[7]
Freund, K.B.; Ho, I.V.; Barbazetto, I.A.; Koizumi, H.; Laud, K.; Ferrara, D.; Matsumoto, Y.; Sorenson, J.A.; Yannuzzi, L. Type 3 neovascularization Retina, 2008, 28(2), 201-211.
[10]
Allinson, R. Specialty Pharmaceuticals: Therapy Class Review: Macular Degeneration. Pharm. Times, 2011. [Available at: https://www.pharmacytimes.com/publications/issue/2011/May2011/Therapy-Class-Review-Macular-Degeneration].
[14]
Jain, S.; Krishna Cherukupalli, S.; Mahmood, A. Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics. J. Appl. Pharm. Sci., 2019, 9(8), 130-143.
[15]
Girdhar, V.; Patil, S.; Banerjee, S.; Singhvi, G. Nanocarriers for drug delivery: Mini review. Curr. Nanomed., 2018, 8(2), 88-99.
[21]
Lu, Y.; Zhou, N.; Huang, X.; Cheng, J.W.; Li, F.Q.; Wei, R.L.; Cai, J.P. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int. J. Ophthalmol., 2014, 7(1), 1-7.
[22]
Pandit, J.; Sultana, Y.; Aqil, M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1397-1407.
[25]
Narvekar, P.; Bhatt, P.; Fnu, G.; Sutariya, V. Axitinib-loaded poly(lactic-co-glycolic acid) nanoparticles for age-related macular degeneration: Formulation development and in vitro characterization. Assay Drug Dev. Technol., 2019, 17(4), 167-177.
[28]
Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology, 2019, 17(1), 64.
[29]
Mandal, A.; Bisht, R.; Rupenthal, I.D.; Mitra, A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release, 2017, 248, 96-116.
[30]
Jang, W-D.; Nakagishi, Y.; Nishiyama, N.; Kawauchi, S.; Morimoto, Y.; Kikuchi, M.; Kataoka, K. Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J. Control. Release, 2006, 113(1), 73-79.
[31]
Shah, A.; Singhvi, G. A Novel System in Pharmaceuticals. PharmaTutor Edu Labs, 2014, 2(1), 83-87.
[36]
Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials, 2011, 32(7), 1865-1871.
[47]
Varshochian, R.; Riazi-Esfahani, M.; Jeddi-Tehrani, M.; Mahmoudi, A.R.; Aghazadeh, S.; Mahbod, M.; Movassat, M.; Atyabi, F.; Sabzevari, A.; Dinarvand, R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J. Biomed. Mater. Res. Part A, 2015, 103(10), 3148-3156.
[48]
Huu, V.A.N.; Luo, J.; Zhu, J.; Zhu, J.; Patel, S.; Boone, A.; Mahmoud, E.; McFearin, C.; Olejniczak, J.; de Gracia Lux, C.; Lux, J.; Fomina, N.; Huynh, M.; Zhang, K.; Almutairi, A. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J. Control. Release, 2015, 200, 71-77.