Nanotherapies for the Treatment of Age-Related Macular Degeneration (AMD) Disease: Recent Advancements and Challenges

Page: [283 - 290] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Age-related Macular Degeneration (AMD) is one of the common diseases affecting the posterior part of the eye, of a large population above 45 years old. Anti-Vascular Endothelial Growth Factor- A (Anti-VEGF-A) agents have been considered and approved as therapeutic agents for the treatment of AMD. Due to the large molecular weight and poor permeability through various eye membranes, VEGF-A inhibitors are given through an intravitreal injection, even though the delivery of small therapeutic molecules by topical application to the posterior part of the eye exhibits challenges in the treatment. To overcome these limitations, nanocarrier based delivery systems have been utilized to a large extent for the delivery of therapeutics. Nanocarriers system offers prodigious benefits for the delivery of therapeutics to the posterior part of the eye in both invasive and non-invasive techniques. The nano size can improve the permeation of therapeutic agent across the biological membranes. They provide protection from enzymes present at the site, targeted delivery or binding with the disease site and extend the release of therapeutic agents with prolonged retention. This leads to improved therapeutic efficacy, patient compliance, and cost effectiveness of therapy with minimum dose associated side-effects. This review has summarized various nanocarriers explored for the treatment of AMD and challenges in translation.

Keywords: Age-related macular degeneration, nanocarriers, vascular endothelial growth factor, intravitreal, posterior segment, neo-vascularization.

Graphical Abstract

[1]
Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet (London, England), 2018, 392(10153), 1147-1159.
[http://dx.doi.org/10.1016/S0140-6736(18)31550-2]
[2]
Sarwar, S; Clearfield, E; Soliman, MK Aflibercept for neovascular age-related macular degeneration. Cochrane Database Syst Rev 2016 2CD011346,
[PMID: 26857947]
[3]
Falavarjani, K.G.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond.), 2013, 27(7), 787-794.
[http://dx.doi.org/10.1038/eye.2013.107]
[4]
Müller, S.; Ehlken, C.; Bauer-Steinhusen, U.; Lechtenfeld, W.; Hasanbasic, Z.; Agostini, H.; Wilke, T. Treatment of age-related neovascular macular degeneration: the patient’s perspective. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(11), 2237-2246.
[http://dx.doi.org/10.1007/s00417-017-3739-1]
[5]
Klein, R.; Peto, T.; Bird, A.; Vannewkirk, M.R. The epidemiology of age-related macular degeneration. Am. J. Ophthalmol., 2004, 137(3), 486-495.
[http://dx.doi.org/10.1016/j.ajo.2003.11.069]
[6]
Tsai, A.S.H.; Cheung, N.; Gan, A.T.L.; Jaffe, G.J.; Sivaprasad, S.; Wong, T.Y.; Cheung, C.M.G. Retinal angiomatous proliferation. Surv. Ophthalmol., 2017, 62(4), 462-492.
[http://dx.doi.org/10.1016/j.survophthal.2017.01.008]
[7]
Freund, K.B.; Ho, I.V.; Barbazetto, I.A.; Koizumi, H.; Laud, K.; Ferrara, D.; Matsumoto, Y.; Sorenson, J.A.; Yannuzzi, L. Type 3 neovascularization Retina, 2008, 28(2), 201-211.
[8]
Freund, K.B.; Ho, I-V.; Barbazetto, I.A.; Koizumi, H.; Laud, K.; Ferrara, D.; Matsumoto, Y.; Sorenson, J.A.; Yannuzzi, L. Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation. Retina, 2008, 28(2), 201-211.
[http://dx.doi.org/10.1097/IAE.0b013e3181669504]
[9]
Yannuzzi, L.A.; Negrão, S.; Iida, T.; Carvalho, C.; Rodriguez-Coleman, H.; Slakter, J.; Freund, K.B.; Sorenson, J.; Orlock, D.; Borodoker, N. Retinal angiomatous proliferation in age-related macular degeneration. Retina, 2001, 21(5), 416-434.
[http://dx.doi.org/10.1097/00006982-200110000-00003]
[10]
Allinson, R. Specialty Pharmaceuticals: Therapy Class Review: Macular Degeneration. Pharm. Times, 2011. [Available at: https://www.pharmacytimes.com/publications/issue/2011/May2011/Therapy-Class-Review-Macular-Degeneration].
[11]
Macular Degeneration Treatment - FDA-Approved Treatments. Available at https://www.allaboutvision.com/conditions/amd-treatments.htm
[12]
Abd, A.J.; Kanwar, R.K.; Kanwar, J.R. Aged macular degeneration: current therapeutics for management and promising new drug candidates. Drug Discov. Today, 2017, 22(11), 1671-1679.
[http://dx.doi.org/10.1016/j.drudis.2017.07.010]
[13]
Madni, A.; Rahem, M.A.; Tahir, N.; Sarfraz, M.; Jabar, A.; Rehman, M.; Kashif, P.M.; Badshah, S.F.; Khan, K.U.; Santos, H.A. Non-invasive strategies for targeting the posterior segment of eye. Int. J. Pharm., 2017, 530(1-2), 326-345.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.065]
[14]
Jain, S.; Krishna Cherukupalli, S.; Mahmood, A. Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics. J. Appl. Pharm. Sci., 2019, 9(8), 130-143.
[15]
Girdhar, V.; Patil, S.; Banerjee, S.; Singhvi, G. Nanocarriers for drug delivery: Mini review. Curr. Nanomed., 2018, 8(2), 88-99.
[16]
Singhvi, G.; Patil, S.; Girdhar, V. Dubey SK. nanocarriers for topical drug delivery: Approaches and advancements. Nanosci. Nanotechnol. Asia, 2019, 9(3), 329-336.
[http://dx.doi.org/10.2174/2210681208666180320122534]
[17]
Singhvi, G.; Banerjee, S.; Khosa, A. Lyotropic liquid crystal nanoparticles: A novel improved lipidic drug delivery system; Org Mater as Smart Nanocarriers Drug Deliv, 2018, pp. 471-517.
[http://dx.doi.org/10.1016/B978-0-12-813663-8.00011]
[18]
Rapalli, V.K.; Khosa, A.; Singhvi, G.; Girdhar, V.; Jain, R.; Dubey, S.K. Application of QbD Principles in Nanocarrier-Based Drug Delivery Systems; Pharm Qual by Des, 2019, pp. 255-296.
[http://dx.doi.org/10.1016/B978-0-12-815799-2.00014-9]
[19]
Wang, Y.; Xu, X.; Gu, Y.; Cheng, Y.; Cao, F. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin. Drug Deliv., 2018, 15(7), 687-701.
[http://dx.doi.org/10.1080/17425247.2018.1496080]
[20]
Başaran, E.; Yazan, Y. Ocular application of chitosan. Expert Opin. Drug Deliv., 2012, 9(6), 701-712.
[http://dx.doi.org/10.1517/17425247.2012.681775]
[21]
Lu, Y.; Zhou, N.; Huang, X.; Cheng, J.W.; Li, F.Q.; Wei, R.L.; Cai, J.P. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. Int. J. Ophthalmol., 2014, 7(1), 1-7.
[22]
Pandit, J.; Sultana, Y.; Aqil, M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1397-1407.
[23]
Tahara, K.; Karasawa, K.; Onodera, R.; Takeuchi, H. Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles. Asian J Pharm Sci, 2017, 12(4), 394-399.
[http://dx.doi.org/10.1016/j.ajps.2017.03.002]
[24]
Qiu, F.; Meng, T.; Chen, Q.; Zhou, K.; Shao, Y.; Matlock, G.; Ma, X.; Wu, W.; Du, Y.; Wang, X.; Deng, G.; Ma, J.X.; Xu, Q. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol. Pharm., 2019, 16(5), 1958-1970.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01319]
[25]
Narvekar, P.; Bhatt, P.; Fnu, G.; Sutariya, V. Axitinib-loaded poly(lactic-co-glycolic acid) nanoparticles for age-related macular degeneration: Formulation development and in vitro characterization. Assay Drug Dev. Technol., 2019, 17(4), 167-177.
[26]
Sousa, F.; Cruz, A.; Fonte, P.; Pinto, I.M.; Neves-Petersen, M.T.; Sarmento, B. A new paradigm for antiangiogenic therapy through controlled release of bevacizumab from PLGA nanoparticles. Sci. Rep., 2017, 7(1), 3736.
[http://dx.doi.org/10.1038/s41598-017-03959-4]
[27]
Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Abdul Nasir, N.A.; Razali, N.; Alyautdin, R.; Ismail, N.M. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv., 2016, 23(4), 1075-1091.
[http://dx.doi.org/10.3109/10717544.2014.943336]
[28]
Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology, 2019, 17(1), 64.
[29]
Mandal, A.; Bisht, R.; Rupenthal, I.D.; Mitra, A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release, 2017, 248, 96-116.
[30]
Jang, W-D.; Nakagishi, Y.; Nishiyama, N.; Kawauchi, S.; Morimoto, Y.; Kikuchi, M.; Kataoka, K. Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J. Control. Release, 2006, 113(1), 73-79.
[31]
Shah, A.; Singhvi, G. A Novel System in Pharmaceuticals. PharmaTutor Edu Labs, 2014, 2(1), 83-87.
[32]
Kambhampati, SP; Mishra, MK; Mastorakos, P; Oh, Y; Lutty, GA; Kannan, RM Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur J Pharm Biopharm 2015; 95(Part B): 239-249,
[http://dx.doi.org//10.1016/j.ejpb.2015.02.013]
[33]
Marano, R.J.; Toth, I.; Wimmer, N.; Brankov, M.; Rakoczy, P.E. Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity. Gene Ther., 2005, 12(21), 1544-1550.
[http://dx.doi.org/10.1038/sj.gt.3302579]
[34]
Shen, H-H.; Chan, E.C.; Lee, J.H.; Bee, Y.S.; Lin, T.W.; Dusting, G.J.; Liu, G.S. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine, 2015, 10(13), 2093-2107.
[http://dx.doi.org/10.2217/nnm.15.47]
[35]
Paul, W.; Sharma, C.P. Inorganic nanoparticles for targeted drug delivery; Biointegration Med Implant Mater, 2010, pp. 204-235.
[http://dx.doi.org/10.1533/9781845699802.2.204]
[36]
Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials, 2011, 32(7), 1865-1871.
[37]
Cho, W-K.; Kang, S.; Choi, H.; Rho, C.R. Topically administered gold nanoparticles inhibit experimental corneal neovascularization in mice. Cornea, 2015, 34(4), 456-459.
[http://dx.doi.org/10.1097/ICO.0000000000000343]
[38]
Kalishwaralal, K.; Banumathi, E.; Pandian, SRK.; Deepak, V.; Muniyandi, J.; Eom, S.H.; Gurunathan, S. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf. B Biointerfaces, 2009, 73(1), 51-57.
[http://dx.doi.org/10.1016/j.colsurfb.2009.04.025]
[39]
Jo, D.H.; Kim, J.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine Nanotechnology, Biol Med , 2012, 8(5), 784-791.
[http://dx.doi.org/10.1016/j.nano.2011.09.003]
[40]
Thrimawithana, T.R.; Young, S.; Bunt, C.R.; Green, C.; Alany, R.G. Drug delivery to the posterior segment of the eye. Drug Discov. Today, 2011, 16(5-6), 270-277.
[http://dx.doi.org/10.1016/j.drudis.2010.12.004]
[41]
Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B, 2017.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001]
[42]
Jiang, S.; Franco, Y.L.; Zhou, Y.; Chen, J. Nanotechnology in retinal drug delivery. Int. J. Ophthalmol., 2018, 11(6), 1038-1044.
[PMID: 29977820]
[43]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4]
[44]
Li, F.; Hurley, B.; Liu, Y.; Leonard, B.; Griffith, M. Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol. J., 2012, 6, 54-58.
[http://dx.doi.org/10.2174/1874364101206010054]
[45]
Elsaid, N.; Jackson, T.L.; Elsaid, Z.; Alqathama, A.; Somavarapu, S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol. Pharm., 2016, 13(9), 2923-2940.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00335]
[46]
Hirani, A.; Grover, A.; Lee, Y.W.; Pathak, Y.; Sutariya, V. Triamcinolone acetonide nanoparticles incorporated in thermoreversible gels for age-related macular degeneration. Pharm. Dev. Technol., 2016, 21(1), 61-67.
[http://dx.doi.org/10.3109/10837450.2014.965326]
[47]
Varshochian, R.; Riazi-Esfahani, M.; Jeddi-Tehrani, M.; Mahmoudi, A.R.; Aghazadeh, S.; Mahbod, M.; Movassat, M.; Atyabi, F.; Sabzevari, A.; Dinarvand, R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J. Biomed. Mater. Res. Part A, 2015, 103(10), 3148-3156.
[48]
Huu, V.A.N.; Luo, J.; Zhu, J.; Zhu, J.; Patel, S.; Boone, A.; Mahmoud, E.; McFearin, C.; Olejniczak, J.; de Gracia Lux, C.; Lux, J.; Fomina, N.; Huynh, M.; Zhang, K.; Almutairi, A. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J. Control. Release, 2015, 200, 71-77.
[49]
Takashima, Y.; Tsuchiya, T.; Igarashi, Y.; Kanazawa, T.; Okada, H.; Urtti, A. [Non-invasive ophthalmic liposomes for nucleic acid delivery to posterior segment of eye]. Yakugaku Zasshi, 2012, 132(12), 1365-1370.
[http://dx.doi.org/10.1248/yakushi.12-00234-3]
[50]
Davis, B.M.; Normando, E.M.; Guo, L.; Turner, L.A.; Nizari, S.; O’Shea, P.; Moss, S.E.; Somavarapu, S.; Cordeiro, M.F. Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small, 2014, 10(8), 1575-1584.
[http://dx.doi.org/10.1002/smll.201303433]