived organic matrix as a scaffold for assembly of silver nanoparticles and application of the composite films in surface-enhanced Raman scattering. Colloids Surf. B Biointerfaces, 2009, 68(2), 231-237.
[http://dx.doi.org/10.1016/j.colsurfb.2008.10.017] [PMID: 19095422]
[41]
Xiong, X.Q.; Cai, L.; Jiang, Y.B.; Han, Q. Eco-efficient, green, and scalable synthesis of 1,2,3-triazoles catalyzed by Cu(I) catalyst on waste oyster shell powders. ACS Sustain. Chem.& Eng., 2014, 2(4), 765-771.
[http://dx.doi.org/10.1021/sc400426x]
[42]
Aflak, N.; Ben El Ayouchia, H.; Bahsis, L.; El Mouchtari, E.M.; Julve, M.; Rafqah, S.; Anane, H.; Stiriba, S.E. Sustainable construction of heterocyclic 1,2,3-triazoles by strict Click [3+2] cycloaddition reactions between azides and alkynes on copper/carbon in water. Front Chem., 2019, 7, 81.
[http://dx.doi.org/10.3389/fchem.2019.00081] [PMID: 30838201]
[43]
Ghodsinia, S.S.E.; Akhlaghinia, B.; Jahanshahi, R. Direct access to stabilized Cu-I using cuttlebone as a natural-reducing support for efficient CuAAC Click reactions in water. RSC Advances, 2016, 6(68), 63613-63623.
[http://dx.doi.org/10.1039/C6RA13314B]
[44]
Elnagdy, H.M.F.; Gogoi, K.; Ali, A.A.; Sarma, D. Claycop/hydrazine: a new and highly efficient recyclable/reusable catalytic system for 1,4-disubstituted-1,2,3-triazole synthesis under solvent-free conditions. Appl. Organomet. Chem., 2018, 32(1), 5.
[http://dx.doi.org/10.1002/aoc.3931]
[45]
Zhang, Z.; Song, P.; Zhou, J.B.; Chen, Y.; Lin, B.J.; Li, Y.Q. Metathesis strategy for the immobilization of copper(II) onto carboxymethylcellulose/Fe3O4 nanohybrid supports: efficient and recoverable magnetic catalyst for the CuAAC reaction. Ind. Eng. Chem. Res., 2016, 55(48), 12301-12308.
[http://dx.doi.org/10.1021/acs.iecr.6b03158]
[46]
Khodaei, M.M.; Bahrami, K.; Meibodi, F.S. Ferromagnetic nanoparticle-supported copper complex: a highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides. Appl. Organomet. Chem., 2017, 31(10), 10.
[http://dx.doi.org/10.1002/aoc.3714]
[47]
Dolatkhah, Z.; Javanshir, S.; Bazgir, A.; Mohammadkhani, A. Magnetic Isinglass a nano-bio support for copper immobilization: Cu-IG@Fe3O4 a heterogeneous catalyst for triazoles synthesis. ChemistrySelect, 2018, 3(19), 5486-5493.
[http://dx.doi.org/10.1002/slct.201800501]
[48]
Bonyasi, R.; Gholinejad, M.; Saadati, F.; Najera, C. Copper ferrite nanoparticle modified starch as a highly recoverable catalyst for room temperature Click chemistry: multicomponent synthesis of 1,2,3-triazoles in water. New J. Chem., 2018, 42(4), 3078-3086.
[http://dx.doi.org/10.1039/C7NJ03284F]
[49]
Vibhute, S.P.; Mhaldar, P.M.; Korade, S.N.; Gaikwad, D.S.; Shejawal, R.V.; Pore, D.M. Synthesis of magnetically separable catalyst Cu-ACP-Am-Fe3O4@SiO2 for Huisgen 1,3-dipolar cycloaddition. Tetrahedron Lett., 2018, 59(41), 3643-3652.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.045]
[50]
Saeidian, H.; Sadighian, H.; Arabgari, M.; Mirjafary, Z.; Ayati, S.E.; Najafi, E.; Moghaddam, F.M. Organocopper-based magnetically recoverable and reusable nanocatalyst for efficient synthesis of novel 1,2,3-triazole-based sulfonamides in green medium. Res. Chem. Intermed., 2018, 44(1), 601-612.
[http://dx.doi.org/10.1007/s11164-017-3122-1]
[51]
Rezaei, F.; Amrollah, M.A.; Khalifeh, R. Design and synthesis of Fe3O4@SiO2/aza-crown ether-Cu(II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1,2,3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorg. Chim. Acta, 2019, 489, 8-18.
[http://dx.doi.org/10.1016/j.ica.2019.01.039]
[52]
Wang, J.; Gu, H. Novel metal nanomaterials and their catalytic applications. Molecules, 2015, 20(9), 17070-17092.
[http://dx.doi.org/10.3390/molecules200917070] [PMID: 26393550]
[53]
Nayal, O.S.; Thakur, M.S.; Kumar, M. Shaifali; Upadhyay, R.; Maurya, S.K., Sustainable and efficient CuI-NPs-catalyzed cross-coupling approach for the synthesis of tertiary 3-aminopropenoates, triazoles, and ciprofloxacin. Asian J. Org. Chem., 2018, 7(4), 776-780.
[http://dx.doi.org/10.1002/ajoc.201700682]
[54]
Esmaeili-Shahri, H.; Eshghi, H.; Lari, J.; Rounaghi, S.A. Click approach to the three-component synthesis of novel β-hydroxy-1,2,3-triazoles catalysed by new (Cu/Cu2O) nanostructure as a ligand-free, green and regioselective nanocatalyst in water. Appl. Organomet. Chem., 2018, 32(1), 8.
[http://dx.doi.org/10.1002/aoc.3947]
[55]
Dias, C.D.S.; Lima, T.D.M.; Lima, C.G.S.; Schpector, J.Z.; Schwab, R.S. CuO nanoparticles as an efficient heterogeneous catalyst for the 1,3-dipolar cycloaddition of dicarbonyl compounds to azides. ChemistrySelect, 2018, 3(22), 6195-6202.
[http://dx.doi.org/10.1002/slct.201800816]
[56]
Koishybay, A.; Shantz, D.F. Copper-gold nanoparticles encapsulated within surface-tethered dendrons as supported catalysts for the Click reaction. Appl. Catal., A, 2018, 563, 196-203.
[57]
Chetia, M.; Gehlot, P.S.; Kumar, A.; Sarma, D. A recyclable/reusable hydrotalcite supported copper nano catalyst for 1,4-disubstituted-1,2,3-triazole synthesis via Click chemistry approach. Tetrahedron Lett., 2018, 59(4), 397-401.
[http://dx.doi.org/10.1016/j.tetlet.2017.12.051]
[58]
Gupta, D.; Mishra, A.; Kundu, S. Cu (II)-B-Cd as water-loving catalyst for one-pot synthesis of triazoles and biofuels intermediate at room temperature without any other additive. ChemistrySelect, 2017, 2(10), 2997-3008.
[http://dx.doi.org/10.1002/slct.201700020]
[59]
Deswal, S.; Tittal, R.K.; Yadav, P.; Lal, K.; Vikas, D.S.; Kumar, N. Cellulose-supported CuI-nanoparticles-mediated green synthesis of trifluoromethylbenzoate-linked triazoles for pharmacological & DFT study. ChemistrySelect, 2019, 4(2), 759-764.
[http://dx.doi.org/10.1002/slct.201803099]
[60]
Bahsis, L.; El Ayouchia, H.B.; Anane, H.; Benhamou, K.; Kaddami, H.; Julve, M.; Stiriba, S.E. Cellulose‑copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3 + 2] cycloaddition reaction in water. Int. J. Biol. Macromol., 2018, 119, 849-856.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.200] [PMID: 30081123]
[61]
Gholinejad, M.; Oftadeh, E.; Sansano, J.M. Clinochlore-supported copper nanoparticles as green and efficient catalyst for room-temperature synthesis of 1,2,3-triazoles in water. ChemistrySelect, 2019, 4(11), 3151-3160.
[http://dx.doi.org/10.1002/slct.201803599]
[62]
Souza, J.F.; Costa, G.P.; Luque, R.; Alves, D.; Fajardo, A.R. Polysaccharide-based superporous hydrogel embedded with copper nanoparticles: a green and versatile catalyst for the synthesis of 1,2,3-triazoles. Catal. Sci. Technol., 2019, 9(1), 136-145.
[http://dx.doi.org/10.1039/C8CY01796D]
[63]
Malamir, F.E.; Hosseinnejad, T.; Mirsafaei, R.; Heravi, M.M. Synthesis, characterization and computational study of CuI nanoparticles immobilized on modified poly (styrene-co-maleic anhydride) as a green, efficient and recyclable heterogeneous catalyst in the synthesis of 1,4-disubstituted 1,2,3-triazoles via Click reaction. Appl. Organomet. Chem., 2018, 32(1), 13.
[http://dx.doi.org/10.1002/aoc.3913]
[64]
Ghosh, S.; Saha, S.; Sengupta, D.; Chattopadhyay, S.; De, G.; Basu, B. Stabilized Cu2O nanoparticles on macroporous polystyrene resins Cu2O@ARF: improved and reusable heterogeneous catalyst for on-water synthesis of triazoles via Click reaction. Ind. Eng. Chem. Res., 2017, 56(41), 11726-11733.
[http://dx.doi.org/10.1021/acs.iecr.7b02656]
[65]
Feher, K.; Nagy, E.; Szabo, P.; Juzsakova, T.; Sranko, D.; Gomory, A.; Kollar, L.; Foldes, R.S. Heterogeneous azide-alkyne cycloaddition in the presence of a copper catalyst supported on an ionic liquid polymer/silica hybrid material. Appl. Organomet. Chem., 2018, 32(6), 13.
[http://dx.doi.org/10.1002/aoc.4343]
[66]
Ghosh, B.K.; Moitra, D.; Chandel, M.; Patra, M.K.; Vadera, S.R.; Ghosh, N.N. CuO nanoparticle immobilised mesoporous TiO2-cobalt ferrite nanocatalyst: a versatile, magnetically separable and reusable catalyst. Catal. Lett., 2017, 147(4), 1061-1076.
[http://dx.doi.org/10.1007/s10562-017-1993-9]
[67]
Sardarian, A.R.; Mohammadi, F.; Esmaeilpour, M. Dendrimer-encapsulated copper(II) immobilized on Fe3O4@SiO2 NPs: a robust recoverable catalyst for Click synthesis of 1,2,3-triazole derivatives in water under mild conditions. Res. Chem. Intermed., 2019, 45(3), 1437-1456.
[http://dx.doi.org/10.1007/s11164-018-3672-x]
[68]
Gupta, A.; Jamatia, R.; Dam, B.; Pal, A.K. Development of synergistic, dual Pd-Cu@rGO catalyst for Suzuki, Heck and Click reactions: facile synthesis of triazole or tetrazole containing biaryls and stilbenes. ChemistrySelect, 2018, 3(28), 8212-8220.
[http://dx.doi.org/10.1002/slct.201801724]
[69]
Li, Z.F.; Zhao, H.Y.; Han, H.T.; Song, J.Y.; Liu, Y.; Guo, W.H.; Sun, Z.Z.; Chu, W.Y. A one-pot method for synthesis of reduced graphene oxide-supported Cu-Cu2O and catalytic application in tandem reaction of halides and sodium azide with terminal alkynes. Appl. Organomet. Chem., 2018, 32(4), 9.
[http://dx.doi.org/10.1002/aoc.4301]
[70]
Siuki, M.M.K.; Bakavoli, M.; Eshghi, H. Cu nanoparticles immobilized on modified magnetic zeolite for the synthesis of 1,2,3-triazoles under ultrasonic conditions. Appl. Organomet. Chem., 2019, 33(4), 9.
[71]
Kashvandi, A.T.K.; Heravi, M.M.; Ahmadi, S.; Hosseinnejad, T. Copper nanoparticles in polyvinyl alcohol-acrylic acid matrix: an efficient heterogeneous catalyst for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles via Click reaction. J. Inorg. Organomet. Polym. Mater., 2018, 28(4), 1457-1467.
[http://dx.doi.org/10.1007/s10904-018-0811-1]
[72]
Vats, T.; Gogoi, R.; Gaur, P.; Sharma, A.; Ghosh, S.; Siril, P.F. Pristine graphene-copper(ii) oxide nanocatalyst: a novel and green approach in cuaac reactions. ACS Sustain. Chem. Eng., 2017, 5(9), 7632-7641.
[http://dx.doi.org/10.1021/acssuschemeng.7b00960]
[73]
Jumde, R.P.; Evangelisti, C.; Mandoli, A.; Scotti, N.; Psaro, R. Aminopropyl-silica-supported Cu nanoparticles: an efficient catalyst for continuous-flow Huisgen azide-alkyne cycloaddition (CuAAC). J. Catal., 2015, 324, 25-31.
[http://dx.doi.org/10.1016/j.jcat.2015.01.014]
[74]
Roy, B.; Panda, A.B.; Chattopadhyay, A.P. Controlled synthesis of different morphologies of Cu-MgO and their application as catalysts in synthesis of 1,2,3-triazoles following different pathways. ChemistrySelect, 2017, 2(24), 7340-7352.
[http://dx.doi.org/10.1002/slct.201701517]
[75]
Shaabani, A.; Afshari, R.; Hooshmand, S.E. Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: a bio-nanoreactor with extremely high activity toward click-multi-component reactions. New J. Chem., 2017, 41(16), 8469-8481.
[http://dx.doi.org/10.1039/C7NJ01150D]
[76]
Bergmann, L.; Braun, C.; Nieger, M.; Bräse, S. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole. Dalton Trans., 2018, 47(2), 608-621.
[http://dx.doi.org/10.1039/C7DT03682E] [PMID: 29239440]
[77]
Araújo, M.; Díaz-Oltra, S.; Escuder, B. Triazolyl-based molecular gels as ligands for autocatalytic ‘Click’ reactions. Chemistry, 2016, 22(25), 8676-8684.
[http://dx.doi.org/10.1002/chem.201600594] [PMID: 27168408]
[78]
Feldman, A.K.; Colasson, B.; Fokin, V.V. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. Org. Lett., 2004, 6(22), 3897-3899.
[http://dx.doi.org/10.1021/ol048859z] [PMID: 15496058]
[79]
Kafle, A.; Handy, S.T. A one-pot, copper-catalyzed azidation/click reaction of aryl and heteroaryl bromides in an environmentally friendly deep eutectic solvent. Tetrahedron, 2017, 73(50), 7024-7029.
[http://dx.doi.org/10.1016/j.tet.2017.10.050]
[80]
Mahmoud, A.G.; da Silva, M.F.C.G.; Sokolnicki, J.; Smoleński, P.; Pombeiro, A.J.L. Hydrosoluble Cu(i)-DAPTA complexes: synthesis, characterization, luminescence thermochromism and catalytic activity for microwave-assisted three-component azide-alkyne cycloaddition click reaction. Dalton Trans., 2018, 47(21), 7290-7299.
[http://dx.doi.org/10.1039/C8DT01232F] [PMID: 29767654]
[81]
Alonso, F.; Moglie, Y.; Radivoy, G. Copper nanoparticles in Click chemistry. Acc. Chem. Res., 2015, 48(9), 2516-2528.
[http://dx.doi.org/10.1021/acs.accounts.5b00293] [PMID: 26332570]
[82]
Barral, K.; Moorhouse, A.D.; Moses, J.E. Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Org. Lett., 2007, 9(9), 1809-1811.
[http://dx.doi.org/10.1021/ol070527h] [PMID: 17391043]
[83]
Kobayashi, S. Flow “Fine” synthesis: high yielding and selective organic synthesis by flow methods. Chem. Asian J., 2016, 11(4), 425-436.
[http://dx.doi.org/10.1002/asia.201500916] [PMID: 26337828]
[84]
Teci, M.; Tilley, M.; McGuire, M.A.; Organ, M.G. Handling hazards using continuous flow chemistry: synthesis of N-1-aryl- 1,2,3 -triazoles from anilines via telescoped three-step diazotization, azidodediazotization, and 3+2 dipolar cycloaddition processes. Org. Process Res. Dev., 2016, 20(11), 1967-1973.
[http://dx.doi.org/10.1021/acs.oprd.6b00292]
[85]
Shi, X.L.; Chen, Y.J.; Hu, Q.Q.; Zhang, W.Q.; Luo, C.X.; Duan, P.G. A potential industrialized fiber-supported copper catalyst for one-pot multicomponent CuAAC reactions in water. J. Ind. Eng. Chem., 2017, 53, 134-142.
[http://dx.doi.org/10.1016/j.jiec.2017.04.014]
[86]
Zhang, L.H.; Li, Z.W.; Chang, R.X.; Chen, Y.; Zhang, W.Q. Synthesis and characterization of novel phenolphthalein immobilized halochromic fiber. React. Funct. Polym., 2009, 69(4), 234-239.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2009.01.001]
[87]
Li, P.Y.; Liu, Y.Y.; Wang, L.; Xiao, J.; Tao, M.L. Copper(II)-Schiff base complex-functionalized polyacrylonitrile fiber as a green efficient heterogeneous catalyst for one-pot multicomponent syntheses of 1,2,3-triazoles and propargylamines. Adv. Synth. Catal., 2018, 360(8), 1673-1684.
[http://dx.doi.org/10.1002/adsc.201701475]
[88]
Barge, A.; Tagliapietra, S.; Binello, A.; Cravotto, G. Click chemistry under microwave or ultrasound irradiation. Curr. Org. Chem., 2011, 15(2), 189-203.
[http://dx.doi.org/10.2174/138527211793979826]
[89]
Cravotto, G.; Fokin, V.V.; Garella, D.; Binello, A.; Boffa, L.; Barge, A. Ultrasound-promoted copper-catalyzed azide-alkyne cycloaddition. J. Comb. Chem., 2010, 12(1), 13-15.
[http://dx.doi.org/10.1021/cc900150d] [PMID: 19904971]
[90]
Naeimi, H.; Shaabani, R. Ultrasound promoted facile one pot synthesis of triazole derivatives catalyzed by functionalized graphene oxide Cu(I) complex under mild conditions. Ultrason. Sonochem., 2017, 34, 246-254.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.043] [PMID: 27773242]
[91]
Mohapatra, H.; Kleiman, M.; Kahn, A.P.E. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem., 2017, 9(2), 135-139.
[http://dx.doi.org/10.1038/nchem.2633]
[92]
Mohapatra, H.; Ayarza, J.; Sanders, E.C.; Scheuermann, A.M.; Griffin, P.J.; Esser-Kahn, A.P. Ultrasound promoted step-growth polymerization and polymer crosslinking via copper catalyzed azide-alkyne “Click” reaction. Angew. Chem. Int. Ed. Engl., 2018, 57(35), 11208-11212.
[http://dx.doi.org/10.1002/anie.201804451] [PMID: 29992680]
[93]
Alyari, M.; Mehrabani, M.G.; Allahvirdinesbat, M.; Safa, K.D.; Kafil, H.S.; Panahi, P.N. Ultrasound assisted synthesis of thiazolidine thiones containing1,2,3-triazoles using Cu/TiO2. ARKIVOC, (part iv) 2017, , 145-157.
[http://dx.doi.org/10.24820/ark.5550190.p009.761]
[94]
Liu, P.N.; Siyang, H.X.; Zhang, L.; Tse, S.K.S.; Jia, G. RuH2(CO)(PPh3)3 catalyzed selective formation of 1,4-disubstituted triazoles from cycloaddition of alkynes and organic azides. J. Org. Chem., 2012, 77(13), 5844-5849.
[http://dx.doi.org/10.1021/jo3008572] [PMID: 22670768]
[95]
Kumar, P.; Joshi, C.; Srivastava, A.K.; Gupta, P.; Boukherroub, R.; Jain, S.L. Visible light assisted photocatalytic [3+2] azide-alkyne “Click” reaction for the synthesis of 1,4- substituted 1, 2, 3-triazoles using a novel bimetallic Ru-Mn complex. ACS Sustain. Chem. Eng., 2016, 4(1), 69-75.
[http://dx.doi.org/10.1021/acssuschemeng.5b00653]
[96]
Boz, E.; Tüzün, N.S. Ag-catalyzed azide alkyne cycloaddition: a DFT approach. Dalton Trans., 2016, 45(13), 5752-5764.
[http://dx.doi.org/10.1039/C5DT04902D] [PMID: 26932753]
[97]
Ikhlef, D.; Wang, C.L.; Kahlal, S.; Maouche, B.; Astruc, D.; Saillard, J.Y. Reaction mechanisms of transition-metal-catalyzed azide-alkyne cycloaddition “Click” reactions: a DFT investigation. Comput. Theor. Chem., 2015, 1073, 131-138.
[http://dx.doi.org/10.1016/j.comptc.2015.09.020]
[98]
Paplal, B.; Nagaraju, S.; Sridhar, B.; Kashinath, D. Regioselective synthesis of functionalized 1,2,3-triazoles via oxidative 3+2 -cycloaddition using Zn(OAc)2-tBuOOH or ZnO nanoparticle as catalyst system in aqueous medium. Catal. Commun., 2017, 99, 115-120.
[http://dx.doi.org/10.1016/j.catcom.2017.05.006]
[99]
Sharma, R.K.; Mishra, M.; Sharma, S.; Dutta, S. Zinc(II) complex immobilized on amine functionalized silica gel: a novel, highly efficient and recyclable catalyst for multicomponent click synthesis of 1,4-disubstituted 1,2,3-triazoles. J. Coord. Chem., 2016, 69(7), 1152-1165.
[http://dx.doi.org/10.1080/00958972.2016.1165807]
[100]
Basu, P.; Bhanja, P.; Salam, N.; Dey, T.K.; Bhaumik, A.; Das, D.; Islam, S.M. Silver nanoparticles supported over Al2O3@Fe2O3 core-shell nanoparticles as an efficient catalyst for one-pot synthesis of 1,2,3-triazoles and acylation of benzyl alcohol. Mol. Catal., 2017, 439, 31-40.
[http://dx.doi.org/10.1016/j.mcat.2017.05.005]
[101]
Mondal, P.; Ghosh, S.; Das, S.K.; Bhaumik, A.; Das, D.; Islam, S.M. Use of an efficient polystyrene-supported cerium catalyst for one-pot multicomponent synthesis of spiro-piperidine derivatives and click reactions in green solvent. Appl. Organomet. Chem., 2018, 32(4), 15.
[http://dx.doi.org/10.1002/aoc.4227]